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Mathematics and statistics of aging

In this article we review the various concepts of aging as they apply to ensembles or populations
of individuals. We observe that these notions are extremely useful in the study of biological units
and populations as well as mechanical, electronic and other types of components, systems com-
posed of such components and their populations. It is shown how various stochastic models may
be based on different qualitative aging concepts. Statistical aids for choosing between various
models are also introduced. A recent report on the aging of fruitflies is critically examined in the

light of these aging conceplts.

EVERY new-born grows old and eventually dies. This is
universally accepted as truth. So, perplexity sets in when
sometimes it is reported that ‘life expectancies may not
always decrease as organisms grow older’. It was re-
ported 1n Science' and quoted in the Times of India
dated 30 Oct. 1992 that the results of certain experi-
ments on fruitflies indicated that once a fly was past a
certain age, its Iife expectancy may increase with age. Is
this consistent with the universal truth stated in the first
line above? Such seeming anomalies may be reconciled
only through a detailed study of the phenomenon of ag-
ing.

Let us consider units which are new (just born or
manufactured), which carry out their appointed func-
tions for a time and then fail (or die) once for all. Thus,
we are for the present excluding units which may be
repaired and made functional again. Each such unit has
certain physical or biological properties and character-
istics. Besides, there is the totality of such units in a lot,
say those manufactured in a batch, those born to similar
parents in a given interval of time, etc. Such an ensem-
ble is called a population in statistical language. The
units in the populations, though subject to innate vari-
ability, exhibit certain regular statistical patterns. A
study of these patterns from a probabilistic point of view
provides useful insights about the population as a whole.
Many anomalies arise out of the confusion between the
properties of the individual unit and those of the whole
population, particularly when the population properties
are erroneously imputed to specific individuals in 1.

The areas of survival analysis and reliability theory in
statistics and probability deal with the life/death phe-
nomenon., These have developed in strength since the
sixties with some isolated distinguished work earlier
also®?, Our emphasis in this article will be on various
concepts of aging and their consequences, to indicate
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carefully to the user their respective spheres and limita-
tions and help him in resolving apparent inconsistencies.
This is done in terms of the failure rate and the mean
residual life functions of the random variable denoting
the lifetime of a unit. The implications of various shapes
of these functions for the populations of such units are
discussed. We provide a couple of simple statistical
procedures which help in the choice of a model accord-
ing to the evidence regarding the shape of the failure
rate. The last section considers critically several state-
ments appearing in the article regarding the fruitflies
experiment.

Modelling lifetime as a random variable

It is seen that the electric bulbs made by the same fac-
tory to the same specifications still have different life-
times. This unpredictability of the lifetime makes 1t a
random variable. Hence, its characteristics can only be
described probabilistically and statistically. Let a ran-
dom variable X denote the lifetime of a unit. Then it
may be conveniently, and without loss of practical utii-
ity, assumed to be positive-valued and continuous, i.e. x
will have a distribution function F (x), a survival func-
tion F(x)=1-F(x) and a probability density function
f(x) = dF{x)/dx. It should be noted that F(x) denotes the
probability that the uynit fails not later than time x, or
P[X < x]) = F(x); F(x)is the probability of the comple-
mentary event that it fails after time x, F(x) = P(X' > x),
and the probability that the unit fails in an interval (1),
f>} 1s given by

F)-Fa) = ()

Any of the above three functions carries all the probabil-
istic information regarding the random variable X. We
specify various models for it taking into account the
qualitative prior information which we possess. This is
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where usually probabilistic modelling begins; but in
modelling for lifetime distributions we start with certain
other functions related to the above three.

The new concept which is relevant to lifetime model-
ling is the concept of age. It is the time lapsed since
birth or since the unit was pressed into service without
failure or interruption. In lifetime experiments the unit is
monitored continuously since it is put Into operation and
hence one can talk of its age at any time until it fails.
The function rg(¢) = f(£)/ F (), called the failure (or haz-
ard) rate, is the rate at which the units fail in a very
short interval at time #, given that it has not failed be-
fore, 1.€.

f(1)

]
re(f) = lim — Pt < X S1+At|t < X) 20

Ar—0 Al

Different populations show different behaviours in their
failure rates. The difference between the probability
density function f{x) and the failure rate rg{x) 1s worth
remarking upon. The former gives the rate at which
electric bulbs are failing in the populations at age f,
whereas the latter gives the rate at which the electric
bulbs which have already attained age ¢ are failing im-
mediately at age r. Again, in the first case we consider
the entire population and consider among them those
failing at age ¢ and in the second case our population is
restricted only to those bulbs which have attained age ¢
and consider those which fail immediately thereafter. It
1s well to keep this difference in mind because a confu-
sion here could cause a misunderstanding later. It is,
therefore, clear that among the two rates the failure rate
reflects the effect of age on the failure patterns and the
probability density function merely summarizes the fail-
ure pattern of the entire population.

Another function relevant to the probability distribu-
tion of lifetime is the mean resldual life at age ¢
up(t) = E[X -t | X > r]. This is the expected further life
(average further life) of a unit which has already at-
tained age ¢. That is to say, u(s) + ¢ 1s the total expected
life of a unit which is known to have survived up to time
t. Obviously, ((0) is the expected life of a new, as yet
unused, unit. One can adduce reasons for the considera-
tion of u(t) as a characteristic of the aging patterns
similar to those given in the case of rg(¢). Either of the
functions introduced above, ri(1), U(t), s quite suffi-
cient to provide the entire probabilistic information re-
garding the lifetimes while keeping age in mind. Any of
the functions may be derived from any of the others®.
But they do bring out different aspects of the probabil-
Istic structure.

Aging of a population

A population 1s an ensemble of essentially like units,
cven il there are variations in thelr characteristics. It
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could consist of fruitflies, or electric bulbs or human
beings or motor cars, etc. If we say that X is the random
variable representing the lifetime of the units in this
population, then we also assert that F(x), the distribution
function of X, denotes the probability that a unit chosen
randomly from this population will fail before or at age
x. For a large population, it will approximately be equal
to the proportion of units failing before or up to age x
among the total number of units in the population. It is
hard to impute these properties to a specific single unit
in the population. A specified fruitfly will live its ran-
dom, that is to say, imitially unknown and unknowable
lifetime and then perish. The probabilities can be as-
cribed to a single unit only if it loses its specificity and
is regarded as an unmarked randomly chosen member of
the population.

Let us consider a large population of fruitfiies. For the
sake of convenience, let us regard each member of
the population as having been born at the same time.
Usually this can be accomplished in an actual population
by appropriately aligning the times of birth of the fruit-
flies.

As the time passes, the age of all the units increases
and one by one they die, the population is progressively
depleted and eventually exhausted. But, of course, In a
real population there are births as well which combined
with deaths will lead to extinction, equilibrium or ex-
plosion of the population. At this time we ignore births
altogether. Such an ensemble of fruitflies or other bio-
logical entities 1s called a cohort.

To understand the effect of aging, we consider the
deaths at any age ¢ as a proportion of the part of the
population still at risk, t.e. the residual cohort, in a unit
interval of time at age . This is approximately the prob-
ability of death in an interval of unit time, conditional
on survival to age ¢. If the fruitflies, at least after a cer-
tain age, become more and more pron¢ to death with
advancing age, then this conditional probability should
show an increase with increasing ¢. With biological
populations, particularly the human population, the
usual experience is that from birth to a certain young
age fy, the effect of age is beneficial, meaning that the
proportion of number of deaths to the population at risk
shows reduction. Then there comes a period over which
this proportion remains more or less constant. After a
second threshold ¢, is passed, the effect of age 1s posi-
tively adverse and the proportion of deaths among the
still-at-risk population increases till the population is
exhausted. This leads to what is called a *bathtub (BT)-
shaped’ failure rate ry (7}, as shown n Figure 1.

In the case of human population the first phase over
age (0, fy) corresponds to infunt mortality, wheremn
deaths are due to congenital defeets, postnatal comphi-
cations and, in general, due to the extra vulnerability ot
infants 1o a harsh environment, The deaths during the
interval {1y, £1) would cssentially be accidental deaths,
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Figure 2. Upside-down bathtub-shaped mean residual life function.

those caused by an external agency like road accidents,
accidental contraction of lethal viruses, predator attacks,
etc. The deaths which occur beyond ¢, are attributed to
what 1s termed, loosely speaking, as old age. The causes
would be general wear and tear of tissues, hardening and
narrowing of arteries, slow depositions of calcium and
other materials at vital spots, wasting of muscles, etc.
Automobile tyres or break linings wear out with use,
thus making them more vulnerable to breakdowns with
progressive age. In general, the deaths in this period are
attributable to certain processes having a cumulative
effect over time and which mature into conditions which
become more and more favourable to death.

Instead, if we consider the above experience of aging
in terms of the mean residual life function ug(¢), then the
graph will look like an ‘upside-down bathtub’ (UBT), as
shown in Figure 2. Here ¢ and (; correspond to the two
thresholds for moving from infancy to young and from
young/middie age to old age, respectively. A BT shape
for re(t) will generally lead to a UBT shape for the cor-
responding ue(f) but not necessarily vice versa. Also, the
thresholds ¢, ¢, for rp(f) and ¢5, ¢; for pg(s) will not nec-
essarily be identical. This is because in rg(f) only the
effect of age up to and including the time ¢ is shown up,
whereas Ug(f) incorporates the effect of aging at ages
beyond ¢ also. See ref. 5§ for details of such nonmono-
tonic aging patterns.

Moving away from human (or biological) populations
may result in radical changes in the effect of aging.
Consider electric bulbs. Those bulbs which do not have
manufacturing defects would fail only when accidental
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Figure 3. Constant failure rate and mean residual life function

external shocks (like a surge in the voltage, falling down
from the socket, breakage of the filament, etc.) prove
fatal. There 1s no discernible effect of age at all. Hence,
the failure rate as well as the mean residual function
are constant (and re(f) = Vug(r) =c) as exhibited in
Figure 3.

Besides electric bulbs, other units like electronic
components, etc., show the same constant pattern of
failure. This failure pattern, called constant failure rate,
is a characteristic property of the exponential distribu-
tion function:

F(y=1-e™ with F(f)=e™¥,

f()=re™, re(t) = A, and up(r) = 1/A  for t>0.

The constant failure rate property is also called the lack
of memory property or the no-aging property for obvi-
ous reasons. In a population it is manifested by ap-
proximately the same proportion of the population-at-
risk failing in any unit interval of time, irrespective'of
the age. In radioactivity, the same model is found appl-
icable under the nomenclature ‘constant half-life’ for

electron emissions?.

Models other than the exponential

In the last section we saw that the exponential distribu-
tion provides an adequate model for the distribution of
the lifetime of a no-aging unit. However, we know very
well that apart from electronics the no-aging phenome-
non is rare. When systems are composed of statistically
independent components, each having the exponential
distribution, except in case of a series system, the life-
time of the system does not retain the no-aging property.
Even in a simple system like the parallel system of two
components, where the system lifetime is the maximum
of the ywo component lifetimes, the distribution is not
exponential; it does not even possess a monotonic fail-
ure rate. For a large class of systems called coherent
systems the system lifetime possesses the IFRA
(increasing failure rate average) property, which says
that the failure rate rg(¢) is such that the average

CURRENT SCIENCE, VOL. 68, NO 8, 25 APRIL 1995



GENERAL ARTICLES

R0 11y a

{ [0
is an increasing function of ¢, though the failure rate
itse!f may not be monotonic.

Next let us consider a mixture of several exponential
populations. That is to say, our population is composed
of several subpopulations, each of which possesses the
no-aging property with different constant failure rates.
Then the overall population, surprisingly e¢nough, theo-
retically possesses a decreasing failure rate. In other
words, the proportion of deaths to the number of still-at-
risk per unit time interval will tend to show a decreasing
trend as age increases. This is what we call the benefi-
cial effect of age.

The third commonly occurring situation is the one in
which a unit upon failure is replaced by another statisti-
cally independent unit from the same population. Then
often the experimenter is interested in the total life of
two or more units. Again, it is easily seen that even 1if
each of the units has the same exponential life distribu-
tion, the total life length of two or more units exhibits an
IFR (increasing failure rate) distribution, meaning a
probability distribution which possesses an increasing
re(r) (as t increases). Thus, in practice we would find
that, if we look upon the ensemble of the sums of two
(or a larger fixed number) lifetimes as our population,
then the proportion of failures to the number of still-at-
risk for such entities shows an increasing trend.

In passing it should be noted that all IFR distributions
possess the IFRA property also and the only distribution
common to the DFR and the IFR (or the IFRA) class i1s
the exponential distribution, since the constant failure
rate is the only failure rate which is simultaneously non-
decreasing and nonincreasing. These ciasses (DFR, IFR,
etc.) are called monotone aging classes of distributions®.
A URBT failure rate distribution defined above cannot be
in the IFR or DFR class though it could be in the JFRA
class. Similarly, a BT failure rate distribution may be a
member of the DFRA class (to be defined in analogy
with the IFRA class)’.

Appropriate models belonging to these classes may be
chosen to match the specific conditions of the experi-
ment. The following families, besides the exponential
distribution, are quite popular as models:

(1) The Weibull family: The failure rate is specified by
re = A", >0, A, B>0.

It 1s seen that =1 leads to the constant failure rate
(exponential distribution), > 1 leads to distributions
with the IFR property and 8 < 1 to the DFR family.

(11) The gamma family: The probability density func-
tion is given by

f15-—]{,:——.'“:-:

f(r)z-ﬁ_b_;;?r:

t>0,0, 3>0.
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Here also S=1 leads to the exponential distribution.
The IFR and DFR case is obtained with > 1 and f < 1,
respectively.

(iii) The Pareto family: The failure rate is given by

t>0,>0.

re(?) = (e +;)73 ;

Here each member is DFR. This arises as a limit of
mixtures of increasing number of nonidentical exponen-
tial families.

(iv) The lognormal family: The probability density
function 18 given by

]
] (log t — u)*
f(t) — \/-_?«EGT EXP{ 0_2 r

>0, —co< [ <00, 0> 0.

The failure rate is known to be nonmonotonic, first in-
creasing and then decreasing. This distribution 1s actu-
ally such that the log of the random variable has the
normal distribution. The shapes of the failure rates of
the above families are indicated in Figure 4.

Choosing a model statistically

To choose the appropriate family, one may follow the
simple graphical procedure given below,

Let the lifetimes of n randomly chosen units from the
population be available. This number # should be rea-
sonably large (say 100 or more). Divide the positive axis
(0, o) into equal intervals (called unit intervals) (0, 1),
(1, 2), ..., etc. Let r, be the number of units still alive at
the beginning of the jth interval. Obviously, n =r,. Also,
let d, be the number of deaths in the ith interval. Calcu-
late d,/r, for each i until the deaths of all the units are
recorded. Plot these numbers o, /r, against i. [gnore the

N

re (1) A< At
i |
A —
Weibull Gamma
/3 [ o
1/t |
rpit)
|
L - e | S et e —
Pareto L ognormol

Figure 4. Fatlure rates of sclected Hte datnbutions
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Frgure 5. Graphs of the observed ratio ot doaths to the number of
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ratio in the last nonempty interval, which is bound to be
l. The locations of these points would mimic the theo-
retical failure rate to some extent. For example, the
points, as seen in the first graph of Figure 5, probably
indicate the constant failure rate or the exponential dis-
tribution, whereas those in the second graph seem to
indicate a decreasing failure rate starting at some finite
level. This procedure was adopted for the fruitfly cohort

by Carey ef al!

If n is a rather small number, say 10 or 20, then the
following alternative procedure may be used for recog-
nizing the shape of the failure rate, Let x;<x, - =X,
be the observed lifetimes in increasing order of magni-
tude. Calculate the normalized spacings

yi=Xxy,
)2 = 2(x2 — x1),

¥3 = 3(x3 —Xx3),

Yn= H(xn — Xp l):
and the sum
SHZI]"{“IZ'F“"I'X”.

Calculate further the ratio ¢, ,called the scaled total time
on test up to the ith failure,

[y = y1/S1,

2 = (y1+y2)s2,

fh=(y1+y2+ - +yn)s,=1.

It can also be seen that 0 < <---<¢,_1L51,=1. Plot
these values on the x axis against 0, 1/n, 2/n, ..., n—1/n
and n/n =1 on the y axis, respectively, to get the graph

(1,1/n), i=0,1,2, ... ,n which is called the graph of

the scaled total time on test.

The shape of the graph (¢, i/n) indicates many things
about the aging prevalent in the population from which
this random sample 1s obtained. If it lies very near the

diagonal joining (0, 0) with (1, 1) except for small ran-
then no aging

dom fluctuations on both sides,
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(exponential distribution) is indicated. If, on the other
hand, it lies entirely below (above) the diagonal then
adverse (beneficial) aging of some kind or the other is
indicated. A concave {convex) graph entirely above
(below) the diagonal, as seen in Figure 6, makes a
strong case for DFR (IFR) type. If the values

_ H:—f ]
o op(1-t) n

form a graph with a convex shape, even though the total
time on test is not convex, the decreasing residual life
expectancy 1s indicated without having strictly IFR
property.

A bathtub-shaped failure rate is indicated by a graph
in which points first fall below the diagonal and then
above it, as indicated in Figure 7.

Many more sophisticated methods like probability
paper graphing, goodness of fit tests, etc., are also
available for the choice of the family’ .

After the choice of the family of distributions is made,
one must estimate the values of the unknown parameters
in these distributions, viz. o, B, ¥, etc. Standard statisti-
cal procedures like maximum-likelihood estimation may
then be followed on the basis of random samples. We
shall not discuss these technical procedures here; many
standard books on statistical theory and methodology
relating to life distributions will provide the necessary

‘ 0
details.>

1 - %]
516 , ®
476 | .
3.6 x
/6 *
1.6 | * _J
|
0 ty t, ty ot te !

1/ n

/8
178

Figure 7. The scaled total time on test graph of a bathtub-shaped
failure rate
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All the models proposed in this section give positive
probability to all intervals on the entire positive part of
the real line, i.e. (0, ). This means that indefinitely
large values of age are not ruled out. This may look like
a handicap of these models. However, it 1s extremely
difficult for biologists or engineers to put an absolute
limit on the age of the units that they deal with. In prac-
tice, they would only assert that very large ages are ex-
tremely unlikely. In any of the above models, this
feature can be built by requiring it to give a very low
probability (say, less than 107'* or even 107 for the
occurrence of ages larger than a specified large value,
without ruling out absolutely the possibility of even
larger ages. The low order of the probabilities quoted
above will mean that, in practice, one may not at all ob-
serve any age above the limit. The possibility of infi-
nitely large age 1s present only in infinite populations,
which do not exist in reality. Naturally, among the
models suggested above, the DFR models will be lTong-
tailed compared to the IFR models.

The chosen model may then be used to estimate and
predict the various constants and variables associated
with the population.

The fruitfly experiment and report

One of the aims of this article has been to comment on
the several statements appearing in the news report car-
ried by the Times of India dated 30 Oct. 1992 which
seem to have emerged out of some misunderstanding of
fundamental notions regarding aging as well as of the
original article of Carey et al.'. We quote from the re-
port below:;

(1) ‘The new findings, however, indicate that some
Methuselahs among fruitflies at least, can live at least
twice as long as 1s normal for their species.’

The model well-accepted for the no-aging electronic
or electric components, i.e. the exponential models, lays
down the following approximate frequencies of failures:

Failures before half the average (normal) life 40%
Failures between half and average (normal) life  25%
Fallures between average and twice average life 15%
Failures after twice average life 20%

So in this model late deaths (or for that matter early
deaths) are not at all rare. In DFR distribution, which
will be comparatively long-tailed, the frequency of late
failures will be even more. So it should not cause any
surprise that some Methuselahs live to at least twice the
normal age. In human beings (for India) the average life
at birth is 57 years or so. Living to 114 years, though
extremely rare, 1s not unheard of. This aspect has bceen
noted by Curtsinger et al.®
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Figure 8. Monotonic decreasing faijure rate

(i1) ‘With just a few individuals once a fly was past a
certain age, its life expectancy increases’.

We would expect this phenomenon to hold right from
the birth of the fruitfly, not only after a certain age was
past. In birds, animals in the wild and such species who
do not have medical help available, the common experi-
ence is as given In the graph of the failure rate (Figure
8). What happens i1s that in the infant stage there is very
high mortality because of congenital defects and also the
inability of the very young to take care of themselves.
After a certain age, when the young become fully mobile
and are able to gather their food effectively, they die of
accidents — a broken leg leading to starvation, falling
prey to a predator, etc., so much so that in the wild it is
extremely rare that an animal will die of old age causes
as most adult humans do. Hence, the failure rate never
goes beyond the middle constant part, thus giving an
overall experience of decreasing failure rate. And, of
course, increase in the mean residual life function is
inherent in decreasing failure rate.

Another possible explanation for the observed in-
crease in mean residual life could be that the population
of fruitflies is composed of several subpopulations with
different failure rates. The totality, which is a mixture of
the various subpopulations, would show a decreasing
failure rate and thus an increasing mean residual life.
This observation may be intuitively justified in the fol-
lowing way. If a population consists of several subpopu-
lations with different failure rates then in the initial
stages there will be comparatively more failures in the
subpopulations with higher failure rates, leaving the
subpopulations with lower failure rates unscathed. Thus,
the population as a whole keeps 1mproving in the sense
that the remainder of the population at any stage is
stronger than the entire population at the beginning.

In the actual data provided by Carey et al.’, it is seen
that the estimated failure rate steadily increases until the
29th day of the life of the fruitflies. By this time about
80% of the cohort 1s dead. For the next 40 days the fail-
ure rate remains more or less constant. At this stage
more than 99.9% of the cohort i1s dcad. The values in
these two stages are for highly selective groups of indi-
viduals and may be said to belong to ideatifiable sub-
populations obeying different laws.
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(ti1) “The traditional model of aging is the time

bomb model When you attain a certain age, you self-

destruct

This seems to be a highly unreahstic model. The

deaths duc to old age (leaving out infant mortality and
accidental deaths in young to middle ages) are due to the
cumulative cftects of certain processes, €.g. arterioscle-

rosts, calcitication, degeneration of tissues, growth of

cells, ete, The total threshold levels of these disorders
difter from individual to individual. Also, the rates at
which the accumulation takes place differ according to
the individual, according to environmental factors as
well as according to the interventions carried out. So it
does not sound at all likely that everyone carries one’s
own time bomb which explodes at an unknown but pre-
set time. In fact, as our discussion in the preceding sec-

tion shows, it is fruitless to talk of the time of death of

an individual prior to the event and try to devise a model
and set rules for it. One can only view an individual as a
member of a large ensemble and have laws of statistical
nature for the ensemble as a whole. This aspect has been
recognized by Curtsinger ef al.® when they quote that the
maximum human life time may be described by a normal
distribution with 2 mean of 85 years and a standard de-
viation of 7 years.

{tv) *He said that the new findings supported the
“spaceship model” that there 1s no fixed age at which
everybody must be dead.’

Given a large population of like individuals, it is cer-
tainly possibie to find appropriate models for the distri-
bution of the lifetimes in the population. The model
could then provide a number T beyond which age life is
extremely tmprobable: to any degree. It will not be pos-
sible to guess accurately the life of any single individual

e iy ik, - - il

at birth itself even if we have Information on a large
number of covariates.

Concluding remarks

Survival analysis and reliability are flourishing areas of
statistics. They deal with statistical laws and procedures
for deaths and lifetimes. An 1interplay between the
mathematical models developed here and those devel-
oped by biologists and engineers should lead to many
more insights into the phenomena of life and death.
However, accurate guessing of individual Ilifetimes
would remain a mirage, outside scientific enquiry.
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