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The application of dislocation models for earthquake
faulting has become routine in the present-day studies
of the dynamic field induced by earthquakes. In this
review article, we discuss the effect of the finiteness of
a dislocation source and its motion on body wave
radiation patterns. The Aki-Haskell model used for
computing the near-field ground motion is also
described.

The mathematical foundation for the calculation of the
near field cround motion was laid"? in the early 1960s
when 1t was shown that the point-force equivalent of
fault-slip is a double couple and that the setsmogram
can be synthesized by a space-time convolution of the
slip function and a Green’s function. The slip function
describes the fault displacement during an earthquake
as a function of time and position on the fault plane.
Green’s function is the response of the earth when an
impulsive double couple is applied at a point on the
fault plane. The slip function and Green’s function
express quantitatively the source and propagation effects,
respectively, on seismic motion.

A number of theoretical studies have been undertaken
during the last quarter of a century to calculate the
near-field ground motion. The earliest works™* are based
on the results of Maruyama' and Burridge and Knopoff?
on dislocation sources in an unbounded medium. The
effect of the free surface was later incorporated’. The
response of a horizontally layered crustal structure has
been calculated by various analytical techniques®.

Body waves from a finite moving dislocation

The sources of seismic waves in the earth are not
always localized in time and space. It is well known
that the fracture zones in cases of major earthquakes
may be as long as 700 km. Moreover, in general, the
rupture propagates along the {fault with an average
velocity of 3 to 3.5 km/s. To account for the observed
radiation field from such sources, suitable models are
necessary which take into account the finiteness of the
source and 1ts motion. The simplest way is to start with
the expression for the far-field of a point dislocation
source and integrate over the fault with proper time
delays so as to simulate a source moving with a uniform
velocity’ 7.
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The P-wave displacement in the far-field due to an
arbitrary shear dislocation may be expressed in the

10
form
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where dS = fault area, o = P-wave velocity, B = S-
wave velocity, F' = radiation pattern function, R = source-
receiver distance, and U () = dU/dr = slip velocity.
Let us consider a rectangular fault of length L and
width W (Figure 1). We assume that the rupture initiates
simultaneously along the entire width of one end of the

fault and propagates along its length with a constant

rupture velocity V. We also assume that the dislocation
(slip) U 1s a function of time and space of the form
Uf(s, 1), where s 1s the distance measured along the
length of the fault. For a finite moving dislocation,
equation (1) becomes
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assuming W/L to be small (Figure 2). In equation (2),
t has been replaced by r—s/V to include the finite
velocity of rupture.

Let R, be the distance of the receiver P from the.
corner O of the rupturing end of the fault. Assuming
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Figurc 1. Umdirectional faulting on a rectangular fault
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Figure 2. The geometry of a fimte moving dislocation,

R, » 5, we have (Figure 2)
R = (R;—2R,s5 cos 8 +57)"
= R,—~s cos0,
where O is the angle between the direction to the receiver

P from @ and the direction of rupture propagation.
Equation (2) now becomes

L - V \1
IU[s;t——-—"‘;[l—— cosO || ds. (3)
0 «© © ’
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Equations (3) and (4) yield
P Flet)-gl,—ty)
F=__ 4 3_ A o ' 5
“ 1203 (B/0) R, [ te )

where P, = U, LW = source-potency and
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t, = t—Ry/0, 5 = -‘% (1—-——5 cosBJ :

Comparing equations (1) and (5), we note that the
field due to a moving dislocation along a finite fault
can be interpreted as the difference of the fields of two
point dislocations located at O, which start radiating at
an interval of ¢,. The entity ¢ is the duration of the

P signal at the observation point. Similarly, the duration
of the § signal is given by

0 =‘£/(1—-;5Z cosﬁ].

For most earthquakes, it has been found that V is less
than B but is very close to it. Therefore,

o B L ( E
td—td=E l—a cos 6 = (0.42L/B) cos 9.
\

For major earthquakes, this difference could be as much
as 1 min.

In the case of a vertical strike slip fault, the horizontal
radiation pattern is given by

F = sin 20,

where ¢ is the azimuthal angle. Equation (5) then
becomes

P PGV 3 sin2¢
“ T 12nB LR, (B/0) 1 - (V/o0) cosd %
[g(ta)-g(frf?)]- (6)

Thus the radiation pattern for P waves due to a finite
moving source is given by the factor

sin 2¢
1 ~(V/0) cosdp ()

instead of the usual sin2¢ for a point source. Similarly,
for § waves from a finite moving source, the radiation
pattern 1s given by

e cord ®
These are shown in Figure 3.
Spectral displacements
Assuming
U@, ) =f(s) g, (9)
il
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Figure 3. The honzontal radiation patterns of P and § waves from
a finite moving strihe-shp dislocation.

equation (3) becomes

p W 3 £
YT 1218 (B/0) R

: Ry s ]
g t-—a-—T/ [1—-(V/o) cosB]|ds. (10)

Taking Fourier transform, we get

u" (©) = 1;—13 (B/ o) -}% [ iwg (W)] exp (— ik, R,) X

L
| £ (5) exp(~iw,s/V) ds, (11)
0

where g (®w) is the Fourier transform of g (f) and
k, = w/a, o,=0I [1-(V/®) cosB]. (12)
If f(s) = U,, equation (11) yields
WU F
, — 0 s ..
u (w) = 1278 (B/o) R, [ iwg ()] X
L
exp (— ik, R) | exp (- iwgs/V) ds
0
P y F
= T2 b (B/o) R [ g (w)] X
(sin X,/ X} exp(~—ik Ry,—1iX), (13)
where
x,= =2 Loy, 0 14
u’zv"’zv | -( CI)COS ] ( )

The factor (sin X, /X)) exp{(—iX,) is a first-order
correction for the finiteness of the source and its motion,
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It L =0, X, =0, and this factor is unity. This factor
affects both the amplitude and the phase. An observer
will notice a phase retardation X_ and an amplitude
modulation sin X_/X_ which is a function of the frequency
®, the polar angle 8, the rupture duration L/V and the
Mach number V/a. The P-wave amplitude vanishes for
the values of ® that make X_ an integral multiple of
n (Figure 4). This is the condition for the destructive
interference of P waves at the point of observation.

In equation (13), the frequency dependence of
u” (®) is through the factor

A(w) = [ing (w)] (sinX_/X,) exp(—iX —ik, R,
with modulus
JA{w)| = wlg(w)!lsinX /X |.

At the high frequency end of the spectrum the dependence
on  is roughly that of lg(w)!|. In contrast, at low
frequencies, sinX /X -~ 1, and the dependence is
roughly like olg (w)!.

Two source time-functions need special mention. Ben-
Menahem and Toksoz'' used the exponential buildup
time-function

g() =0 <0,
=1-e”", t>0, (15)
for which
]
(@ = o +iaT) - (16)
Haskell* ' used a ramp function
g =0 t < 0,
=¢t/T O0<t< T,
= 1 t > 0, (17)

Figure 4. The finteness factor in the spectrum (afier Aki and
Richards, 1980)
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for which

1 sin(w7/2)
g (©) = i . ol/2

- exp( —inT/2). (18)

The parameter T i1s known as rise time. In both cases,
for low frequencies, as o tends to zero, the spectral
amplitude tends 1o a constant value. At high frequencies,
the spectral amplitude varies as ®™. The frequency at
the intersection of the low- and high-frequency asymp-
totes In the spectrum is known as corner frequency
(Figure 5). It has been found that the corner frequency
is inversely proportional to the dimensions of the source.

According to Brune”, the radius of a circular fracture
is related to the corner frequency of the spectrum of
S waves by

© =221 p/r. (19)
Savage'® calculated the corner frequencies for P and
S waves for a model of a rectangular bilateral fault of

length L, width W and a rupture velocity V = 098,
with the following results

o = 1.7oNLW,

o’ = 3.8B/VLW . (20)
From Brune's result, taking nr* = LW, we have

W, =2.21B/r=221B/NLW/x =39 R/LW, (21)

which agrees well with the above result of Savage for
S waves.

The complete process of fracture propagation includes
the description of its nucleation, spreading and stopping.
Let the shp be specified such that it comes to stop
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Figure 8, The corner frequency
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when the limit of the fault is reached. Then the phase

generated by the stopping of the rupture is called the
stopping phase. The relative importance of the Injitiating

and stopping phases depends upon the model assumed
for the slip.

Displacement near a fault

The displacement field due to a finite fault S with slip
U is given by

1 L [~ (. R
47 '[ BR Fr U \r-— B
3 ”

u, (x, 1) =

tn

/

s ds

(22)

where x (x;, x;, x;) = position vector of the receiver,
Y (¥1» Y2» ¥3) = position vector of the point of integra-
tion on the fault, U = dU/dr = slip velocity, and
R = lx~yl. The functions F, depend upon the fault
normal n, the slip direction e and the direction cosines
Y, = (x,—y,)/R.

Each of the terms ‘under the surface integral has a
simple form, attenuating as a certain negative power of
distance from the source. The terms attenuating as R
are the far-field terms and the terms attenuating as
R are the near-field terms. The wave form of each
term can be easily calculated for a given slip functior
Uy, t). It 1s difficult, however, to make a general
statement on the total displacement because, at short
distances, these terms arrive almost simultaneously, often
cancelling each other and the behaviour of the sum of
all the terms 18 quite unpredictable from separate con-
sideration of each individual term. This is especially
true for motion close to the fault, because each term
tends to infinity as R—0, although physically we
expect the sum of all the terms to be finite. Therefore,
near a fault, total seismograms consisting of the near-field
as well as the far-field terms must be computed for
comparison with observations,

Theoretical seismogram can be calculated by ditect
numerical integration of equation (22). For numerical
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infegration, we replace the integral by a summation over
grid points. We assume that the dislocation propagates
along the length L of a rectangular fault (L x W) with
rupture velocity V; then the Ben-Menahem transfer
function for an element ALX AW (Figure 6) of the fault
1S

(sinX/X_) exp(—iX)

where

AlL V
X, = v 1 . cosej

and ¢ is either o or . We can then sum these terms
over all the grid points. The time domain solution for
a given slip function can be synthesized from the spectral
solution. The gnd interval must be taken to be sufficiently
small so that the far-field approximation used in the
derivation of the Ben-Menahem transfer function is
valid. Therefore, for points of the fault close to the
point of observation, the grid interval will be much
smaller than for points farther away. Furthermore, the
grid interval must be much smaller than ¢T, where T
1s the rise time.

Figure 7 shows the perpendicular component of the

horizontal displacement (calculated from the orniginal
acceleration record by numerical Integration) observed
by a strong-motion seismogram located only 80 m away
from the San-Andreas fault during the Parkfield, Califor-
nia earthquake of 28 June 1966. It was shown by Aki’
and Haskell* that the observed motion is precisely what
is expected for a right-lateral strike-slip fault. Figure 8
shows the theoretical displacement seismogram syn-
thesized by Aki for a propagating fault. In order to
calculate a theoretical seismogram, the details of the
ruptuce process must be specified. Akl and Haskell used
a simple five-parameter model, now called Haskell’s
model, in which a umform slip U takes place over a
rectangular fault with width W and length L. The rupture
propagates along the length with a constant velocity
V. The slip at any point on the fault starts to increase
linearly with time at the arrival of the rupture front,
and stops when the amount of slip reaches U. The time
required to complete the slip is the rise time T, and
is assumed to be the same at every point. Thus, Haskell’s
model is described completely by five parameters: length,
width, final slip, rupture velocity and rise time. Aki’
obtained an excellent agreement between the observed
and the theoretical secismograms for the Parkfield
earthquake and concluded that at very short distances:
(i) the dislocation (slip) i1s the only important source
parameter that controls the seismic motion; (ii) the
rupture velocity is a significant but not dominant factor;
(iii) other source parameters such as the fault length
and depth show negligible effect on the motion.

The kinematical models of the source mechanism of
earthquakes assume a certain function of space and time
for the slip U {y; ) over the fault area. The form of
the fault surface and the rupture velocity must also be
assumed 1n the model. From the physical point of view,
the kinematical models have many shortcomings, e.g.
near the edge of the fauvlt the stress drop is infinite.

Figure 6. Gnd points selected for numerical intcgration of equation
(22).
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Figure 8. Synthetic displacement corresponding to the observation
shown in Figure 7 for a right-lateral strike-ship fault propagating with
rupture velocity 2 2 kmv/s (after Aki, 1968).

Figure 7. The displacement observed at 80 m from the San Andreas
fault in the direction perpendicular to the fault trace during the 1966
Parkfield earthquake (after Aki, 1968).
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To obtain more physically realistic models, one must
proceed to establish dynamic models in which the slip
is one of the unknowns derived from the state of stress
and the strength of the material at the source region.
The general problem of dynamic models is based on
the 1dea of crack formation and propagation in a
prestressed medium. A discussion of the dynamic models
of earthquake source mechanism is beyond the scope
of this paper (see e.g. refs 15 and 16).
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A large measure of uncertainty is associated with
the earthquake ground motion. The characteristics
of the earthquake ground meotion are examined to
identify the sources of uncertainties. Seismic risk
analysis i1s presented to establish the distribution of
peak ground motion parameters. Random process

models of the earthquake ground motion are
discussed.

Aseismic design of a structure involves prediction of
the nature of ground motion at the site during the
service life of the structure. This in turn requires: (i)
identification of the potential sources of strong motion
earthquakes; (ii) geometry of each source; (iii) magnitude,
epicentral location and focal depth, and time history of
occurrence of past earthquakes for each source; and (iv)
attenuation laws.

A large measure of uncertainty is associated with
ecach of the above factors. The cumulative effect of
these uncertainties makes the earthquake-induced ground
motion at a point, a time-dependent random process
vector. In earthquake engineering, it is convenient to
resolve this vector into three random processes—two
along perpendicular directions in the horizontal plane
and one vertical. The uncertainty in the earthquake-
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induced ground motion may, therefore, be represented
to varying degree of completeness by: (i) ensemble
of sample functions; (ii) hierarchy of joint probability
distribution, or characteristic functions; (iii) envelope
functions, and intensity moments'; (iv) spectral density
functions and spectral moments’, Fourier and response
spectra; and (v) gross properties of ground motion
components in terms of random variables, such as,
peak values of ground acceleration, velocity and dis-
placements, r.m.s. value, duration, spectral intensity,
etc.

For long structures with a dimension significantly
large as compared to the characteristic wavelengths in
carthquake ground motion, the spatial randomness must
also be considered and the ground motion must be
modelled as a multi-parametered random process vector.
This introduces additional uncertainties.

In this paper we consider the cumulative effect of
uncertainties assoctated with various factors to establish
the distribution, and other characteristics of ground
motion at a point in terms of: (i) peak ground acceleration,
velocity and displacement treated as random variables;
and (11) ground motion time-histories, treated as random
processes. First, we consider the characteristics of the
earthquake induced ground motion.
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