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Pancharatnam’s route to the geometric phase’

Rajaram Nityananda

Raman Research Institute, Bangalore 560 080, Ind:a

This article focuses on
Pancharatnam was led to the geometric phase.
Barring a near-miraculous result from spherical
triconometry which he pulls out of the air, it iIs seen
to be a systematic attack on problems of analysis and
synthesis of polarized light, entirely following from
just one basic principle and presented as a series of
propositions. It is also noted that the phase was quite
central to the interpretation of his own experiments

the rﬁute—by which

diametrically 0pp031te to A and (ii) a component of
intensity /; cos (0/2) with the same polarization state as
beam 1, namely A. The interference of the two beams in
the same polarization state follows the usual rule, viz.
sum of the individual intensities and an interference
term with twice the geometric mean of the two
intensities modulated by the cosine of the phase
difference. I;=1, + I, cos’(c/2) + 2 JT,(JT, cos(c/2)) cos &
The angle 0 is the phase difference between the beam 1

and to his other theoretical work.

e s S

and the component of beam 2 resolved along the
polarization state A of 1. One then simply adds
the intensity of the A’ component to this since, by step 1
above, there is no interference between orthogonal
beams. The resulting formula for the intensity is

An ‘unexpected geometrical result’

It is now quite well known (see articles by Berry and
Bhandari in this issue and the references therein) that
Pancharatnam, in his studies of the interference of
polarized light, derived a phase angle which is an early

xample of the phase now recognized to occur mor . : :
© P P e LOTE 3) The next step 1s deceptively simple. The angle & was
generally when a quantum system traverses a path in its

. . : . introduced as the phase difference between the beam 1
space of states. In this article, the focus is on the precise , ‘ . .
l and the A" component of 2. But ‘... we will be guilty of

chain of reasoning which led to the original conclusion’. . : : . :
. , , .h . no internal mconsistency if we make the following
The starting point is of course the Poincaré ..
: . statement by way of a definition: the phase advance of
sphere representation of the state of polarization (see . o
. . : . one polarized beam over another (not necessarily in the
the accompanying box for a brief introduction). . . o
same state of polarization) is the amount by which its
Pancharatnam uses only one property of the sphere to . .
: . phase must be retarded relative to the second, in order
start with and deduces everything else that he needs. , . .
) that the intensity resulting from thewr mutual
The major steps go as follows: . ; , :
interference may be a maximum’. The consistency
referred to i1s that o so defined does not change if the
intensities of the beams vary and changes in the
expected way If elther of the two beams is changed In
phase. A truly mathematical spirit at work here! Thus 1s
established a conveantion for comparing the phases of
any two non-orthogonal states.

Li=h+L+2JLI, cos(c/2)cos d. (1)

1) In his own words, (placed in quotes from now on
with my added comments in “square brackets) the
fundamental property is that ‘When a vibration of
intensity [/ in the state of polarization C is decomposed
Into two vibrations in the opposite [orthogonal] states of
polarization 4 and A’, the intensities of the ‘A-
component’ and the ‘A’-component” are / cos*L CA and
[ smzi— CA {or Ices"'-'- CA” ] respectively’'. The next
remark 1s that since the sum of these two intensities 1s a
constant, one obtains no constructive or destructive
interference (in the sense of intensity variations sensi- a
tive to phase differences) when two such orthogonal

beams are superposed.

4) Pancharatnam now attacks the question which
equation (1) has left unanswered — what is the polariz-

2) The first problem tackled is the interference of two
beams ! and 2 with intensities I, and /, in non-
orthogonal polarization states which are represented by
points A and B on the Poincaré sphere. These are
separated by an angle ¢ (see Figure 1). The method used Al
is to decompose 2 into (i) a component with intensity

Izsinz(c/Z) with polarization state A7 orthogonal, i.e Figure 1.
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ation state of the beam 3 made by combining beams 1
and 2 jn step 2 above? On the Poincaré sphere in the
figure, it is denoted by C, and the sides of the triangle
ABC are labelled according to the usual convention,
atter their opposite angles. One can modify the guestion
and ask for the intensities and phases of beams in
polarization states A and B which combine to give
ntensity /3 in the polarization state C. The beautiful
device used at this point is to resolve both beams 1
and 2 along the state C’ which is orthogonal to C.
Although both beams 1 and 2 have C’ components, these
components must be equal in intensity and opposite in
- phase so that their resultant, the C’ component of the
beam 3, which is in the state of polarization C, vanishes.
Using the intensity condition, we have

11 cos® (5'12) = I, cos® (a'12). (2)

This fixes the ratio of the intensities J; and I,. A similar
argument which fixes the ratio of /; and I; goes as
follows. Adding beam 1, with phase reversed, to 3 will
produce beam 2 in polarization state B. Hence, the B’

Box 1. A recurring theme emerging from many of
the articles in this issue is that the Poincaré
sphere and the related Stokes parameters
became, in Pancharatnam’s hands, powerful
geometric tools for the understanding of polarized
light. This box has the limited goal of supplying,
in one place for convenient reference, the
algebraic preliminaries, definitions and convent-
lons which connect these two approaches with
each other, and with the standard description of
polarized light in terms of two simple harmonic
motions of the same frequency. Considering a
monochromatic plane wave travelling in the z
direction, we have

E,= a, Cos (wf + ¢,} = Re[a, e-twi+hl] (1)

and a similar equation with ampiitude a, and
phase ¢, tor the y component. it is convenient to
define two complex amplitudes, z =a,e~ and

Z, =a,€™%, and combine the pair into a column
4
<2

produces a phase lag). Stokes, in the mid-
nineteenth century, emphasized that the measur-
able quantities n optics (of his time, no
femtosecond laser pulses!) were intensities,
averaged over times much longer than the period

2niw. Further, the effect of propagation through
crystais polarizers, etc. was all to form /linear
combinations of these two complex pumbers.
Thus, the result of any one intensity measure-

vector y :-{ ) (warning to electrical engineers, +i
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components of 1 and 3 must have equal intensities. This
leads to the condition

I5sin®(a/2) = £ sin’ (c/2). (3)

Equations (2) and (3) fix the ratio of the three Inténsities
to be the same as that of the squared sines of the

opposite sides (arcs) to the points A, B, C representing
the three polarization states, i.e.

1 S e S
sin(a/2)  sin?(8/2)  sin?(c/2)

(4}

5) Now that we know the intensities of beams 1 and 2.
what about their relative phase? This information is
already contained in equation (1) above which can now
be used to determine § knowing all the other quantities.
Pancharatnam determines the phase as any experimenter
would, by using Intensity measurements! Using the
intensities from (4} in (1), the cosine of the phase
difference is given by

ment would be given by the sum of expressions
like

[=Wc,z, +C,2,)F = (C425+Cozp)(Cyz, +€0,2,),  (2)

(using bar for complex conjugation). The coeffi-
cients ¢, and ¢, vary from one experiment to
another. For example, a polarizer placed at 45° to
the x axis would have ¢, =1J2, ¢, =1J/2. If the
same polaroid were preceded by a quarter-wave
plate with the fast axis along y, then the coefficients
would be given by ¢, =ily/2, ¢, =1/J2. This latter
arrangement is called a right circular analyser since
it annihilates the 80° phase lead which the x
component of right circular light has, the result
being hinear polarization along 45° which is then
transmitted tully. All the information about the
properties of the fighf is contained in the four
combinations which occur in equation (2), namely
22, 2,2,,2Z, and z,Z,. Notice that these
quantities do not have the rapid time variatian at
frequency w and any phase common to bath z
and z, will not affect them, while the phase
difference between the two vibrations is of course
all-important. These four quantities are naturally
displayed as a Hermitian matrix, given by

2,2,
e ) (3)

The famous Stokes parameters are four real
numbers, {, Q, U, V which contain the same
information as the elements of the matnx above

|
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E\/’!if;cos(cﬂ}

_{=1+¢0s3(c/2) + cos™(a’/2) + cos* (b'/2))

2cos(ci2Ycos{a’/2)cos{p’(2) ()

6) Now one would think the problem is solved. Here is
an explicit expresgion for the Cosine of the required
phase 4, in terms of the parameters which describe the
mutual disposition of the points A, B and C (actually
C’ ) on the Poincaré sphere. What more could one want?
It is intrinsic in that it makes no reference to any
coordinate system. But what comes at this stage in the
paper is the statement that, ‘The expression on the right-
hand side is the cosine of half the sohd angle subtended
by the triangle C’'BA at the centre of the sphere
(see McClelland and Preston, 1897, Part II Ch. 7, p. 50,
Ex. 1). [!!] Since the Poincaré sphere has unit radius, we
arrive at the following unexpected geometrical result.
When a beam of polarization C is decomposed into two
beams in the states of polarization A and B respectively,
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Henri Poincaré (1854—- 1912)

Poincaré is acknowledged by all to have been the greatest
living mathematician at the turn of the century. During the
three decades he was at the University of Paris, he authored
500 scientfic papers, scores of monhographs and books. He
gave lectures at the University evety year in different
subjects covering all physics and all mathematics. 1t is
foriunale that Many of these remarkable lectures have
appeared in prinl, for they are not just reviews but contains
gems of original thought. In one such treatse Theoris
Mathematigue de ja Lumiere (3 vols) bhe introduces a
concept of remarkable beauty — ot representing polarized
light on a sphere {now called the Poincaré sphere).

but have a cClearer physical interpretation. One
writes the same matrix as

1(1-1-0 U--;'V)

2\U+iv I-Q (4)

Clearly, /is the total intensity 2,Z, +2,Z, and Q is
a measuyre of jinear polarization since it is the
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the phase difference § between these beams is given by
| 6= m— +{E"| where the angle £ is numerically equal
to the area of the triangle C'BA which is colunar tg
ABC.” Colunar is a quaint-sounding but classical term
for the relationship of two triangles sharing the same
lune, l.e. crescent enclosed between two great circles.
What I find remarkable is that Pancharatnam either (i)
was a black belt in spherical trigonometry and instantly
recognized the right hand side of equation (5) or (ii) felt
instinctively that the expression must really be some-
thing more meaningful than some arbitrary combination
of trigonometric functions, and hence searched the
available books on the subject. My own guess iy (11}t
The paper goes on to develop the analysis and
synthesis problem in detail, and the case of A and B
orthogonal, which would be conventionally regarded as
easier, actually needs some limiting processes becanse
the phase convention breaks down. For our purposes, |
will take a short cut and show how the ‘unexpected
geomelric result’ stated above is only one siep away
from the geometric phase. Remember the argument
difference between what is transmitied by an
analyser along x and one along y, Q= 2Z;~- 2,2,.
Positive values of Q correspand to polarization
along x and negative values 10 potarization along
y. Less obviously, U measures linear polarization

along 45° when positive and 135° when negative,
since it is the difference between the intensities
transmitted by analysers aligned along these two
directions, U =2z, +2,Z,. Finally, V is the difte-
rence between Intensities recorded in two
measurements made with a sight and left circular
analyser respectively. Therefore V is given by
V =i(2,Z, - 2,Z,). Thus V is positive for right cir-
cular light and negative for left circular light. (The
convention used here is that right circular carries
angular momentum parallet to the direction of
propagation, i.e. has positive helicity, while leh
circular carrtes angular momentum opposite 1o
the direction of propagation. Thus, for right
circular, the electric field at a fixed point in space
rotates in the positive sense, i.e. from x to ¥,

which in turn implies that E, leads £, z,=-iz, and
therefore V as defined by equation (4} is positive.
Be warned that the oppaosite convention was gnce in
vogue and is followed in Pancharatham’s papers!
According to this convention, the pattern of glectric
vectors at a fixed instant of time makes a right-
handed screw in space for right circular light.)

A look at equations (3) and {4) shows how
brilliant and prescient Stokes' analysis was. Like
a sleepwalker, he is constructing the density
matrix of a quantum mechanics still eighty years
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leading to equation (2) above, which required the
cancellation of beams 1 and 2 when resolved along C'.
This means that their phase difference, after resolving
along C’, must be x. But their phase difference & as it
stands was just derived to be m— LE’. Clearly, an
additional phase of E'/2 has appeared in the process of
resolving A and B along C’, i.e. half the solid angle
subtended by C’'BA. This same result, but stated for the
triangle CBA, actually appears a few pages later in the
paper but i1s already implicit at this earlier stage, as
applied to the triangle C'BA.

The generalised theory of interference

Having dwelt in some detail on how Pancharatnam was
led to discover the geometric phase for polarized light,
it 1s time now to briefly place this in a broader context.
This paper is just no. I in a series of papers with the
common title ‘The generalized theory of interference’.
The first paper, only part of which has been discussed

ahead and expanding it in terms of Pauli matrices
still to be born! (Actually, Stokes' contemporary
and competitor, Hamilton had already invented
the Pauli matrices via his quaternions but the
story of this even greater sleepwalker does not
belong here.)

The use of four real parameters seems an
overkill because we started with two complex
numbers and then threw away one overall phase,
so we should need only three. In fact, the four
parameters as defined eatlier obey the identity

I=Q%+ U?+ V?, (5)

which is valid only for completely polarized light.
However, the true power of Stokes’ creation is in
situations in which the relative amplitudes and
phases of the two components fluctuate in a
statistical fashion. One then defines the four
parameters I, Q, U, V as the time averages of the
expressions given above. Once one averages,
the relation (5) above is no longer true — after all,
the average of Q° is not the same as the square
of the average of Q! In fact, for unpolarized light,

I continues to be the total intensity, while Q, U, V

all average to zero. In a general, possibly
partially polarized situation, the relation (5) is
replaced by an inequality,

I">2Q*+ U* + V2.

Having defined the Stokes parameters, one route
to the Poincaré sphere is that given by Perrin
and followed and generalized to the partially
coherent case by Pancharatnam. Q/I, U/l VI
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above, carries the subtitle ‘Coherent pencils’ and the
second deals with partially polarized light, generalizing
the Poincaré representation and supplying solutions to
the problems of analysis and synthesis in this case as
well (see Radhakrishnan’s article). The article by
Ranganath In this issue goes over the investigations on
the optics of absorbing anisotropic crystals with which
Pancharatnam started his research career. In principle,
he could have interpreted his results on the CONOSCOpIC
figures (see box accompanying Ranganath’s article) in a
straightforward but prosaic way in terms of the
analytical approach, with which he was quite familiar.
Clearly, he had set himself a higher goal, which in his
words (Paper III of the series) was to give a ‘unified and
physically intelligible approach to the interference
phenomena exhibited by crystalline plates in parallel or
convergent light — under general conditions when the
polarizing and analysing states are linear, circular, or
elliptic in form’: The Poincaré sphere suited his purpose
admirably, especially after he had generalized it. It is
clear on reading his papers on the interference figures

S. Pancharatnam (1934-1969)

can, in view of equation (5), be used as rectangular
coordinates of a point on a sphere of unit radius. For
example, circularly polarized light corresponds to
Q=0, U=0, Vi=11, i.e. the two poles of the sphere.
Box 2 in Ranganath’s article gives a geometrical visu-
alization of these features. It also presents the
methods of working out the effect of a linearly bire-
fringent element on an incident state of polarization.
A more mathematically elegant and economical
but possibly less physically transparent way of
reaching the Poincaré representation is to form
the ratio z= z/z,. This single complex number
has now lost information about the absolute
intensity and phase while still encoding the value
of the amplitude ratio a/a, and the phase
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(Papers 111 and IV of the series) that the geometric phase
was very central to his thinking. As an example, in many
cases spiral interference figures were observed (Papers
I and IV). Without going into details of his explanat-
ion of the observations, one can make the following
general remark. If one naively thinks of a fringe as a
contour of constant phase difference where this has
some simple dependence on the direction of propagat-
ton. a spiral is not possible since the contours of a
single-valued function should be closed curves.
However, he points out that ‘... the sum of the phase
differences ¢; and ¢. which are introduced by the
process of resolution and analysation respectively [these
are geometric phases] is not a constant but itself a
function of the direction of propagation...’. And later he
points out that these phases can ‘increase continually’ as
the direction of propagation traverses a circle. The kinks
in the interference figures are due to the non-uniform,
and in extreme cases infinitely rapid variation of these
phases with the direction of propagation. Since the un-
bounded pature and singularities of the geometric phase,

difference ¢,— ¢,. This is all that is needed to
determine the shape and sense of the ellipse
described by the electric vector in the x —~ y plane.
[t would thus be quite natural to use the complex
plane of z to represent this ellipse, but for one
snag. When we approach the case of linear
polarization along y, the ratio tends to infinity and
further, its phase becomes irrelevant since the
amplitude of the x-component in the denominator
of z finally vanishes. One way of achieving a
more faithful representation is to use Riemann’s
stereographic projection of the complex z-plane
onto d sphere, which is shown in the figure. The
sphere has unit diameter, and the angular coordi-
nates of the projected point on the sphere cor-
responding to z are given by z = re”*; r=cot(4/2).
[t is not obvious, but verifiable, that this
construction leads to the same Poincaré sphere
as the method is based on the Stokes para-
meters. For example, one can see that the two
circular states have gone to opposite poles, and

2472

L el i, i, R

as the parameters of the path are varied, have come in
for considerable recent investigation, (see Bhandari’s
article in this issue) it 1s interesting to find these develop-
ments foreshadowed in Pancharatnam’s papers. This
shows that his discovery of the phase was not an isolated or
chance circumstance and that he fully appreciated its value
and properties. If it was forgotten later, even in OptLics
circles in Bangalore, the blame must lie with others and
that is the theme of the last section of this article.

Misadventures on a voyage of rediscovery

I cannot resist adding a note on how [ became involved
in problems relating to polarization optics in general and
Pancharatnam’s work in particular. This will serve both
as an acknowledgement and as an interesting illustration
of how strange and winding a path one sometimes has to
take to reach understanding which in retrospect seems so
straightforward.

As research students working with Ramaseshan, both
Ranganath and I had occasion to refer to his review

all the linear states, corresponding to the real
axis of the z plane, go into the equator with
respect to these two poles. Passing light through
any transparent linear anisotropic medium leads
to a linear transformation of the two basic
complex amplitudes z, and z,, and hence also to
a linear transformation of the Stokes parameters,
which preserves the intensity / and hence the
sum Q2 +U?+ V2. Such a linear transformation
preserving the sum of the squares of Cartesian
coordinates can only be a rigid rotation (or an
inversion corresponding to time reversal). Thus,
passage through any such lossless linear
anisotropic medium or device will rotate the state
of polarization rigidly on the sphere, leaving two
opposite points invariant. In terms of the original
complex numbers z, and z,, the transformation is
linear and preserves the intensity 2,2y +2,22. This
is a unitary transformation in two complex
variables. It has two orthogonal eigenvectors .,
w, satisfying y!y, = 0. Thus these two orthogonal
states of polarization translate into opposite
points on the Poincaré sphere. The physical
meaning of orthogonality is clear when we
calculate the intensity of a superposition of two
waves (v, + Ay,). The interference term, which
occurs in addition to the individual intensities is
proportional to wly, and its complex conjugate
and vanishes if the two states are orthogonal.
These transformations are important for
another reason which can be called ‘democracy
on the Poincaré sphere’. Take for example a
state of linear polarization P, inclined at an angle

CURRENT SCIENCE, VOL. 67, NO 4,25 AUGUST 1994



articie on crystal optics, appearing in the Handbuch der
Physik and coauthored with G. N. Ramachandran.
Pancharatnam’s work 1s clearly described there, but,
speaking for myself, I think only the analytical part
seeped In. Some years later, 1 attended a lecture at the
Raman Institute given by Radhakrishnan which
apparently did go over the topic of polarization and the
Poincaré representation. I say apparently because a
friend assured me that I was (quite literally) asleep
during most of the talk. My third opportunity came also
by chance when [ attended another lecture by
Radhakrishnan, this time on pulsars, and actually saw
him write down one equation ‘€ =1~w3/w?2’. When I
later remarked on his excursion into higher mathematics,
he jokingly referred me to an old paper of his with
Morris and Seielstad, in which, he assured me, there was
an equation occupying no less than four lines of the
Astrophysical Journal that he had derived. Naturally, I
took it as a challenge and tried to work it out on a train
trip to Madras, using the only tool I was used to,
representing polarized radiation by two complex
numbers (see box). It took most of the journey and after
deriving the final expression (for the visibility of the
fringes obtained when correlating signals from two
arbitrarily polarized antennas looking at an arbitrarily
polarized sky), I would have forgotten all about it but
for one point which left me uneasy. What kind of phase
convention was being used to compare two different
polarizations? My first few attempts failed (and one of
them was a particular case of the Pancharatnam
convention, resolving all states along right circular,
which gives a 27 discontinuity at left circular). 1 did not
even know what kind of three-dimensional object one
got when one added phase to the Poincaré represen-

c/2 to the x axis, and hence n/2 - ¢/2 to the y
axis. The points P, X, and Y represent these
three states on the Poincaré sphere. X and Y are
opposite while the arc PX equals c. It is
elementary that the components of P transmitted
by analysers along X and Y are proportional to
cos(c/2) and sin(c/2) respectively. But, by
changing from X and Y to some other basis, it Is
clear that the result is general, and the
component of any state resolved along any other
is the cosine of halt the angular separation
between the two on the sphere. Similarly, when
two opposite circular states are superposed, it is
easy to verify that advancing the phase of the
right circular component by «a will advance
the major axis of the resultant ellipse in the
positive sense by the angle a/2 in the x-—y
plane, which means by a on the Poincaré sphere.
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tation. Once this was constructed, and closed orbits
drawn to represent variation of overall phase for a fixed
direction of polarization, it became clear that there
could be no globally valid continuous convention’. I was
too pleased with this result to see its broader
implications, in spite of receiving plenty of help. R.
Rajaraman showed me how my mysterious three-
dimensional space including polarization and phase was
Just the constant energy sphere living in the four-
dimensional phase space of two harmonic oscillators. [
had missed that because of dissecting it into two solid
tori instead of two solid spheres. Two relativists visiting
India in connection with the Einstein centenary, Martin
Walker and Ted Newman, told me more about the
general mathematical phenomenon one was encounter-
ing, a fibre bundle with no global section. Still no
realization of any connection to Pancharatnam! Seven
years later, after a journal club talk by my colleagues
Shukre and Samuel on two geometric phase papers,
Ramaseshan insisted that there must be a connection to
Pancharatnam’s work. Since 1 wrote a joint paper with
him on this, it was not possible for me to admit then my
initial resistance to such a sweeping identification but I
can do so now! Subsequent developments were rapid
and systematic and my role more that of an interested
spectator. They are reviewed in Bhandari’s article in this
issue. It was particularly illuminating, from my point of
view, to learn from J. Samuel about the deep
connections between the geometric phase and ideas from
differential geometry such as gauge invariance. But I
must confess that my appreciation of the way
Pancharatnam himself derived his results was
incomplete until the opportunity to write this article.
Reading him in the original is an experience I would

Again, one can change the coordinate system
and generalize this result to the superposition
of any two orthogonal states A and A’. A phase
change by « in one of them rotates the resultant
state by the same angle a about the diameter
AA’ joining the two states. Pancharatnam's
own thinking was certainly rooted In the intrinsic,
basis-free description which the Poincare sphere
provides. This is shown not only by the words
he wrote but also by the fact that all the Poincaré
spheres In his papers are unlabelled with
any equator or poles unless required for
the discussion of some specific problem! One
would be tempted to call this underlying property
‘Poincaré invariance’, except that the term is rightly
reserved to remind us of Poincaré’s all too often
forgotten contribution to the birth of special
relativity.
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recommend to anyone who aspires to walk through
Plato’s door. Not only are the papers, especially I and
lI, completely geometric in content, but the style is that
of the geometry texts of a bygone era, one proposition
following the other inevitably till the edifice is complete.

. Pancharatnam, S., Proc. Indian Acad Sci., 1956, AXLIV, 247
Pancharatnam, S, Proc Indian Acad Sct, 1956, AXLIV, 398
Pancharatnam, S., Proc. Indian Acad. Sci, 1957, AXLIV, 402
Pancharatnam, S., Proc. Indian Acad Sci., 1957, XLV, 1.

. Nityananda, R., Pramana, 1979, 12, 257.
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