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The necd often arises for evaluating the
inteeral of a function which has no
explicit antidernivative or whose dceri-
vative has values that ar¢ not easily
obtained. So we have to approximate
the integral numerically, when analytic
techniques fail. Numerical integration 1s
the study of how the numerical value of
an integral can be found.
Consider the integral

I{f] = jﬂ J(x1,...,x,) dx;... dx,

= Iﬂf(X)dX, X —- (-rh---:-xﬂ)&

where € is a region in R” and
f-Q — R'. The numerical approximat-
ion of I[f] is often done by the
formula of the type

N

If1=0x 1= D a,f(X,).

J=1

Here X, are points in Q and are called
points (nodes) of the formula; g, € R!
and are called the coefficients (weights)
of the formula. If n=1, then Qy
is called N-Point quadrature formula.
If n2>22, then Oy is called N-point
cubature formula. By Ry{f]., we
denote the error term of the formula,

Ry(f1=1(f1~Qn[f]. The asso-
ciated degree, deg {Ry) 1s defined by

deg(Ry) =m=suplk| Ry [Ps] =0},

where P, denotes the space of all
polynomials mn xy, ..., x, of degrees <&,
m is called the dcgree of precision
(order of the formula) of Qy.

One of the approaches for finding
better formulas that has been actively
followed 1s to look for formulas which
achicve a given degree of precision
using fewest possible points
X1, X5, ..., Xy, With invention of the
calculus, the subject began to evolve
systematically; the  well  known
trapezoid rule and Simpson’s rule are

members of an infinite sequence of

formulas due to Newton and to Cotes.
From seventeenth century to now, a
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great deal of cffort is going into the
development of the subject. However,
the earhest interesting integration
formulas for multidimensional integrals
scems to have appeared only in 1877 by
J C. Maxwell. Even though a number of
new methods have been devised, pra-
ctical consideration have led to
problecms of ever increasing complexity,
so that even with current computing
speeds, numerical integration may be a
difficult task. As mentioned by the
editors in the preface of the book,
higher dimension and complicated
structure of the region of integration
and singularities of the integrand are the
main source of difficulties.

This book is a collection of 27
research papers, presented at the confe-
rence which was held at Oberwolfach in
November 8-14, 1992, These articles
are¢ devoted to the study of existence,
construction and error analysis of the
numerical integration formulas. Some of
them contain a brief survey of the
subject and most of them have a good
reference list. Nine open problems are
given at the end of this volume with
precise formulations.

Let us first start the review of the
articles which are devoted to one-
dimensional case. In one dimension,
since ail the finite intervals are equi-
valent under affine transformation it is
enough if we consider the following
intervals of the type (a, b) (a and b are
finite), (a, °) and (~oo,00). It 15
frequently convenient to consider an
integral of the form [w(x)f(x)dx
instead of the integral If(x) dx.

Consider the approximation of the

integral

L= [ wx)f(ds, )

where weight function w 1S continuous
and non-negative on (a, ) and 1, [pi],

Pi (x) =x‘k, k=01, 2, ... are assumed (o

exist. Let Oy be the quadrature formula
for equation (2), i.e.

N
LU =0nlf1= ) a,/(x,),
J=1

x, € {a, b]. (3)

If x’s in [a, b] are fixed in advance,
then we know that we can find a,’s s.t.
Ow is of order N — 1. If we treat both x,’s
and a,’s as unhnowns, then we can find
a quadrature formula which is of order

2N ~ 1. The formula of Gauss type is an
N-point  formula with degree of
precision 2N —1. Now consider the
integration formulas of Gauss type with
a certain number of preassigned nodes
By this we mean a formula of the type

[w[f] = QH,M

M N
= >, f()+ Y Buf (&),
r=] i =l

where 7, are fixed and prescribed In
advance and «,, fB:,& are to be
determined so that quadrature formula is
of order 2N+ M~ 1. In the paper of
Ehrich, an iterative method and its
implementation to compute the nodes &,
numerically is proposed. It is shown
that the iterative method is of order two.
His numerical experiments show the
suitability of this method. Sometimes, it
is preferable to use lower degree piece-
wise polynomial approximants for f with
more Knots than simple polynomials of
higher degree. By this motivation,
explicit quadrature formulas of Gauss,
Radau and Lobatto type for spaces of
polynomial splines of degree |1
(arbitrary knots) and 2 (the case of
equidistant knots) are presenied in the
paper of Nikolov. It is also shown that
the Gauss type quadrature for splines
with equidistant knots are asymptoti-
cally optimal. In the paper of Schneider,
rational Hermite interpolation is used to
derive and analyse the quadrature
formulas in two different ways One
approach gives quadrature of Gauss type
whereas the other one generalizes
Engel’s duval quadratures. It is well
known that the set of orthogonal poly-
nomials plays an important role in the
theory of numerical integration. In the
paper of Peherstorfer, he has shown
how to get in a simple and unified way,
the characterization of positive quadra-
ture formulas by using interlacing
properties of the zeros of the orthogonal
polynomials. In the paper of Locher, he
relates the stability criteria of linear
difference equation and the interlace
properties of the zeros of Chebyshev
polynomials of the first and second hind
(these are orthogonal polynomials)
Hence the stability test is also a test for
the existence of certain positive qua-
drature formula,

For integrands having poles (outside
the interval of integration) it would be
more natural to include also rational
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functions among the functions to be
exactly integrated. In the paper of
Gautschi, he derives N-point quadrature
rule that exactly integrates M rational
functions (with prescribed location and
multiplicity of the poles) as well as
polynomials of degree 2N-M -1,
0 < M £ 2N. Rational functions are to be
chosen so as to match the most impor-
tant poles of the integrand. In the paper
of Hasegawa and Torii, they considered
the integral of functions having poles
near the interval of integration. After
the smooth part of the integrand is
expanded in terms of the Chebyshev
polynomials, the integral is approxi-
mated and evaluated by using recur-
rence relation and extrapolation method.
An automatic quadrature method 1s
given.

It has been known for a long time that
the trapezoidal rule, under certain
conditions gives a very accurate appro-
ximation to integrals over the entire real
line, see e.g., Davis and Rabinowitz'. In
the paper of Gustafson, he considers the
integral over the entire real line and
approximates, first the integral with a
trapezoidal sum, then applies a linear
convergence acceleration scheme to
approximate this trapezoidal sum. He
has developed efficient quadrature
formulas that are applicable for both
decaying and oscillating integrands.

An important tool for the discussion
of the error term Ry { f], is the Peano
representation

Ralf1= [ O @Ks(x)dx,

s=1,2,...,deg(Ry)+ 1

where K, is the Peano kernel and e
denotes the sth derivative of f. In the
paper of Brass, he has considered the
inequality

IRV L/ Kl [ 1F9 (L,

| |} 1s a sup norm

and studies the asympiotics of || K || for
sequence (), Oz, ..., of quadrature
formulas. Let Ry{P,.1=0, where
P,_, is a space of all polynomials of
degree < r— 1. With

RN/
(1S} ee

HRw1l, = sup | f€ C/a,b),

— g

Ilf“)ll-iﬂ}

forj=0,1, ... r, the error estimates

IRy IS SRS

hold. In the paper of Ko&hler, he
expresses for y=1,...,r—1, || Ryll, In
terms of ||[Rylle and ||Ry|,. If such
cstimates are available, then it is not
necessary to compute all the inter-
mediate  error  constants [ Ry ||,
(j=1,...,r—1) separately. When g, In
equation (3) are not all positive, the
paper of Mastroianni and Vertest gives
error estimates for product quadrature
formulas in the weighted L;-norm. In
the paper of Hunter and Smith, they
generalize an expression due to Stenger
for the error in the associated Gaussian
quadrature formula and consider
Rodrigue’s function U, associated with
the polynomial P, in the orthogonal
sequence over (-1,1) w.rt. weight
function w (x). Some properties of U, are
proved and some conjectures are made.
Brass has constructed a quadrature

rule {Oy)ye n for which an error of

order O(N ) can always be guaranteed
for convex functions. So all further
quadrature rules have to compete with
such a method. Leta=-1 and b =+1 1n
equation (2). For convex integrands,
trapezoidal and midpoint formulas have
an error of order O(N ) if derivative of
f at £1 exists. Brass has posed the
problem to extend this result to
Gaussian quadrature in 1982. In ref, 2,
Forster and Petras, proved a much more
generalized result.
Petras, he has given an overview of
these results as well as some new results
on the quadrature theory of convex
functions. It is natural to think that, it 1s
possible to reduce error by using adap-
tive methods, i.e. the node x, depends on
the previously computed  values
D), o S, e, x =x(f(x), ...,
f(x,-1). In the paper of Novak, he
considers the function f in a nonsym-
metric convex class of functions and
proved that adaption cannot help in the
worst case but considerably helps tn the
case of Monte Carlo methods. And also
he has given examples where adaptive
mcthods are better than nonadaptive
oncs.

The question of small variance and
high algebraic  degree  was  first
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In the paper of

considered by Chebyshev. Since that
time¢ several investigations on this
subject can be found in the literature, In
the paper of Forster, a survey of these
results and some open problems are
given with a good reference list.
Suppose we are given a convergence
sequence of interpolatory quadrature
formulas {QOn}ye . What can we say
about the distribution of the points x,?
In the paper of Bloom ef al, they
review previous results, which shows
that half the points in the formulas
behave like =zero’s of appropriate
orthogonal polynomials. In the case of
the interval (a, b) = (~1, 1), this usually
means that half the points have arcsin
distribution. They also present a result
relating the rate at which half the points
converge to the arcsin distribution,

Variable transformations are used to
enhance the performance of lattice rules
for multidimensional integration. These
transformations are¢ either polynomial or
exponential type. In the paper of Sidi, a
short survey of this is given and he has
also proposed a new transformation,
sin”-transformation which is trigono-
metric in nature. His results indicate
that sin™-transformation can be more
advantageous than known polynomial
transformation and have less underflow,
overflow problems than exponential
ones.

et us now consider the review of the
articles which are on multiple integrals.
If the dimension n=22, there are
infinitely many distinct bounded
connected regions, which are not equi-
valent under affine transformations. In
R?, for example, the square, circle and
triangle are not equivalent under an
affine transformation. Integration
formulas for any one of these regions
are different from formulas for the
others. Let Q=1[0, 1], a unit cube.
Suppose we want to obtain an
asymptotic error estimate of the form
O (27%*) (a > 1, g a positive integer) via
multivariate product midpoint rule it is
necessary to evaluate f at M- =
O (2") points. It is well known that this
number can be reduced drastically by
using efficient lattice rules for multi-
variate numerical integration, sc¢¢ ¢ 8,
Sloan®. In the paper of Baszenskt and
Delvos, they have constructed Boolean
mid point  rules  for  multivanate
numerical integration which are based
on the ideas of multuvariate Boolean
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interpolation and in that number of
functional evaluation is O(¢" ™' 27) and
thcy have obtamned asymptotic error
estimates of the form O (g"~' 277%) as
g - ==. Onc can also think of cubature
formulas of trigonometric degree in the
nlace of algebraic degree. In the paper
of Beckers and Cools, they have given a
'summary of results on cubature
formulas of trigonometric degree that
have appeared in the Russian literature.
Thev showed that such formulas can be
approached with the tools used to
construct formulas of algebraic degree
and also from the field of lattice rules.
For a unit square, a new family of
cubature formufas of trigonometric
degree with the lowest possible number
of points is given. For a squard,
construction of fully symmetric cubature
formula is proposed in the paper of
Hacgemans and Verlinden. In this
method one does not have to solve large
nonlinear systems Here one has to
compute the solution of a hinear system
and a nonlinear system of two poly-
nomial equations of lower degree with
two  unknowns.  Advantage  and
disadvantage of the method are
discussed. In the paper of Niederreiter
and Sloan, for n-dimensional unit cube
they modify quasi-Monte Carlo method
in which only one vertex is a quadrature
point, by distributing the corresponding
weight between all the vertices. And
also they show that among all the vertex
modified rules, the rule that minimizes
the L, version of the discrepancy is the
rule that integrates all multilinear
functions exactly. They have also
explained the important role played by
vertex variance. In the paper of
Guessab, he considers the problem of
approximating a double integral on a
convex compact set K as a minimal
linear combination of integrals on the
real line and also obtains cubature
formulas which are exact on the space
O.c +1 (K) of all polynomials of degree
< 2k + 1 in each variable x;, x;.

When the integrand has singularities
in the region of integration, most
standard formulas are inefficient.
Lyness’ gives error functional expans-
ion in multidimensional quadrature with
a singular integrand function. To
compute singular integrals effectively,
knowing the existence of such expans-
ions is essential. Once it is known, one¢
can develop extrapolation scheme based
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on this error expansion. After Lyness’,
there are several papers in that direction
and all are based on a uniform
subdivision. In the paper of Espelid, he
describes an extrapolation scheme based
on the error expansion produced
through a nonuniform sub-division of
the region. This strategy can be apphed
to vertex singularities, line singularities
and more general sub-region singu-
larities. When Q = S, the n-sphere with
radius R, in the paper of Genz two
subdivision methods, radial subdivision
and simplex subdivision methods are
analysed and an adaptive algorithm for
multiple integration is considered. And
also some comparisons are made.

In the paper of Lyness, finding a
canonical form of a lattice rule 1s
defined by a general t cycle D-Z form.
A step-by-step approach that parallels
the group theory is described, leading to
an algorithm to obtain a canonical form
of a rule of prime order. The number of
possible distinct canonical forms 1is
derived and this is used to determine the
number of integration lattices having
specified invariants. For integrals with
circular symmetry, Verlinden and
Cools’, derived necessary and sufficient
condition such that cubature formulas of
degree 4k+ 1 attain Modller’s lower
bound (i.e. N=k(2k+4)+ 1) and also
they showed that these conditions do
not hold for some integrals of circular
symmetry and some k€ N. In the paper
of Cools and Schmid, they showed for
two classes of integrals that the number
of nodes of cubature formulas of degree
4k +1 will not attain Moller’s lower
bound. Thus in this case that bound has
to be increased by 1. In the paper of
Ritter et al., they considered multi-
variate  integration for  stochastic
processes and obtained bounds on the
minimal average case errors of cubature
formulas. The error bounds are derived
in terms of smoothness properties of the
covariance function. For some special
case of covariance functions, these
bounds are sharp, sometimes modulo a
logarithmic power.

This volume does provide a valuable
reference for the workers in the field
and makes a fine addition to the library.
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Baszenski and F. J. Delvos, Multi-
variate Boolean mid point rules; M.
Beckers and R. Cools, A relation
between cubature formulas of trigono-

metric degree and lattice rules; T.
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Distribution of points in convergent
sequences of interpolatory integration
rules: The rates; H. Brass, Bounds for
Peano kernels; R. Cools and H. J.
Schmid, A new lower bound for the
number of nodes in cubature formulas
of degree 4n+ 1 for some circularly
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formulas containing preassigned nodes;
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multivariate integration for stochastic
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China Bound, A Guide to Academic
Life and Work in the PRC. by Anne F.
Thurston, Karen Turner-Gottschang and
Linda A. Reed. National Academy
Press, Washington, DC, USA. 1994. pp.
xii + 252. Price $24.95 (paperbound).
[ISBN:0-309-04932-6]

Cross-cultural exchanges call for certain
amount of getting to know the other
culture even before one leaves one’s
home country. The Americans, with
their penchant for standardizing, usually
hold a programme lasting for a few days
for overseas scholars, especially
students, wherein the visitors are told
how to make their stay in the USA
productive and enjoyable, how to get
along happily in society, what to do and
what not to do under different
circumstances, etc. For most countries
in the world, a few days of preparation

is all that one would need. But China is
different, for various reasons. As one¢
researcher says, being prepared in China
can mean ‘the difference between a
headache and a productive day’!

This revised version of a much
acclaimed book, originally published in
1981 and rewritten in 1987, i1s a
comprehensive guide to scholars and
scientists  visiting China — first-time
visitors and ‘old China hands’ alike.

To the American mind, China, though
fascinating, is curiously ambivalent. It
at once evokes the images of Marco
Polo and Genghis Khan, rapid economic
development and Tiananmen Square,
friendly people and a frustrating
burecaucracy. Added to the¢se contrasting
images is the language barrier, the
vastly different social and cultural
mores, and the totally different ways in
which academic and scholarly insti-
tutions function and are administered.

It is to facilitate overcoming these
barriers for the ever-increasing number
of American scholars who are visiting
China since the ‘opening up’ began in
1979 that this book was written.
However, the material provided will be
of great use to visitors from other lands
as well to those who want to go and
live, work and learn in China. This
friendly and practical book offers all the
details academic and other visitors need
to make long-term stays In China
productive, comfortable and fun. It
covers everything from how to obtain

the correct’ travel documents to the
things to take care of before one leaves
China after one’s assignment there is
over. Frank discussions on the research
and academic environment in China,
aspects of human relations (including
possible romance with a Chinese
citizen!), negotiating the costs of
services, and a host of other equally
important things make this book a truly
invaluable guide.

The book provides useful information
on science and social science field
work, living costs, health care,
addresses and fax numbers of important
institutions and services, currency,
transportation, communication, child-
ren’s education, etc.

Yet another good point of the book i1s
the large number of quotes from people
who had lived and worked in China in
the recent past.

There are 17 appendices and an
Index.

Anyone going to China will find this
volume  enormously useful. The
Committee of Scholarly Communication
with China deserves appreciation for
commissioning this book as well as the
two ecarlier versions.

SUBBIAH ARUNACHALAM

Central Electrochemical Research
Institute

Karaikudi 623 006, India
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