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Available local and global minimization algorithms are
reviewed with special emphasis on their applicability
in electronic structure calculation of atoms and
molecules in the variational approximation which can
often be cast as a constrained search for the global
minimum on a multidimensional energy or energy-like
surface in the space spanned by the parameters in the
wave function. The traditional gradient-driven algo-
rithms cannot guarantee the globality of the minimum
reached. A global stochastic minimizer like the one
offered by the method of simulated annealing is shown
to be a powerful tool for handling these problems, in
general. Specific applications are discussed to uncover
the merits and demerits, if any, of the method proposed.

S

THe aim of this article is twofold; the first, has been
to survey the available practical methods for minimizing
a function or a functional of many variables and the
second, to assess them in the context of quantum chemical
optimization problems, specially problems arising in
electronic structure theory. The very edifice of electronic
structure theory has been largely built on the idea of
expanding wave functions in a finite dimensional analytic
basis set. Naturally, the task of finding an optimally
conditioned basis set or the optimal form of such
expansions has seen very major efforts in the arena of
atomic and molecular electronic structure theory in
general, and molecular electronic structure theory in
particular’. A very natural choice of tool in this research
has been the variational approximation. The connection
between optimization theory and principles of variational
electronic structure theory is a direct one, for the varia-
tional recipe casts the problem of finding an optimal
expansion for Yy in the mould of an extremization
problem of an appropriately constrained energy func-
tional®®. In the most general case, the extremization
condition on the appropriate functional naturally leads
to equations which are nonlinear and therefore offer
multiple solutions physically representing maxima, min-
ima or the saddle points of the function. How does one
pick up the Jowest energy solution from amongst all
possible solutions? In what follows, we intend to carry
out a general analysis of the problems involved and
ultimately offer a workable strategy for accomplishing
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the task. The strategy, as we will see later, involves

the use of a stochastic global minimizer*'’.

Variational principle and energy extremization

For the ground state of a system described by a Hamil-
tonian (H) bounded from below, the energy functional
EW) = ({(VIHly)/{yly))attains a global minimum
for the exact ground state wave function (§ = w,)
while for all other admissible trial wave functions,
E(v)> E,, From the variational point of view, the
problem of finding the ground state wave function thus
boils down to a global minimization problem of energy.
For the excited states, the problem is much less simple.
The functional E ( ¥ ) can be shown to have a stationary
point E (y”) which is an upperbound to the correspond-
ing exact excited state energy’ (E) if and only if y is
constrained to remain orthogonal to all the exact lower
eigenstates of H. This assertion of variational principle
1s operationally crippled from the point of view of
optimization theory since the constraint conditions in-
volve exact lower states which will be unknown for
problems of real interest. For practical calculations on
excited states one 1s therefore compelled to invoke a
much more restricted variational recipe provided by the
so-called linear variational principle succinctly put for-
ward by the Hylleraas Undheim Mcdonald (HUM)
theorem'" '*. The only restriction in HUM is the linearity
of the trial space. But it prevents variational collapse
and offers systematic improvement of the wave function
and energy (Figure 1).

The restriction of linear space is a severe one and
is often manifested in slow convergence of the expansion

N
w(N}z Z CIQI),.

y=1

[t 1s possible to relax this restriction but only at the
cost of bringing in additional (difficult to enforcel!)
constraints. Thus, for a general variational calculation
on the kth excited state of a system, E (Y, ), umum 1S a0

upperbound to the exact energy of the kth state (£) if
and only if Y, is constrained to remain both orthogonal
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Figure I. Monotonic convergence of approximate energy eigenvalues
obtained from linear vanation principie.

to and decoupled with the (k—1) lower approximate
eigenstates of H(VY, V¥,,... V¥,_,) which themselves
must also be mutually orthogonal and decoupled’. The
equations resulting from the extremization of the ap-
propriate functional [J (y,)] are, however, highly non-
linear and can be solved only by some practicable
strategy of unconstrained global minimization. It is
natural therefore to start exploring the possibility of
casting the extremization problem of the energy func-
tional J(y) into a global minimization problem of
some other functional. The transcription may be effected
by using the idea of penalized function(al) strategy of

unconstrained optimization'>™"".

From extremization to minimization

Let us suppose that our problem is to perform a general
variational calculation on the kth excited state of a
system. Let ¢,,0,,... §,_, be a set of orthonormal
and mutually decoupled approximate eigenfunctions of

H. The correct energy functional for the kth state is
then

J(9,) =W LHL g Y/ (g, ly )+

k=1 k—1
> 0§18 )+ 2, B HIB), )

=l

where & s are a set of Lagrangian multipliers (LM) for
enforcing the relevant orthogonality constraints
({9,19,) = 0) while B s stand for another set of LMs
for satisfying the decoupling constraints ({(y, 1H1 §,)
= (). The extremum solution js obtained by setting the
first derivative of J(\,) (with respect to §,, o s and
B, 5) zero.
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The same problem cast as an absolute minimization

problem with the aid of the penalized function(al)
strategy > '® works with a different functional F{y, )

FOU) = (Y HT§, ) ~E) +

Y A g ({P,15,))+

2L YRUHIHIE N+ U TG @

E, in equation (2) is a lower bound to the constrained
energy of the kth state,

g (CHAR, D) = HWAF I B ((P, 1HI§))
=1{(y, LHI §)1* and f({G,17,))
= (1"(‘1}“{[’;;))2-

N, A, s and ¥, s are penalty weight factors of appropriate
dimensions and magnitudes. It would perhaps not be
out of place to explain the precise mathematical nature
of the penalty function and weight factors introduced
for constructing the functional F(w,). Let us suppose
that F (x) is the function to be minimized subject to
the constraints f (x) < 0,i =1, 2, ..., n. To proceed
further we introduce the following definitions:

2
&m=[g’

and define a new function & (x, 8), the penalty function,
as follows:

£ >0

t <0 (3)

/

hx, B) = B 2, gL/, ()] (4)
=1
It is «clear that A(x,f) =0, if xgD, where

D={x f(x) <0,i=1,2,...,n}. If xe D, h(x, B)
> 0. Also, A(x, B)—=>+0o as B-— o when x& D. P is
called a penalty weight factor. It is now possible to
define an auxiliary minimization problem with the help
of h (x, B) such that the constrained minimization problem
for F (x) reduces to the unconstrained minimization of
an auxiliary function F(x, B) where

F(x, B) = Fx)+h(x, B). (3)

It is obvious that the construction of /# (x, B) as suggested
here is not unique. Many alternative constructions are
possible for /A(x, B) and the auxiliary function
F(x, B). The specific one we have used is culled Morrison
function which is specially suitable for handhing equality
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constraints that we need to enforce. An inspection of
the Morrison function F( , ) shows that if any constraint
condition s violated the value of F(V,) rises steeply.
The absolute minimum of F(y,) is reached only when
all the constraint conditions are unequivocally satisfied
and E, 1s as close as possible to E, . If the exact lower
eigenstates of H were known, the third set of terms
could be dropped from F(w,). If the trial space were
linear, again the same set of terms could be eliminated.
For a ground state calculation, the only constraint on
V is the normalization constraint and both the second
and third set of terms in F(,) naturally drop out.
The lower bound E, in F(V,) is essentially arbitrary
and a sufficiently large positive number would be ac-
ceptable. If E, < (y, 1H! y, ) at any stage, one can
readjust 1ts value by using E;_ = E_ —const. { F(,) }"~
For the first excited state calculation, the optimized
energy of the ground state (E,) is the best choice for
E, . Similarly, the optimal energy of the first excited
state can be used as EL in a calculation on the second
excited state and so on sequentially to higher excited
states. Whatever may be the case, one can either set
O F(y,) = 0 and proceed to solve the resulting equations
or chalk out a strategy that directly looks for the minima
of F(y.). In either case, one needs a suitable optimiza-

tion method.

The optimization methods

A number of methods for unconstrained minimization
of nonlinear functions of many variables ' are available.
The choice of the best method for a particular sttuation
depends on a number of factors, namely, the nature of
the function to be minimized, the number of variables,
the availability of analytical first (and higher) derivatives
and the cost of evaluating the function and its derivatives,
and so on. On the other hand, efficacy of an optimization
procedure 1s usually calibrated in terms of a few im-
portant features of the algorithm, e.g. speed of conver-
gence, storage requirement, stability and reliability of
the optimization method and the overall cost of opti-
mization. The algorithms are generally grouped into two
categories depending on the type of information they
use: (a) non-derivative methods and (b) derivative
methods.

Non-derivative minimizers

Experience with non-derivative methods of optimization
has been long. The features of a non-derivative method
that account for its attraction and applicability are:
conceptual simplicity, easy programmability and small
storage demands on the computer. Of the non-derivative
methods, the multivariate grid search method is the
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oldest one. It has a long history in quantum chemistry,
particularly In optimizing the energy with respect to
nuclear positions and orbital exponents. But the sequential
univariate search was perhaps the most frequently used
method for molecular geometry optimization. Figure 2
shows how a sequential univariate search on a quadratic
two parameter surface proceeds. A more sophisticated
pattern search method due to Hooke and Jeeves' has also
found applications in quantum mechanical minimization
problems. Methods strongly related to the pattern search
method are the Simplex method” and the method of
Rosenbrock™ which, however, have found little use in
quantum chemistry. The conjugate directions method is
potentially the most powerfiill among all the non-derivative
methods and a particular implementation of the scheme
that has become the most popular among the non-derivative
minimizers has been due to Powell”. It generates conjugate
directions without calculating first or second derivatives.

Derivative-based minimizers
The derivative methods**™ are based on a sequence oOf
one-dimensional direction searches*”*’ with a few ex-
ceptions like the memory” and super memory®® gradient
methods which are not univariate in nature. In general,
these algonthms approximate the function-surface at the
kth step by a quadratic expression in terms of variables
x, the computed function f,, the computed gradient
g,, and the approximate or exact Hessian B, :

f@x) =fi+g (x=x)+

(1/2) (x —xk)T B, (x —x,). (6)

Figure 2. Steps in finding the minunum on a quadiabic surface using
the sequential unmivanate search or axial iteration method (ref. Adv.

Chem Phys., 1987, vol. LXVIL, courtesy Academic Press).
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Depending on the nature of dertvative information (g,
only or both g, and B,), the line search scheme, formulae
for updating B, or the inverse of B, (= H), there is a
broad spectrum of the derivative methods which include,
for example, the variable me;tri(:%, Fletcher—Reeves®,
Fletcher—-Powell*, Davidon-Fletcher—Powell”’ (DFP),
Murtagh-Sargent”™ (MS), Broyden—Fletcher~Goldfarb—
Shanno” and the optimally conditioned algorithm™. The
spectrum  starts with the methods which employ only
the first derivative of the function to be minimized and
are called gradient methods. All these methods update
variables by taking x, ., = x, + -::Jt:ﬁ{B;I p., p, being the
direction of univariate search. Figure 3 shows how a
Fletcher—Powell type algorithm operates its search for
a minimum on a quadratic two-dimensional surface. The
method at the other end of the spectrum is Newton’s
method which requires the full Hessian matrix. The
most frequently used derivative algorithms fall between
the extremes of the fixed metric methods and Newton’s
method and are called variable metric or quasi-Newton
methods. These methods start with an approximate Hes-
sian and using the gradient information improve it during
the course of the optimization, instead of attempting
direct calculation of the Hessian which js costly in
terms of computing time.

The simplest of all the gradient methods is the steepest
descent (SD) method. In the absence of any information
about the function f(x) to be minimized the optimum
direction to move from a point x = g to minimize
f(x) 1s to move along the direction of steepest descent
p = —Ag (@), where g (a) = df/dx at x = a. The method
1s, however, very slow. The reason for this rather
disappointing performance of the SD method lies in

|

Figure 3.

a quasi-Newton alpopthm with accurate line scarches (el Adv Chem
Phys, 1987, vol LXVIIL couttesy Academic Press).

Steps an finding the vimmmum on a guadiatie suface vsng
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that each SD vector is orthogonal to the SD vector of
the previous step. If the initial SD vector is not directed
at right angles to the axis of the valley, successive SD
vectors will be directed across the valley and not along
1it. The conjugate gradient technique (CG) overcomes
this by combining information about the function and
its gradient at a few previous steps such that each
minimization step is independent of another. The initial
direction is taken to be the negative of the gradient of
the starting point. A subsequent conjugate direction is
then constructed from a linear combination of the new
gradient and the previous direction that minimized
J (x).

The CG, MS and DFP methods are special cases of
the family of algorithms due to Huang’ and Dixon*:

which suggest that the direction vector and the Hessian
must obey the following relation

HBp =pp,,i-12j20

to produce conjugate directions, where p is an arbitrary
scalar, so that the limit H = pB™. As a general rule
the overall computational cost and convergence of these
methods depend on the accuracy of the line searches
and the cost of gradient calculation. The line searches
can be improved by means of fitting followed by
mterpolation at the minimum (by cubic polynomial in-
terpolation™, quartic polynomial *, conic interpolation™
or by following what has been suggested by McKelvey
and Hamilton™). A few algorithms which do not fall
into the categories outlined above have also been
proposed. For example, the algorithm due to Csaszar
and Pulay’’ uses a fixed Hessian with a k-dimensional
search at the kth iteration and the direction vector
(p,) 1s determined in a least squares sense. It performs
well. Finally, we come to those algorithms which depend
on a knowledge of the second derivative of the function,
i.e. the Hesstan (B) or its inverse (I = B™). If B or
H™' are available, the minimum of a quadratic surface
can be found In one step, so that we need not bother
about the direction of descent. However, for non-quad-
ratic functions, the choice of optimal directions again
becomes i1mportant. For a well-behaved minimization,
the Hessian must be positive definite and not
ilf-conditioned. In the latter case, however, the problem
1s remedied by means of a ‘shifted’ or *diessed” Hessian
obtained by adding a constant to the odd-egenvalue(s).
The most widely used scheme under this category is
due to Marquardt-Levenberg™. An initial estimate of
the Hessian 1s requived for starting the quasi-Newton
methods. A number of chotces with ditterent levels of
cost and accuracy are available in the context of quantum
chemistry., Thus one can use a umt mairix, make an
empirtcal guess, vse Hessian computed by a semi-em-
pitical MO theory, construct an approntiunate  Hesstan
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the diagonal elements of which are analytically or numeri-
cally calculated, use analvtically computed second dertva-
thve matric from a lower level ab initio calculations,
etc. Since analytical second derivatives are not readily
available and its calculation involves 5-10 to N-times
the computational cost involved in a gradient calculation,
the use of the first derivative and quasi-Newton methods
scems to be more advantageous than the Newton-type
methods. Figure 4 shows the line searches conducted
by a quasi-Newton method on the quadratic surface of
Figure 3. The Newton-type methods are invoked only
when there are acute convergence difficulties in the
optimization arising from strongly coupled variables,
shallow wells or narrow curved valleys on the function
surface. The performance of these methods is dependent
upon the accuracy of the Hessian.

Experience with non-derivative and derivative-
driven minimizers

In the context of quantum chemistry, the form of the
function to be minimized depends on the nature of
constraints and the way the constraints have been
incorporated. For example, the scheme of incorporation
ot orthogonality constraints in closed shell SCF problem
as used by Mcweeny and further investigated by several
authors™ * results in poor convergence of the steepest
descent method. But the convergence improves following
the scheme due to Fletcher. A much simpler scheme
based on Lagrange multiplier has shown promise in
closed shell MC-SCF theory”. The non-derivative
methods are conceptually simple, easily programmable
but often fail to converge in the cases of strongly
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Figure 4. Steps in {inding the mipmymum on a quadratic suiface Bsing
a modified Fletcher-Powell algonthm (ref. Adv. Chem. Phys, 1987,
vol LXVH, courtesy Academic Press)
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dependent variables®' or in problems with large number
of wvariables (Powell method”’). The first derivative
methods, on the other hand, are faster than non-derivative
methods as they make use of extra information about
the function, The second derivative methods are, in
general, superior to either of these. But it is hard to
assess the relative advantage of the methods in general
terms. The problems arise basically due to the difficulty
of construction and storage of the Hessian or an ap-
proximation to it. The use of Newton-like methods in
optimizing nonlinear parameters Is rather widespread.
Understandably, MC-SCF theory has made large scale
use of Newton or Newton-like methods for optimizing
the parameters in wave function including nuclear coor-
dinates so much so that quadratic MC-SCF equations
are often referred to as MC-SCF Newton Raphson
equations™ . Experience with non-derivative methods
of optimization is quite varied®. The chief attraction of
these methods in the context of quantum chemical
optimization problem is easily understandable. The most
widely used non-derivative method in this context has
been the sequential univariate search (e.g. in optimizing
orbital exponents). Powell’s method has been used in
the optimization of exponents™, nonlinear parameters in
general calculations® and linear expansion coefficients
in SCF calculations™*. The method performs wel]l for
small number of variables. However, for a large number
ot variables the method becomes inefficient requiring
one to switch over to derivative methods.

Stochastic minimizers

From the discussion in the preceding sections, one can
conclude that for (a) simple potential energy or ener-
gy-like surfaces with one or a very few minima which
are sparsely distributed, gradient search could be quite
efficient in locating these minima. However, for systems
with many degrees of freedom, the gradient methods
are slow and often fail to reach the global minima.
this 1s because the search can get trapped in any one
of the local minima and the algorithms on which the
searches are based do not have any built-in mechanism
which can drive it out of such minima. Techniques
based on random search do not have this problem. The
surface is scanned at random and the new point being
sampled 1s a function of predetermined step sizes for
various degrees of freedom. The method of simulated
annealing*™” is an example of such a technique. Its
objective is the location of the global minimum of a
muitivariate function possessing many local minima.
Though stochastic in nature, the method of simulated
annealing 1s not information free: it derives much of
tts power from the fact that the underlying probability
distribution is the Gibbs distribution'’. Numerical ex-
periment””’ indicates that a sort of adaptive ‘divide and
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conquer’ strategy emerges as a result of the annealing
process. The gross features of the surface are sampled
at high temperatures while the finer details are scanned
at low temperatures. However, the optimal annealing
schedule that ensures global minimization is tediously
stlow. Generating a practicable annealing schedule is
therefore very important. We would now have a look
at the method of simulated annealing rather qualitatively
and recast the variational problem as a stochastic global
minimization of an appropriate objective tunction(al).

Metropolis simulated annealing: the basic idea

The method of simulated annealing®™, first proposed by
Kirkpatrick et al.”", exploits similarities that exist be-
tween a multivariate optimization problem and the be-
haviour of a many particle system under cooling. What
does really happen when liquids freeze or metals cool
and anneal? At high temperatures, the molecules in the
liquid move rather freely. When cooled slowly, the pure
liquid freezes into a perfect crystal. One notes that the
perfect crystalline state is the state of minimum energy
of the system. If the cooling has been quick, the liquid
could be ‘quenched’ and instead of reaching the pertectly
crystalline state of minimum energy, it could end up
in a polycrystalline or an amorphous metastable state
having higher energy. The process of freezing of a liquid
can therefore be viewed as a natural urge of the system
to minimize its energy absolutely. Although ascribing such
a definite objective to a natural process 1s fraught with
danger and philosophically confusing, it helps us to visualize
a mathematical minimization problem and map it onto a
physical model. How can we do 1t7 In what follows, we
endeavour to achieve precisely this mapping.

ILet F(&) be the constrained function (functional) to
be minimized with respect to the parameters (linear or
nonlinear or both). The constrained minimum as we
have already seen, can certainly be found by adopting
a gradient-based minimization technique (e.g. Marquardt—
Levenberg algorithm)™ or any other similar procedure®.
Although the analogy is not perfect, one would be
tempted to argue that the gradient-based algorithms
mimic the thermodynamic behaviour of a liquid under
rapid cooling. They follow the path of ‘quick descent’
and more often than not end up in a local minimum
(metastable state with respect to the global minimum)
In contrast, the ‘natural minimization’ process discards
the rapid descent path in favour of a more democratic
philosophy. It adopts the attitude of a ‘random walker’
walking on an uneven terrain. The walker travels both
uphill and downhill with a certain probability distribution
that is controlled by the available ‘energy fluctuation’.
This is where the thermodynamic analogy comes handy.
When a system is thermally equilibiated at a temperature
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T, the probabilistic energy distribution (P (E)) among
all the available energy states, called the Boltzmann
distribution, is given by

P(E) = exp(—~E/kT).

The distribution is such that even at a low temperature,
there is always a probability, however small, that the
system 1s in a higher energy state. Naturally, there is
also a probability that the system jumps out of the local
energy minimum and moves further downhill to a more
global one. But lower the temperature, less frequent is
the probability of an uphill movement. In a typical
multivariate minimization problem, one would therefore
like to bring in the possibility of both uphill and
downhill movements, if one wants to shake off the
possibility of being always trapped in a local minimum.

Metropolis and co-workers™ first suggested an algo-
rithm which 1ncorporates these features. Given a series
of probable configurations, a simulated thermodynamic
system is assumed to change its configuration from
energy E, to E, with the probability P = exp{ -
(E,—E)kT}. Clearly, P > 1, if E, < E,. In such a
situation one assumes that P = 1, meaning that the
system always favours and actually undergoes such a
change. Even if E, > E,, the system may sometimes
undergo the change depending on the values of P (see
later). If AE 1s within the scale of thermal fluctuation
that is fixed by the thermodynamic temperature of the
system, one can assume that the change is a plausible
one and may actually occur albeit with a probability that
is small and depends upon the temperature. Now the
question is: how to bring in these features in a constrained
minimization problem encountered by a quantum chemist.

Metropolis-simulated annealing and constrained
minimization

In a problem of constrained minimization, the first step
is to construct the constrained function{al) with all the
relevant constraints incorporated suitably the minimiza-
tion of which could be the goal. Obviously, the nature
of the function(al) will depend on the nature of the
variational parameters (linear or nonlinear), the number
and type of constraints (normalization, orthogonality,
decoupling, etc.) and the way the constraints are incor-
porated in the functional. For convenience, let us proceed
with a functional F(§), { & } denoting a set of vartational
parameters in the trial wave function. In a non-ther-
modynamical system, the use of Metropolis algorithm
in a minimization procedure requires the following:

(i) a clear description of the possible configurations the
system can assume,
(it} a generator that can randomly recontigure the system,
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(iii) an objective function ¥ (analogue of encrgy) the
global minimum of which would be the target,
(iv) a control parameter T (analogue of temperature)

that would fix the scale of fluctuation,
(v) practicable annealing schedule which controls the

rate of cooling or heating.

In our problem, F(&,, &,,.-.&) can be taken as the
objective function. Any set of allowed values of the
parameters (§,, £,,...§) can be used to define a
configuration of the system in the parameter space. One
can randomly choose one (say &) from among the
n-parameters and update it as follows:

E =E+(-1) 8,

where ¢ is a randomly generated integer and

o =s5.r1;,

where s is a scale factor (s < 1) and 7, is a random
number between O and 1.

O I 5E. &, ...5,...8) <FE, &,...§,...5)

the move is accepted as it lowers the value of the
objective function.

GYIFFE,,...E,....) > FE,,...

evaluate the quantity

E,...E) then we

P(F) = exp(—AF/T’),

e

where AF =1 7(§,,...§,...5) -5, ...,

...E)V?, T’ has the dimension of energy and is
proportional to what may be called the ‘parameter
temperature (T') of the system. If P(F) > r where r
is a random number between O and 1 generated at the
variable updating step, then also the move is accepted
although it increases the value of the objective function.
The rationale behind this choice is that the reconfigured
system corresponds to an energy state that is within the
Iimits of ‘thermal fluctuation’ at the parameter tempera-
ture T of the system. If P(F) < r , the move i1s rejected.
T is held fixed and the system 1s reconfigured M-times
(M sufficiently large, typically, M = 100n, where n 1s
the number of parameters to be optimized) after which
T is lowered by say ¢t % (¢ is provided by the annealing
schedule fixed beforehand). When the temperature (7')
is sufficiently low, or attempts to reduce
FE,, &,,...5) further become frustrating, it is time
to stop and analyse the results. It may be noted that
as T— 0, the minimizing sequence of F(§) leads to
the absolute minimum of it (F(§,)). Although the search
is stochastic, it is not correct to assume that the SAM
uses no information; indeed much of its power is derived
from the fact that the underlying probability distribution
is Gibbs distribution’’. We may regard SAM as a
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non-equilibrium procedure designed to cope with large
barriers. This task is accomplished by starting the stochas-
tic minimization at a very high temperature. Since the
simulated dynamical system has large ‘kinetic energy’
at such temperatures, all barriers appear transparent to
the ‘walker’ and the entire configuration space is there-
fore sampled. Given a long enough time for simulation
and a slow enough rate of cooling, the algorithm, as
we have stated already will guide the system to the
global minimum with unit probability. The only difficulty
with SAM is that the optimal cooling schedule,
T () = c¢/In (), where ¢ 1s some large number (constant)
and ¢ is the simulation ‘time’”, makes the algorithm
costly in terms of computational labour. A compromise
solution is to cool at faster rate and heat up the system
whenever it tends to get struck during an annealing run.
The other non-local stochastic minimizers, e.g. Monte
Carlo and Molecular Dynamics methods work at finite
non-zero temperatures. These minimizers can therefore
surmount barriers O (kT ) and are not global minimizers.
The gradient methods described already can be viewed
as zero temperature exploratory mintrmizers which are
strictly local in character.

Quantum Monte Carlo and the SAM based
strategy

A few novel numerical techniques collectively called
the Quantum Monte Carlo (QMC) methods attempt to
represent the Schrodinger equation for many interacting
fermions by random walk in the many-dimensional space
in such a way that physical averages can be exactly
calculated. The more well-known among the QMC
methods of solving the Schrddinger equation are the
diffusion Monte Carlo and Green’s function Monte
Carlo™**. The basis of diffusion Monte Carlo is that
Schrodinger equation written in imaginary time will
converge exponentially fast to the ground state. A wave
function that is everywhere = 0 can be directly inter-
preted as probability density so that Schrédinger equation
for N interacting particles in imaginary time can be
interpreted as a diffusion and branching process in
3N-dimensional space. To elaborate the idea a little
more, we note that the Schrodinger equation in imaginary
time reads as follows:

d , !
ll’a(; ) = [DV2+(ET——V(x))]l|!(x, 1), (7)
where D = #2m 18 the diffusion constant, x =

Xys..-%y 1S the 3N dimensional coordinate vector of
N-particles corresponding to electrons in real time, 1° is
the imaginary time, V (x) is the usual coulomb potential
for molecular system and E, is an energy offset. It may
be noted that for t— o, Jdy/dt = 0 and equation (7)
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reduces to time-independent Schrédinger equation.
The formal solution of equation (7) can be written
in terms of the eigenfunctions { ¢ } of H:

vx t) = Cyd, exp[—(E,— E,)f] +
2. C ¢ exp[—-(E - E)i. (8)

A look at y (x, 1) will immediately convince us about
the truth of the assertion already made that the higher
energy terms in the expansion decay exponentially with
respect to the ground state. If one adjusts E, to be
E, one arrives at the steady state solution.

From a practical point of view, let us note that if
the second term is dropped from equation (7), it becomes
just the usual diffusion equation which can be simulated
by Brownian motion of particles of 3N-dimensions. If
D V? is dropped, the result is a first-order rate equation
with (E,—V) as the rate constant. To simulate this
equation, V is to be evaluated following each step of
the random walk and the walker is either destroyed or
copied depending upon the size of this term. The exact
wave function Is represented by a distribution of the
random walkers resulting from the balance between the
kinetic (diffusion) and potential (branching) processes.

Green’s function Monte Carlo is a reformulation of
the diffusion process such that no systematic error due
to finite time step creeps 1n, the reformulation converting
the differential equation into an integral equation the
kernel of which i1s sampled exactly. The procedure may
be viewed as a generalization of Von Neuman and
Ulam’s method for solving systems of linear equations.
In addition, there is the so-called variational Monte
Carlo method™ in which one uses the MC methods to
obtain expectation values employing the distribution
|y ) where ¥ is an analytical trial function as close as
possible to ¢,.

The method elaborated in detail in the previous section
can perhaps be regarded as a variation on the basic
QMC theme. Thus, unlike in diffusion or Green’s func-
tion MC we do not try to solve the time-dependent
Schrodinger equation in imaginary time directed by
random walks. Instead, we deal with the time-independent
Schrodinger equation but recast the energy eigenvalue
problem in the mould of stochastic search for the global
minimum of an appropriately constrained energy func-
tional at a sequence of temperatures 7,, T,,...
7. — 0 such that the global minimum of the functional
in the given parameter space is reached in the limit
of zero parameter temperature of the system. One
may therefore feel that this amounts to replacing the
diffusion part of QMC by simulated annealing. In
that sense the SAM-based strategy advocated by us
bears a relation, however distant, with the variational
MC methods,
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Quantum chemical applications based on
MSA strategy

The unique feature of the MSA method lies in its ability
to reach the global minimum without the knowledge of
derivatives. We demonstrate this much sought for ability
by locating the global minimum of a well-known model
potential called Muller-Brown potential®” V™ (x, y) (Fig-

ure 5). The three minima (M,, M,, M,) are clearly
marked 1n the figure. The simplest objective function
for the minimization is

Flony, V) = [V™ (@ y) -V 1,

where V, is the lower bound to V(x, y) which 1s held
fixed during the annealing. Alternatively one can use

F=F(@yV)=[V®0wy-V.+
A(QV/0x)* + (aV/9y)’)
A third choice i1s possible where

F=F"(x,y,V) = {9V /9x)’ + QV /).

A  fourth strategy could be to set OF =
21 V™ (x,y) - V18V = 0 and solve the resulting equa-
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Figure 5. The Muller Brown potential (Vy ) consists of a sum of
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of the method is presently under further evaluation in

tions. Of these. the first, second and the fourth choices T furt ‘
the context of geometry optimization in clusters,

of the objective function will ensure that a minimum

closest to the chosen V, is reached as T-»0. If V, is  biopolymers, etc. | |
well chosen, the global minimum is safely reached. But When it comes to optimizing the parameters in the

minimization based on F7 will lead to any stationary trial wave function, a variety of situations can artse as
point, be it a true minimum, a saddle point or a discussed already. The most interesgng case 1S en-
maximum. To discriminate between these possibilities countered when one must optimize W for an excited
F” needs to be augmented with curvature-controlled  state having the same symmetry as the ground state.

constraints, a strategy that will not be discussed in this
review any further. Figure 6 shows how the average c0 —
value of the objective function

Foo =3 P F& 5, VD! X P

p, being the probability of generating the particular
configuration (x , ) at a particular parameter tempera-
ture, chanees as the system is cooled very slowly. The
point to note is that F,, decreases with fluctuation, the
scale of fluctuation being determined by the parameter
temperature 7 at that stage of cooling. Ultimately the
search attains the global minimum. That this happens
irrespective of the starting point is demonstrated in
Figure 7. One can immediately see the tremendous
potential of the method in the field of geometry op-
timization of large molecules, specially where a number
of configurations of not-too-widely different energies ~200

are present. Figure 8 shows the energy profile during 0 70 40 60 R0
a MSA-based SCF geometry optimization run on the

cyclohexane molecule in ground state, starting from a Number of Steps
purely arbitrary reference geometry. The global minimum Figure 7. Profiles of V5 during the SAM-based minimization starting

i1s reached easily if the cooling is slow. The efficacy from different points on the surface. The global minimum is reached
irrespective of the starting point.
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Figure 9 shows the behaviour of the appropriate objective

function during a typical annealing run with a 10-term
trial CI-wave function for Li" ion. Figures 9 and 10
represent the behaviour of the ground-average objective
function and energy, respectively. Breaks in Figure 9
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Figure 9. Profile of average objective function as a function of
temperature in the optimization of the ground state wave function and

encrgy of Li™.
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Figure 10, Profile of average energy as a function of temperature
in the optimization of the ground state wave funcuon and encrgy of

L:* wittun the framewoik of SAM.
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indicate changes in annealing schedule when the system
1s heated up after cooling for a predetermined length
of time. In Figure 10 the average energy.is seen to
increase initially as the temperature is lowered. This
happens as a consequence of a kind of adaptive ‘divide
and conquer’ strategy built into the algorithm. In the
initial stage, the normalization constraint dominates the
minimization of the objective function leading to an
increase in the average energy. In the end, however,
energy minimization begins to control the proceedings
and as a result the objective function or the target
function as well as average energy decreases as T - 0.

The scope of applicability of MSAM is wide and it
1s not possible to mention all the applications made so
far in this brief review. However, we would like to
conclude this section with an example of an MSAM-
based first order MC-SCF calculation in a pathologically
divergent problem. Generally, first order MC-SCF methods
are prone to convergence difficulties due to the neglect
of coupling between orbital and configuration spaces. A
standard remedy is to invoke quadratic MC-SCF theory
in such cases. However, it is much more desirable to have
a remedy that works at the level of first order MC-SCF
theory 1n view of its simplicity. The MSAM-based MC-SCF
theory achieves this objective quite elegantly as can be
seen trom Figure 11. No external level or root shifting
1s necessary for achieving convergence.

Molecular dynamics: MSA-based approach

The molecular dynamics (MD) method is essentially a
dynamical method for applying variational principle, in
which eigenfunctions for lower energy electronic states

-83.34
= -83.38
-
2
O
> ~83.42
Q
C
L]

- 83,46

0 5 10 15
Iterations

IFigure 11. The cuergy piobtile n lwlcl vhifted (—) and unshulted
{—-) OGM-based calculanons on the 1 x*® staie o propynal  Note
the divergence when shiting s withdrawn
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arc determined simultaneously. The essential step is to
treat the electronic wave function as a dynamical variable
and define a fictitious Lagrangian, called the Car—
Parrinello Lagrangian for the electronic system’'. The
method has been found to be specially useful for sear-
ching out locally stable structures of atomic clusters
and condensed phases. It is easily understood that the
search requires electronic energies at thousands of dif-
ferent nuclear configurations for locating the minimum
energy Structures. Car and Parrinello demonstrated for
the first time how the electronic structure problem can
be solved with great facility in conjunction with classical
dynamics for nuclear motion using simulated annealing.
The classical Lagrangian for nuclear motion in an
adiabatic electronic state o is

N
L=(1/2) Y MR*-Min (y, (p) tHi y_(p)).
=1

The index { runs over all the NV nucleii. p is the vector
of parameters in Y. When the motion takes place on
the ground state surface (0 = 0), the only constraint
on Y 1S that it must be normalized. For motion on
excited surface, orthogonality to lower electronic states
must be  enforced. @ The  expectation  wvalue
(y,(p) 1HI y_(p)) will in general be a complicated
funcuon of the parameters 1n Y. The minimization is
therefore a complex problem and the possibility of the
minimization getting trapped in undesired local minima
is always there.

Car and Parrinello’s implementation brings in simu-
lated annealing in the operation of the molecular
dynamics scheme and rescues the minimization from
the problem of arriving at metastable configurations
corresponding to local minima. To achieve this, they
introduce a fictitious kinetic energy associated with
electronic parameters:

N
L' =(1/2) ), MR+
=]

N

(172) 2, m, pi— (W, 1HI y, ).
=1

One then carries out a MD simulation using standard
techniques of constrained dynamics both for the nuclear
coordinate and the N, number of fictitious electronic
degrees of freedom. To minimize the electronic energy
functional kinetic energy is slowly removed from the
electronic degrees of freedom which amounts to cooling
the systern to lower temperatures. When the fictitious
electronic velocities (p) are cooled to a near zero
temperature, classical statistical mechanics ensures that
the system has reached the minimum of potential energy
with respect to the electronic parameters { p, }, thus
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solving the electronic variational problem. At this stage,
where the electronic parameter velocities are frozen, the

nuclet undergo physically meaningful classical motion
on the oth BO surface.

L=>Y p(yly)+(1/2) > MR+

(172) D, w2 —E[{y,} {R}{a}],

where L is a fictitious mass associated with the electronic
wave functions, E is the energy functional, Rs are the
nuclear positional coordinates, s are relevant system
parameters present in Y. M, and i, may be regarded
as arbitrary parameters in appropriate units. The stationarity
condition on L generates dynamics of evolution of
y,, R, and o,. By varying velocities, i.e.,, V¥ , R,, and
o, the system temperature can be reduced and in the
limit T— 0, the minimum energy state (equilibrium)
can be reached. This alternative scheme which may be
called dynamical simulated annealing method has also

found many successful applications™ .

Some problems with SAM

The SAM has many positive features and its performance
as a stochastic global minimizer has been noteworthy.
To date, 1t 1s the only global minimizer that has proven
capability of reaching the global minimum. Having noted
this, we must also mention that it has some weakness
as well. One of it is endemic to all Monte Carlo
methods, viz., they are very slow towards the end of
the search. Secondly, unless a suitable annealing schedule
is chosen, the problem of getting stuck at a metastable
state cannot be eliminated. The theoretically optimum
schedule being very slow, practicable schedules are
usually constructed by trial and error. More work in
this direction is necessary to make the method opera-
tionally attractive as an all-purpose minimizer.

Postscript

Although we have focused our discussion on quantum
chemical optimization problems, the MSAM is a perfectly
general all purpose global optimizer, provided a suitable
objective function can be constructed for the specific
problem. We have employed this recipe for saddle point
location®', solving large systems of linear and nonlinear
equations, matrix inversion, variance minimization®, etc.
with remarkable success. It would not be an exaggeration
to comment that stochastic minimizers will play a very
important role in optimization problems in the coming
years. Of course, MSAM or the Car-Parrinello dynamical
SAM will occupy the centre stage whenever global
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minimization 1s the target of the search, be it in quantum
chemical optimization problems or in any other field.
However, in the recent years the genetic algorithm®
has been emerging as a strong contender for acceptance
as an all-purpose stochastic minimizer. Probably, a hybrid

of the two could be a welcome alternative. At the
moment, the search is on.
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