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It is shown that the intensity correlation function is
central to the understanding of various aspects of
nonclassicality of the electromagnetic field, e.g, quan-
tum interference, antibunching, nonclassical statistics,
squeezing and nonlocality. Particular emphasis is given
on correlations of twin signals generated in nonlinear

mixing interactions.
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O~NE of the most challenging aspects of research in the
field of quantum optics has been to understand the
nature and implications of quantum correlations
cenerated in some optical processes. Quantum correla-
tions between two systems are characterized by either
the correlations between operators corresponding to
observables associated with individual systems, or the
correlated state describing the two systems. These cor-
relations lead to a number of spectacular nonclassical
effects, such as generation of number states (Fock states)',
squeezing®™®, quantum interference’”, and quantum
mechanical nonlocality'”'°. In many nonlinear optical
problems, for example in down-conversion and four-wave
mixing, the photons are generated in pairs. The strong
correlation between the photons in a pair may lead to
such nonclassicalities. In this review we discuss these
nonclassical effects and their experimental demonstra-
tions in nonlinear optical processes.

We begin by describing the nonlinear optical processes
of interest, namely three-wave mixing Interaction of
frequency down-conversion and four-wave mixing. All
the known nonclassical features of the electromagnetic
field, such as gquantum interference, antibunching, non-
classical statistics, squeezing and nonlocality, are taken
up on¢ by one. The properties of the corresponding
nonclassical state are reviewed in terms of the inten-
sity—intensity correlation function, which is proportional
to the joint probability of two-photon detection. (Here
intensity is expressed in units of photon number density.)
The methods of generation of the nonclassical states
are also Indicated.

Optical nonlinearities

When the electrons in matter are strongly excited by a
high intensity light beam, ‘overtones’ of light are created.
For a nonlinear material subject to an intense electric
field £, the susceptibility y is field-dependent and can
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be written as a power expansion in E. The induced
electric polarization P of the medium 1s then given by

P=g,[% E(0)+%EE,+

7] ok

Xf;}.f EJEkEI—*_-'-]: (1)

where €, is the dielectric permittivity of vacuum and
x‘”’ i1s the nth-order susceptibility tensor (of rank n+1)
characteristic of the medium. The power series expansion
(1) of the polarization is essentially a perturbative
approach to nonlinear optics. It 1s valid in the regime
of weak nonlinearities only, when the electronic structure
of the medium is not much perturbed by the applied
field. This approach cannot be used in the regime of
strong nonlinearity, which arises when field frequencies
are very close to a narrow resonance and saturation of
optical transitions occurs in the medium. In this regime,
the electronic structure of the medium is perturbed
strongly by the applied field.

For very weak fields, it 1s often sufficient to retain
only the first term on the right-hand side of equation
(1), which denotes the usual linear response of the
medium to the applied electric field. Nonlinear effects
of self-focusing, self-trapping and self-induced trans-
parency are observed when a single beam of light
propagates in a nonlinear medium. Most other nonlinear
phenomena require the simultaneous presence of a num-
ber of coherent beams in the medium. The number of
beams taking part in a nonlinear mixing Interaction in
a medium is the number of beams entering the medium
plus the number of beams generated by the medium
itself. The ¥'¥ processes are three-wave mixing interac-

tions of the type

CDI 4 (02 = (1)3, (2)

where @’s are the frequencies. For the degenerate case
of ®, = ®, = w (say), this leads to the second-harmonic
generation, @+ ® — 2®. The reverse of second-harmonic
generation is called the degenerate parametric down-
conversion, in which one beam of frequency 2w splits
into two beams of frequency ® each. The second- and
all even-order susceptibilities are identicatly zero in the
bulk of a centrosymmetric medium. The terms involving
the third-order susceptibility ¥ correspond to four-wave
mixing (FWM) interactions of the type
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O, +0, = O+, (3)

For a particular order interaction to take place with
appreciable probability, the phase-matching conditions
(energy and momentum conservation laws) are to be
satisfied. For three-wave mixing this can be achieved
in a uniaxial non-centrosymmetric crystal exhibiting
birefringence. For a negative birefringent crystal with
the index of refraction for the ordinary wave (n ) larger
than that for the extraordinary ray (n_ ) at a particular
frequency, phase-matching for degenerate down-conversion
may be achieved by choosing a direction of propagation
© of the pump with the optic axis of the crystal such
that n, (©) (at 2w) = n, (at ).

It is now understood how different types of nonclas-
sical states can be generated using a variety of nonlinear
interactions both in resonant and in nonresonant systems.
Under the assumption of negligible depletion of the
input pump fields, so that pump beams can be treated
classically, all nonlinear interactions generating two out-
put beams (such as down-conversion and four-wave
mixing) can be written in the parametric approximation
as an effective bilinear interaction of the following
second-quantized form

H=Gaa+H.c, (4)

where the coupling constant G 1s related to the nonlinear
susceptibility for the process under consideration, and
a;, a, (a,, a,) are the creation (annihilation) operators
corresponding to the two output modes. The Hamiltonian
H creates and destroys photons in pairs. The output
fields are taken to be initially in the vacuum state
|0, 0), and the state at time ¢ will then be a rwo-
photon state | TP ) given by

| TP) = exp(—iHt/%) |0, 0). (5)

Quantum interference

The modification of intensity obtained by the superposi-
tion of two or more beams of light is what is commonly
known as optical interference. Since intensity 1S second-
order n field amplitude, we will refer to the conventional
interference as second-order interference. It is normally
assumed that the observation of interference effects
requires the superposition of mutually coherent light
beams, 1.e. beams which are derived from the division
of a single beam so that the phase-difference between
them remains constant. However, from a classical point
of view, the superposition of two waves, whether mutual-
ly coherent or not, always leads to interference. Tor
time intervals short compared with the reciprocal fre-
quency spread (coherence time) of the two waves, both
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waves may be regarded as sinusoidal oscillations, and
apart from experimental difficulties, interference fringes
should always be observable in principle with two
mutually incoherent light beams. But in the case of a
quantum description of the optical field, the state of
the field has to be specified, because in quantum
mechanics only the expectation value (corresponding to
the classical ensemble average) of the light intensity in
a state 1s a meaningful quantity. Thus when the two
beams are statistically independent, the interference term
disappears as a result of the averaging over a large
number of independent trials. Therefore the two beams
must have well-defined phases if interference fringes
are to be observable in the experiment.

In an interferometer a light beam is split into two
components and the two derived beams are recombined
after a path-difference is introduced in the distance
traveled by them. In his book The Principles of Quantum
Mechanics, Dirac'’ considers the case of a single photon
passing through the interferometer and points out that
we should think of this single photon as being associated
with both beams simultaneously. If we tried to determine
with which beam the photon is associated, during the
course of our measurement we would force it into one
or the other of the beams and no interference would
occur. It 1s impossible for a photon in one of the beams
to interfere with a photon in the other beam, because
if 1t did, ‘sometimes these two photons would have to
annihilate one another and other times they would have
to produce four photons. This would contradict the
conservation of energy’. Following this Dirac makes his
famous statement: ‘Each photon interferes only with
itself. Interference between two different photons never
occurs.’

Thus the quantum mechanical interpretation of inter-
ference 1s that the photons do not interfere with each
other in a conventional interferometer —it is the inter-
ference of the probability amplitudes (rather than the
probabilities themselves) associated with the two possible
indistinguishable paths of each photon that gives rise
to fringes. The probability amplitude plays the role of
wave amplitude in classical wave theory.

With the development of lasers with long coherence
time, it became possible to observe interference effects
with light beams from two separate independent sources.
Many of the early experiments'® studied the conventional
second-order 1nterference, which is extremely phase-
sensitive, and special techniques (viz, measurement of
instantaneous cross-correlation of two photomultipher
outputs) had to be used to reveal the interference pattern,
which was not stationary unlike that obtained from
coherent beams. Fourth-order eflects in intetference
were not noticed untul Hanbury Brown and Twiss'
discovered intensity correlations. In the past tfew yeats,
there have been several discussions’ © focusing on the
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nonclassical features in interference with independent
sources, which show up readily in intensity correlations
that are fourth-order in field amphtudes. It has been
proved that fourth-order intcrference 1s present for both
independent and correlated fields, even though second-
order interference may not exist. Fourth-order inter-
ference is not phase-sensitive and may be easier to
observe than second-order. At present, known experimen-
tal techniques for producing various quantum states of
the field — for example, the resonance fluorescence from
a single atom and the parametric down-conversion
process —have led to some interesting fourth-order
interference experiments with two photons. Fourth-order
interference between two classical tields with random
phases has a maximum relative modulation of 50%,
whereas quantum fields may interfere to generate a
relative modulation up to 100%.

Let us consider two polarized, approximately plane
quasi-monochromatic electromagnetic waves emerging
from two points A and B described by complex scalar
amplitudes E, () and E,(#), which are superposed at the
receiving plane. Let x,, x, be the positions of the two
detectors at the interference plane. If E, and E; are
random and uncorrelated, the ensemble averages
(I(x, ) and (I (x,, 1)) exhibit no second-order inter-
ference. If we evaluate the intensity cross-correlation
function (I (x, )7 (x,, #)) under the same assumption
that the two light beams are independent and the phases
of E,, E; are random, then

(I(x;, DI(x,, D) = (U + 1))
X[1+0 cos{2n(x, —x,)/L }}, (6)

with L = AD/s = A/O, where A is the wavelength, D
the distance from the source to the interference plane,
s the separation between the sources and © the small
angle of inclination between the two light paths from
A and B. Equation (6) represents a form of interference,
involving correlation function of fourth-order, the peri-
odicity (‘fringe’-spacing) of the interference pattern being
L. The relative modulation amplitude or ‘visibility’ ©
of the interference pattern is given by

o 2U0Uy)
(T +1,))

_ A1) (1)
LY+ + (ALY Y+ (ALY )

Here ((AD*Y = (FY~(x)* gives the fluctuation in /.
From equation (7) we see that the intensity cross-cor-
relation is smallest when lx, —x, I=(n+14)L, n=1, 2,
... , but it can never vanish. The visibility ¢ in the
classical case has a maximum possible value of 14,

(7)
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when (I, )=(1,) in the absence of any fluctuations of
I, and [, 1.e.

o < L. (8)

Let us now constder a specific example of a guantum
mechanical source for two-photon interference, a photon-
pair created by the nonlinear process of spontaneous
parametric frequency down-conversion. In this process
photons In the pump laser beam spontaneously ‘split’
into pairs of lower-frequency signal and idler photons
that emerge from the nonlinear medium within a cone
around the pump beam axis. As mentioned earlier, for
an interaction to take place with appreciable probability,
the phase-matching conditions (energy and momentum
conservation laws) are to be satisfied. If the two down-
converted signal and idler beams are recombined at
some distant point from which the pump is excluded,
we may take the resulting two-photon state to be a
linear superposition state. In that state the single-photon
detection probabiiity P, (x, f) does not exhibit inter-
ference fringes and this simply reflects the absence of
a phase relation between the signal and idler waves.

The quantum features of the electromagnetic field are
exhibited through the intensity—intensity correlation func-
tion. The joint probability of detecting one photon at
x, and another at x, in the Interference plane i1s given
by the fourth-order correlation function (normally-
ordered), and when signal and idler photons are
degenerate and similarly polarized, it comes out to be
of the form®

Py(x,, t, %3, t,) = (xy, 1)) 1(x,, £,) )
~ [1+cos{2n(x,~x,)/L}], (9

where L 1s the spacing of the interference fringes as
betore. There 1s a cosine modulation of P, (or the joint
probability of two-photon detection) with the separation
(x, —x,), with periodicity L. The joint probability vanishes
when I x, —x, | is an odd integral multiple of half fringe-
spacing, and the relative modulation amplitude or
‘visibility’ ¢ of the fringe pattern obtained from equation
(9) is 100%, unlike the classical situation described by
equation (8) where ¢ < 50%.

The first observation of this nonclassical effect was
reported’ in 1987 in an interference experiment involving
the down-converted photon pairs. The results supported
the quantum mechanical theory, violating the classical
inequality (8) with 92% confidence level.

Photon antibunching

When light falls on a photodetector, there is a probability
P, (1) that a photoelectron is emitted at time ¢ within a
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short interval &t, and there is an intensity correlation
or a joint probability P, (t,t+ T) that one photoelectron
is emitted at time t within Ot and another one at time
t+1 within &r. When the light field is describable
classically, it follows from the laws of classical prob-
ability that

P,(t, 1) 2 P,(t, t+71). (10)

If we plot the joint probability P, (r, t+1T) of detectling
two photoelectric pulses separated by time T against T,
the resulting graph can fall below its initial value, but
can never rise above its initial value. This fall of
P,(t, t+ 1), or the tendency of photoelectric pulses to
bunch in time, has been observed in many experiments
since the pioneering work of Hanbury Brown and Twiss ",
and this phenomenon is understandable in terms of
fluctuating electromagnetic waves, without field quan-
tization. Thus for classical fields, the joint probability
is maximum at T = 0, and it either decreases as 171
increases (e.g. thermal light), or is constant for all 1
(e.g. coherent light).

Antibunching® is the opposite of bunching, and
describes a situation in which fewer photons appear
close together than further apart, 1.e. the joint probability
at T = 0 is smaller than that for larger T. We define
the normalized intensity correlation function g, (1) as

g, =T AI(@+1)AI@:)/{TI@®)(I+71)),

or,

g, (M+1 =T 1@ I@+1):){I@){I({t+1)),
(11)

which i1s independent of ¢ for a stationary field. Here
T stands for time-ordering and the colons : : for normal
ordering of the operators, ie. (T :I1(HI(t+71):)=
(a(Na" @t+T)a(t+1t)a@)). For thermal fields,
g,{(0) = 1, and lim g, (1) = 0; and for a coherent field,

T ee

g,(t) = 0, for all T 2 0. Antibunching occurs when
g, (0) < g, (7). (12)

This condition violates the Schwarz inequality for clas-
sical fields, and thus antibunching 1s a quantum
phenomenon without classical description. Historically,
antibunching was first observed in the process of reso-
nance fluorescence from a single atom, when coherently
excited close to resonance by a laser beam®. It was
later observed by the use of a detection-triggered optical
shutter in parametrically down-converted light”, and
more recently, in pulsed squeezed coherent light
generated via degenerate parametric amplification®.
The quantum character of the field can also be
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exhibited by photon counting measurements, rather than
by measurements of time intervals between detected
photons. But there is a distinction between these two
nonclassical effects as shown below.

Nonclassical statistics

When completely coherent light falls on a photoelectric
detector, the number of photoelectric counts n (propor-
ttonal to the light intensity /) registered in some finite
time interval obeys Poisson statistics for which the

variance ((An)°) of n equals the mean number (n).
For classical waves, in general,

((An)*) > (n), (13)

as a consequence of intensity fluctuations. However,
there exist quantum states of the electromagnetic field
for which the photon statistics is sub-Poissonian®, i.e.

((An)*)={n) < 0,
or,

(n®)-(n) <0, (14a)
where (n'®) = (n(n—-1)) is the second factorial mo-
ment of the photon number. These states have no
classical description, because

g, (0) <0, (14b)
Under conditions of g, (1) < 0, photon antibunching
[condition (12)] implies a sub-Poissonian distribution
[condition (14b)], but in general, one may occur without
the other. In the atomic beam experiments®' demonstrat-
ing antibunching, the photon counts were not sub-Pois-
sonian as a result of fluctuations in the number of
atoms. On the other hand, for a single-mode quantum
field in a Fock state', the photon statistics are clearly
sub-Poissonian, but the field would show no antibunching
as g, (1) is negative but independent of 1. Sub-Poissonian
photon statistics was experimentally observed” in reso-
nance fluorescence from a single atom.

Condition (14a) for nonclassical photon statistics of
a single-mode radiation can be generalized for the case
of a two-mode radiation in the following way

(Y +{(n=2{(nn,) < 0. (15)

In case of two-photon devices, such as parametric
amplifiers and four-wave mixers producing nonclassical
states, each mode by itself may have a classical dis-
tribution obeying (13), but the corr¢lation {n, n,) bet-
ween the two modes plays a key role in establishing
the nonclassicality condition (15)™°.
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We discuss some other nonclassical features of photon
staustics in the context of squeezing in the following
section.

Squeczing

The coherent state~ of radiation field is the closest
counterpart to a classical electromagnetic field and is
defined as that whose uncertainty product AE AB for
the electric and magnetic fields i1s minimum for all time
when subject to the simple harmonic potential charac-
teristic of the field. The corresponding wave-packet
‘coheres’ (Joes not spread) in time. The coherent state
[} is the right eigenstate of the annihilation operator a

aloa)=ola), (16)

where o is the complex amplitude. A coherent state
may be generated by applying a unitary displacement
operator D (o) to the ground state 10) of a simple
harmonic oscillator, 1 e.

la) = D () 10), (17a)

w here

D (o) = exp (0a” — o*a) . (17b)
For a coherent state o), g,(t) =0, for all T 2 0 in
equation (11).

An i1deal laser operating in a pure coherent state
would possess quantum noise due to photon-number
fluctuations (shot-noise). The electric field operator as-
sociated with a mode of angular frequency ® at a given
position is

E(t)y = E;[ X, cos(wn)+ X, sin(w?)], (18)

where L, is a constant, and the quadrature field operators,

ll

X, =(a+a), (19a)

X,=i(@-a). (19b)

are analogous to the position and momentum operators
of a simple harmonic oscillator with [X,, X,] = 2i.
The tluctuations 1n X, X, obey the uncertainty rela-
tion

((AX,)) ((AX,)") 2 1. (20)

The equality sign holds for the minimum uncertainty
states (e.g. the coherent state), for which

((AX,))Y) =(AX,)) = 1. (21)

524

Squeezed states’ of the electromagnetic field are a
unique set of quantum states (which may or may not
be minimum uncertainty states) with less fluctuations
in one (ith) quadrature phase than a coherent state at
the expense of increased fluctuations in the other quad-
rature phase, i.e.

((AX)Y)Y<1, i=1or?2. (22)

The component X, = (¢ +a) will be squeezed if the
inequality  (22) holds with =1 ie. if
(A (@ +a)) < 1.

A single-mode squeezed coherent state Is; o) is
obtained by operating a unitary squeeze operator S (s5)
on the coherent state 1o ), i.e.

bs; ) =S la) =S0G) D) 10), (23a)

where

S(s) = exp (sa* = s*a’), (23b)
s being a complex parameter, and D (Q) is given by
equation (17b). The squeeze operator creates and destroys
photons In pairs. If the order of the two operators
S (s) and D (&) in equation (23a) is reversed, a coherent
squeezed state 1o; 5) is obtained.

A phase-sensitive nonlinear interaction in a medium
iIs required to generate squeezed states. A parametric
amplifier can produce squeezing in either one mode or
two modes of radiation. For a two-mode squeezed state,
the generalization of S(s) and D {) is straightforward

S(s) — exp(saja; —s*a, a,), (24)

D (0) — exp (&, aj+ 0, dy— 0 a,~ ) a,), (25)

where the subscripts 1, 2 refer to the two modes. Two-
mode squeezed states can be generated by applying
these two operators to the two-mode vacuum {0, 0).
The first experiment’ to successfully generate squeezed
states (two-mode) employed the process of degenerate
four-wave mixing. In this technique, the nonlinear
medium essentially takes some photons from two strong
pump waves and feeds them into two weaker conjugate
beams. When these two correlated signal beams are
combined by some optical means, viz, at a beam-splitter,
the resulting light exhibits the amplified and reduced
quadrature fluctuations. Slusher et al’ used an atomic
sodium beam pumped near the D, resonance in a cavity
to generate the squeezed light with noise reduced by
7-10% below the vacuum limit. Wu et al.* reported a
63% reduction in the noise by employing a parametric
amplitier with a hthium niobate (LiNbO,) crystal as the
%' nonlinear medium. In an optical cavity the three-wave
mixing process of parametric down-conversion was used
to generate pairs of subharmonic photons of half the
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pump frequency. The pump amplifies a coherent sub-
harmonic field when the two are 1n step, and it
deamplifies when they are 90° out of step. The associated
fluctuations at the subharmonic are amplified and
deamplified in the same way.

Recently, we have proposed a theoretical model for
a two-photon squeezed laser’, in which the ordinary
gain medium inside the laser cavity 1s replaced by a
suitable active nonlinear medium. An intense pump laser
beam causes two-photon excitations in the medium and
generates two radiation fields due to four-wave mixing
(FWM). The generated photons can get reabsorbed by
a two-photon absorption (TPA) process. A strong com-
petition among FWM, TPA and linear cavity losses
leads to lasing action above a certain threshold deter-
mined by the nonlinear mixing and the linear damping
constants. This is an example of a laser where amplifica-
tion is obtained without population inversion. The two
photons generated inside the cavity in this process are
strongly coupled, as they are either produced simul-
taneously in FWM or absorbed simultaneously in TPA
process, and the phase correlations between them leads
to a narrower than usual linewidth of the two-photon laser
far above threshold. The spectrum of fluctuations in the
intensity difference between the two output modes shows
evidence of strong squeezing, as the photon-number fluc-
tuations of the two modes try to balance each other.

Four-wave mixing systems offer wider applications
in noise reduction problems than their three-wave mixing
counterparts. In the case with no absorptions and detun-
ing, the quantum noise reduction below the vacuum
(complete darkness) noise level, or squeezingz, in the
intensity difference of the two output beams is the same
for the cases of intracavity three-wave and four-wave
mixing. However, in the case of FWM, because two
pump photons are absorbed to generate the output pair,
as opposed to one for the down-conversion, it is possible
to produce noise reduction in the intensity sum of the
two outputs, i.e. generate output beams with individually
reduced intensity fluctuations’.

The probability distribution p (nl o, s5) for a single-
mode squeezed state to contain n photons shows non-
classical oscillations with n (ref. 28). This 1s additional
to the expected even-odd modulation of probability
distribution for the squeeczed vacuum state (o = 0),
given by p(nlo = 0, s) = 0 for odd n, as the squeeze
operator [equation (23b)] creates and destroys photons
in pairs. The other nonclassical oscillations remain for
o # 0, and are interpreted in terms of interference In
the phase space of the harmonic oscillator which models
the single-mode optical field [equation (18)].

The nonclassical photon-number oscillations in a
single-mode squeezed state were detected in an experi-
ment using pulsed squeezed light”. A %' nonlinear
medium was pumped by a scries of nonoverlapping
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pulses, produced by frequency-doubling the light from
a mode-locked Q-switched laser. The output of the
nonlinear medium 1s a series of nonoverlapping wave
packets, each of which is excited into a single-mode
squeezed vacuum state. If the successive squeezed states
are identical, an ideal photodetector counting the number
of photons in successive pulses would build up the
photon-number probability distribution for a single-mode
squeezed state.

Nonlocality

As 1s well known, the wave-function description of
quantum mechanics does not provide the detailed space-
ttme behaviour of a system between the initial preparation
and the interaction with the measurement apparatus.
This aspect of the quantum measurement process was
first discussed by Einstein, Podolsky and Rosen
(E-P-R)" who concluded that quantum mechanics
fails to give an adequate description of physical reality
and that in quantum mechanics the motion of a particle
must be described in terms of probabilities only because
some ‘hidden parameters’ that determine the motion
have not yet been specified.

Quantum theory makes certain predictions that are
incompatible with any realistic, local theory. Realism
assumes existence of an objective reality independent
of whether someone observes it or not. Locality assumes
that forces or information can only travel between bodies
at speeds less than or equal to that of light. Using
essentially the same postulates as those of E—P—R,
Bell and several other workers formulated some ine-
qualities obeyed by every realistic, local theory and
violated by quantum mechanics. These provide a way
to test experimentally the predictions of the local deter-
ministic hidden variable theories against the predictions
of quantum mechanics’''. The possibility of violation of
Bell inequalities i1n correlated states produced by non-
linear processes, such as multimode parametric amplifiers
and four-wave mixing, have been studied”. The nonlocal
character of the generated quantum fields 1s considered
by superposing them with the help of a beam-splitter and
then performing a polarization correlation experiment,

Let a, and a, be two correlated modes coming out
of a nonlinear material. These are made to fall from
opposite sides on a beam-splitter. a, and a, aie the
mixed beams which arrive at the detectors placed at
points x, and x, with two polarizers set at varable
angles ©, and O, in front of them respectively. The
Bell inequality in this case has the following well-known
form'':

S=P(O,, 0,)-P(0, 0,)+P(0], 0,)+
P(O/, ©/)-P(O/, =)=P(~ 0,) 0. (20)
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Here P(O,. O,) is the joint probability density of
detecting two photons for polarizer settings of O, and
©. mcasured by the couincidence counter. P(O,, =)
stands for the probability when the second polarizer is
removed. Now the joint probability density of detection
of two photons 1s given as

P{(O,.0,)=K{dda,a,), (27)

where K is a constant characterizing the detectors. One
may write the fields at the detectors as

a,(x, 0,)=Xa4a+X,qa,, (28a)

a,(x,, 0,)=Ya+Y,a,, (28b)
w here

X, P2+1X1P=1Y, 17 +1Y,1% = 1. (28¢)

The probability density when the second polarizer is
removed is calculated using unitarity

P(O,~)=P(9,, ©,)+P(0O,, 0,+1/2). (29)

For comparison of the different probabilities, all of them
should be scaled by the joint probability density when
both polarizers are removed

P(-, =) = P(®,, -)+P(O +1/2, -) (30)

For a symmetric 50/50 beam-splitter and with the choice
of angles ©, = n/8, O = 3n/8, O, = /4, 0, = (,
the Bell inequality {equation (26)] is violated’® whenever

(n, (ny=1))+(n,(n,—1))

(n ny)

< 048, (31)

where n, = a[a, and n, = q, a, are the photon-number
operators for the two beams incident on the beam-splitter.
For optimum choice of angles, the right-hand-side of
equation (31) can be made equal to 0.5.

For the parametric down-conversion process, the
photon statistics is nearly Poissonian with mean {(n)

(”1(”1"’])>=<”:(”2_]))=(”>2= (32a)
(n,n,) ={n)+{n). (32Db)

Hence from equation (31) we get

__(nY

(Y4 (n ) < (.24, (33a)
or

(n) < 0.32. (33b)
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Violation of the Bell inequality in correlation meas-
urements of mixed signal and idler photons produced
in the process of parametric down-conversion has been
experimentally observed'®. Similar violation is predicted"®
[n theﬁoutput of the two-photon squeezed laser described
above’.

Summary

Two-photon processes are extremely interesting in quan-
tum optics, because of their potential in the generation
of nonclassical states of light, such as number states,
or squeezed states, or in violation of classical inequalities
1n interference experiments. These nonclassical properties
are rcadily revealed in the intensity correlation which
1s proportional to the probability of two photons being
detected at a time interval. These quantum effects have
been observed expertmentally in dissipative nonlinear
systems producing correlated two-photon states.
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Post-Gondwana tectonics of the Indian

Peninsula

K. R. Subrahmanya

Department of Manne Geology, Mangalore Untiversity, Mangalagangotn 574 199, India.

The concept of plate tectonics implies that the plate
boundaries are sites of tectonic activity and that regions
within the plate are stable. Exceptions to this rule are
known from the Indian Ocean where the oceanic crust
Is undergoing folding and fracturing. Examples of
Intraplate deformation within the continental crust are
rare. The uplift of landmass in the region of 13°N of
the Indian peninsula is one such unusual occurrence.

THE peninsular India, which is a Precambrian shield
area, 15 considered to be a stable landmass. Hence it
i1s generally believed that no major earth movements
are possible in this region. This view gains strength
from the fact that the Peninsula is an intraplate region
bound by passive margins on all sides except in the
north. Although this picture is generally true, there is
evidence to indicate that certain regions have been active
over a considerable period and have left their imprints
on the landforms"?. Most of the major geomorphic
features owe their genesis to the post-Gondwanaland
plate tectonic regime.

The following picture emerges when the history of
the Peninsula is traced over the past 150 Ma. It is then
that the East Coast emerged due to its separation from
Antarctica and Australia. The West Coast came into
being much later, due to separation of India from
Madagascar. This event can be placed at 93 Ma if the
columnar rhyodacitic volcanics of St. Mary istands oft
Karnataka coast™ represent the rift stage volcanism.

This was followed by the hotspot volcanism which
gave rise to Deccan Traps (67 Ma). Due to northerly
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Figure 1. Scparabon of Madagascar from Indha along an MOR closwe
to Madagasear (93 Ma). Titung of blocks and fonnation of scaps
along the Western macgin of India (Western Ghaes) and the eastetn
margin of Madagascar, Instiation of castesly dramage i India (indicated
by an arrow on the Deccan platcau), Outpouring of large quanuty of
basalue lava resultng m Deccan Traps (67 M) and a marginal plateau
in the Arablan Sca (67 Ma 10 &40 Ma)
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