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Pancharatnam considered a quantum mechanical

system consisting of Vatoms interacting with an off-
resonance one-photon field. He showed that the light
shift is simply related to the atomic polarizability
and gave a quantum mechanical interpretation of the
refractive index. Here we extend his work to include
fields in arbitrary superpositions of photon number
states and describe the phenomenon in terms of the
concept of a dressed field, which complements the
dressed atom concept.
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MY association with Pancharatnam began when I arrived
at the Clarendon Laboratory, Oxford, in the beginning
of 1968 and the aspects of his work with which I became
most familiar were those subsequently published
posthumously by G. W. Series. The paper which has had
a special appeal to me is the quantum theory of
dispersion in relation to light shifts'. One reason for this
is that Panch gave me a copy of his notes of this paper
for comment and, after I felt I understood the work
sufficiently, 1 made a note of some points which I
intended to discuss with him. Unfortunately this discus-
sion was precluded by his illness and untimely death,
after which I gave his notes to Professor Series who
prepared them for publication. As mentioned by
Professor Series in the final published version, the work
was incomplete and 1 have wondered how Panch would
have completed or extended it. Another reason for the
special appeal concerns Panch’s concept of a state
representing a ‘photon in the polarized medium’. About
that time | was becoming aware that my own work
involving semiclassical physics was related to the fully
quantum mechanical dressed-atom approach used by
Cohen-Tannoudji and Haroche®”, which has gained an
important and useful place in quantum optics. It
occurred to me that the photon in the polarized medium
might also be able to be described in terms of a dressed
field, that is, a field dressed by the atoms of the medium. It
so, this would help me see more clearly the relation-
ship he established between dispersion and the light shift.
Without speculating whether Panch would have continued
in this direction, I explore in this paper the dressed-field
description while extending his work to include more than
the one-photon state, allowing fields which are in arbitrary
superpositions of photon number states to be considered.

Pancharatnam’s approach

The system considered by Pancharatnam' was that of
radiation in a unit volume interacting with N inde-
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pendent atoms which constitute the medium. The state
space of the system is spanned by the infinite number of
unperturbed energy eigenstates, that is eigenstates of the
Hamiltonian in which the interaction i1s set to zero, but
only a subspace of states is considered. Specifically,
these include the unperturbed eigenstates | K., G) and
10, S,,). The first describes one photon with a particular
wave-vector and polarization e, with no photons in any
other mode, and with all atoms in their electronic
ground states. The second describes no photons in any
mode and the Sth atom in an excited state m. This
limited approach does not include spontaneous
emission, but Pancharatnam allows for this by inserting
an imaginary part i1['4/2 into the excited state energy to
describe radiative damping. The decay of the upper state
was an area which he indicated he would explore
further.

The fundamental time-dependent process of interest is
the transition |K,, G) — |0, S,,) > | K., G), represent-
ing a virtual absorption of the photon 7@, with one atom
S raised to an excited state m followed by the re-
emission, or forward scattering, of the photon. The
language used in the paper, however, is that of time-
independent perturbation theory. Just as the eigenstate
| K., G) of the Hamiltonian without the interaction term
represents a photon in the unpolarized medium, the
corresponding perturbed state | K., G)neq, Which
approximately diagonalizes the Hamiltonian of the
subsystem including the Interaction, represents a
‘photon in the polarized medium’.

Pancharatnam finds an approximate steady-state
solution of the Schrodinger equation of the form
| K., Omed €Xp[—i1(E t/h)] which reduces in the absence
of interaction to | K., G) exp(—i wr), the solution of the
unperturbed Schrédinger equation. The level shift of
| K., GYmea away from | K, , G) is hto = E — ho, which is
found to be —2rcx,, hw where

O = Y 1 |(m | Bs - 8) PAlwn(S) —@—iT/2] (1)
S .m

This shows the direct connection between the light shift
and the polarizability, Here 133 and hw, (S) are the
dipole-moment operator and the energy of state m for
the atom S. An equation equivalent to this was pre-
viously obtained by Pancharatnam® by a semiclassical
approach. The expression for the light shift is equivalent
to the expression first derived by Barrat and Cohen-
Tannoudji’.
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To relate the level shift to dispersion, we might
assume that the velocity of a photon, which in the
absence of interaction with the medium is simply w/K
where 7K is the momentum, simply becomes v =@/K
where hw’ is the energy difference between the state
| K¢, G)med With one photon and |0, G) with none. This
would give for the refractive index 7 :

D — 0w
v“"g’J - =, (2)
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which for small (7 —1) is the same as that derived by
semiclassical theory. Pancharatnam, however, points out
that it 1s not clear why we should be able to do this. He
therefore also presents as argument based on the expec-
tation value of the Heisenberg first-order correlation
operator and shows that this expectation value is the
same as that for a classical field which varies as
exp[I(K-r—@'t)]. Thus @’/K plays the role of the
phase velocity.

General fields

Pancharatnam’s limitation of the state space restricts the
fields which can be studied to superpositions of the one
and zero photon states. Here we generalize to include
more general fields, that is, fields in an arbitrary
superposition of photon number states. We shall not be
concerned with the detailed expression for the polariz-
ability in terms of the dipole-moment operators, nor
with the specification of the polarization of the field.
Instead, we shall simplify the problem, firstly by
considering just a single two-level atom at position r
with ground and excited states |g) and |e) interacting

with a field in a single mode, as expressed by the
Hamiltonian

H=H,+V +H;
=|e} {e| han+ i(4" exp(~ik - r)|g) (e}
~hc)hQ + Nho, (3)

where {, and 7 ¢ represent the free atom and free field
Hamiltonians, N is the photon number operator with
eigenstates | n) and the energies of | g) and |e) are zero
and hay, We have written the interaction term in the
rotating wave approximation, where 4 and 4' are the
photon annihilation and creation operators. The strength
of the coupling is given by /2 and is dependent on the
dipole of the atom. Of course, by ignoring the other modes,
we are also not including spontaneous emission. We shall
simply disregard this for our present discussion in which we
are effectively assuming that the medium is transparent.
The electric field in the Schrddinger (time-
independent) picture we are using is represented by the
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operator' E(r) which is proportional to ifdexp(ik - r) -
h.c.]. The propagation is best viewed in the Heisenberg
picture, in which the field operator is, in the absence of

coupling, that is for ¥ =0,

E( 0= exp (i H t/k) E (r) (exp (—iH t/n)),
o< 1{d(®) exp(~iawt+ik -r)-h.c.]. (4)

This represents a wave with phase velocity ¢ = w/k. Also
when V' =0, the eigenstates of H are |n)}g) and
|n) |e). The former have energies nhw and the latter
have energies of A(wy + nw).

We now assume that the light is sufficiently off
resonance to allow us to diagonalize H by perturbation
theory, but not so far off resonance as to invalidate the
rotating wave approximation. The new energy eigen-
values are obtainable from the eigenvalues ES for the
unperturbed states [p) by use of the second order
perturbation shift, or repulsion, formula®

E,=Ep~ ) (KYVIp)P (B - ED)™. (5)
k#p

Thﬁe new eigenstates are related to the unperturbed states
by

E,)=1p)= Y (kP |p) (Ef ~ E2)™ [k) (6)

k+p

For the atom plus field system, we shall denote by E,,
and E,, the energies of the perturbed states | n, g) . and
|n, e)per Which correspond to the unperturbed states
|n) |g) and |n) [e).

From equation (3) V couples [n) |g) and |n—1) |e)
with a matrix element of modulus #"%% | Q| giving

Ene = n hl@ - Q% wo— w)] (7)

and

Ene = ﬁ[(aﬁ t Qz/(a)U - Ct?)]
+ nhlow+ QN wy - w)]. (8)

For our present discussion, it is sufficient to use
equation (6) to write the perturbed states |1, g)pen as
|n) | g) + O(2) where the second term is of order Q and
containg the state |n—1)|e). A similar expression
holds for | n, €} yen.

So far we have not specified the initial state of the
atom or of the field. We now digress a little. Suppose
we specify the initial state of the field. For example, let
it be 1In a coherent state of reasonably high intensity.
Such a state has a spread of photon number much
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smaller than the mean (n). By specifying the state of the
field we can reduce the states of the total system to
those of relevance, which in this case will be the states
involving photon numbers 7 clustered around (n). Con-
sequently, the energies of states | n, e)pen and |7, g)pen
which are of interest differ from their unperturbed
values by amounts of approximately +A and -A,
respectively, where A = {n) hQ*/(wy~ ). This means
that the relevant energy eigenvalues of the atom plus
field system can be written to a good approximation as
han+ A+ nhw and —A + nfiw. These are the same as
those of a two level atom with excited and ground state
energies of Awg + A and -4, together with, but not inter-
acting with, a field with energy eigenvalues nfiw. Thus if
we are interested in making measurements on the atom,
for example by probing it with a second field, we can
account for the interaction with the first field by treating
the atom plus field system as a ‘dressed atom’ with these
new energy levels®. This relates A simply to the light
shift.

The case of interest to us is just the opposite to that
above. We wish to specify the initial state of the atom
and not of the field. We also wish to examine possible
measurements on the field and not on the atom. Thus it
1s more appropriate to speak of the atom plus field
system as a ‘dressed field’ that is, a field dressed by an
atom in state | g). This specification of the state of the
atom reduces the states of the total system to those of
relevance, which in this case will be |n, g)yen. The
relevant energy levels of the system are thus E,; in
equation (7), that is niw, where

W, = @ — Q% /(wy— w). (9)

These are the same energy levels as for a field of
frequency w, together with, but not interacting with, an
atom in state | g). Thus when we examine properties of
the field we can account for the interaction with the
atom by using dressed energy states, or a dressed
frequency, of the field. The perturbation shifts of the
total atom plus field system could be referred to here as
‘atom’ shifts, that is, shifts in the field energy states
caused by the interaction with the atom, whereas in the
dressed atom case they would be referred to as light
shifts of the atom. The important point is that they are
the same shifts.

Our next step is to generalize to a field dressed by a
medium comprising N two-level atoms in a unit volume.
We write the excited state energy and the coupling for
the Sth atom as hwg and #Qg and call them the ground
state of the medium, with all the atoms in the zero
energy state, | G). We are interested in the field dressed
by the medium in this state. Omitting the details, we find
that the energy of the perturbed state | n, G)mneq, Which

corresponds to the unperturbed state |n) |G), is nhwg

where
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(10)

This is the same as the energy of an n-photon field of
frequency wg not interacting with the medium. We
might therefore associate the frequency of the dressed
field with wg, and, following Pancharatnaml, simply
write for the refractive index 7 :

(11)

Again, however, we need some argument to confirm
this.

At time zero, let the medium be in the ground state |G)
and the field in some state | /o). We wish to examine the
state of the field after it has interacted with the medium
for a time ¢. In general, the state of the medium plus
field system at time ¢ will not factorize into a state of the
field and a state of the medium. Instead 1t will be an
entangled, or correlated, state consisting of the sum of
products of states of the field and of the medium. We
can assume, however, that the interaction 1s sufficiently
small and off resonance for us to retain only the
dominant term in the entanglement, which will be of the
form |G) | f(1)). This is equivalent to specifying that the
fundamental process is that which leaves the medium in
its ground state, that is, that the transition involved is a
virtual absorption of a photon followed by re-emission,
or forward scattering of the photon. The net absorption
of light by the medium is zero. Thus we are interested in
calculating | f(£)) where the general state of the medium
plus field at time ¢ is given by

U(t, DG fo) = |G| f(¢)) + other terms, (12)

with U(t, 0) being the time displacement operator.
We let H{ now be the Hamiltonian for the system com-
prising the N atoms interacting with the field.
Substituting exp (=i H t/#) for U(z, 0), and projecting
both sides of equation (12) onto state (G| gives

(1)) ={G | exp (- i H/h)|G)| fo)
= Umea (£, 0)| f0) (13)

say. In terms of the complete set of eigenstates | E,) of
H , we have

Unea (1,00 = ) (Glexp(=iHt/M) |E,)(E,IG) . (14)
P

From equation (6), | G, nmed 1s | G) | n) + O(£2) where the
second term, of order Q, contains states orthogonal to
| G). Thus
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(GG, Mmea=1n). (15)

States | E,) other than | G, n)eq contain a component of
| G) | n), but only to order Q, so (G| E,) for these states
will be of order £). Thus equation (14) will contain a

sum of terms of which the dominant one is for
| Ep) = | G, n)mea, and which is given by
) (Glexp(= iH /1) |G, Pneq (1]
n
= z(GIG, M) med (N leXp(—1nwg t)
(16)

= Z|n) (n|exp(—1nwg; t).

Terms involving states | E,) other than |G, mpq will
contain at most a component of | G, n) of order £, and

will lead to terms in Uy only of order Q% at most.
Including these gives

Umed (¢, 0) = exp (-1 N wg )+ O (Qz). (17)

The equality of equation (16) and the first term of equa-
tion (17) is easy to check by expanding the series and
using X n|n) {(n| for N . Comparison of the dominant
term of equation (17) with the time evolution operator
of the free field exp (—iFH ¢t/h) for which H¢= N he
shows that the field evolves approximately in the medium
as if it were a free field of frequency wg. Specifically, the
Heisenberg field operator Umed E(£)Umed becomes
proportional to i(dexp(—iwgt +1k-r)— h.c.), which
is the expression for a wave with a phase velocity of
w;/k. Thus equation (11) is confirmed. The terms of
order Q” in equation (17) will add substantially smaller
components of the field with different frequencies.

Conclusion

It is possible to remove the restriction of the rotating
wave approximation in equation (3) and obtain a result

A gy S - S T
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closer to the classical case, but this will not be done
here. From what has been done it is clear that
Pancharatnam’s quantum theory of dispersion’' for a
one-photon field can be extended to include fields in
arbitrary superpositions of photon number states. In
situations where the initial state of the field is specified
and the evolution of the atom is examined, the total
system of an atom plus interacting field can be
considered as a dressed atom. Our case, however, is the
opposite. The initial state of the medium, that is of the
atoms, 18 specified and we are interested in the evolution
of the field. Pancharatnam’s concept of a ‘photon in the
polarized medium’ corresponds to considering the total
system of atoms interacting with the field as a dressed
field. The dominant component of the dressed field
evolves in the medium as though it were a free field with
frequency wg. The associated photon energy shift
AMlw—og) is obtainable directly from the energy
eigenstates of the atoms plus field system. The underly-
ing relation of dispersion to the light shifts arises
because the shifts of the perturbed energy levels of the
complete system from their unperturbed values are the
same whether the system is interpreted as dressed atoms
exhibiting light shifts, or as a dressed field exhibiting
atom shifts.

Although the basic concepts presented here
are inherent in Panch’s paper, [ do not know whether
or not he would have extended his work in this

particular direction. However, I like to think he may
have.
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