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Does a hole squeal:
information loss™

N. Panchapakesan

Introduction

The *Vaidya-Raychaudhuri Endowment Award Lecture’
for 1994 has the added significance that it is also the
50th year of discovery (invention) of the Vaidya metric.
This 1s the third Vaidya-Raychaudhuri Endowment
Award (VREA) lecture. The second VREA lecturer
complained of a feeling of inadequacy and noted the
difficulty in saying something befitting the stature of
these two doyens of relativity: Prof. P. C. Vaidya and
Prof. A. K. Raychaudhuri. The person who expressed
these feelings was none other than Prof. Jayant Narlikar.
If he had such feelings, you can imagine mine. Profs.
Vaidya, Raychaudhuri, Mukunda and Narlikar are enough
to overawe many of us. As if they are not enough, I
find Sir Fred Hoyle in the chair today! My only con-
solation is that I may be simplifying the task of the
next VREA lecturer by reducing the level of expectations.
Prof. Dirac once said that the advent of quantum
mechanics enabled even mediocre persons to do great
work in the 1930s. Taking a cue from that, I thought
I would talk about ‘Black hole evaporation and unitarity
violation’ and hope that the excitement of the subject
may cover other inadequacies. Recent developments in
this area, though largely unsuccessful, have served not
only to raise important and exciting issues but seem
also to have broken down the ‘Berlin Wall’ and ended
the cold war between particle physicists and general
relativists. I have found this problem a fascinating one
and also one which seems to have a deep relationship
with the foundations of quantum theory.

The black hole solution

A year after Einstein gave the final version of general
relativity, Schwarzschild' in 1916 gave a solution of
Einstein’s field equations (now known more generally
as the black hole solution) which has still not been
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Quantum black holes and

understood fully. The usefulness and importance of the
Schwarzschild solution is unquestioned. One is still left
marvelling at its various features and the surprises it
can provide. One of the first surprises was its incom-
patibility with Mach’s principle, which Einstein thought
he had incorporated in his theory. In the second VREA
lecture Prof. Narlikar discussed the attempts by him
and Prof. Hoyle to incorporate Mach’s principle into
the theory of gravitation. Even today the Schwarzschild
solution continues to be a rich source of study as one
tries to reconcile general relativity and quantum
theory.

The Schwarzschild solution can be written as the
metric (we use units with G = ¢ = 1)

ds? = —(1=2M/r) dt>+ (1 = 2M/ry" dr?
+dr®(d6* +sin® 6 do?).

Its use in working out the classical tests like bending
of light and precession of the perihelion of Mercury
are well known to many. The singularity at r = 2M of
the above metric attracted attention right from the begin-
ning. It is well known that it is not a physical singularity,
as physical quantities of interest are well behaved at
r = 2M, and so it must be a coordinate singularity and
a change to other suitable coordinates does remove the
singularity. However, to a distant or asymptotic observer,
the surface r = 2M 1is still a one-way membrane and
nothing can escape to the outside world from inside
this surface, usually called the event horizon and more
popularly as the black hole.

Almost 45 years later in 1960, Kruskal® gave the
coordinate system which provided the natural extension
of the Schwarzschild metric and opened the way to
many other worlds that the metric contains (see Figure

1). We use
U = —4M exp [(+7F - 1)/4M)]
and

V = 4M exp [(r* + 1)/4M]
with
[ art = [ drr1 =2mr0),
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Figure 1. The Kruskal extension of Schwarzschild space-time.

which gives r* = r+2M In (r—2M). In the coordinates
T=U+V and R = V-U, the Kruskal space time is
shown in Figure 1. In addition to the familiar region
r > 2M, where the orbits for the classical tests were
studied and which is now called Region I, we have
three more regions. While one can go from Region I
to Region II, one cannot travel in the opposite direction,
thus making the r = 2M surface a one-way membrane.
Signals emitted by an observer crossing the horizon are
slowed down and a star collapsing to form a black hole
seems to take an infinite amount of time to go through
the horizon. This created doubts about the very formation
of a black hole. One can, however, operationally define,
for a given small amount of energy that can be detected,
a finite time beyond which no signal is received. There
are other unfamiliar or bizarre aspects. There is a
time-reversed region (Region IV) and there is a throat
or bridge which connects Regions I and IV for a short
time’., By using suitable coordinate transformations,
Penrose was able to show the infinite regions in a
compact way. The Penrose diagram for the Schwarzschild
case is shown in Figure 2 (ref. 3).

Twenty years ago, in 1974 came the biggest surprise.
Hawking* showed that black hole is not really black.
It emits thermal radiation, now called Hawking radiation.
This was the culmination of several related developments,
now known collectively as black hole thermodynamics.
These developments pointed to a close connection
between the area of the event horizon and its entropy,

which in turn gives a certain temperature to the black
hole.

After a few years of intensive study, general relativists
seem to have accepted the correctness of Hawking’s
arguments  There s, however, no hope of an observa-
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Figure 2. Penrose diagram.

tional verification in the near future, which makes the
subject closer to ‘mathematics’ than to ‘physics’.
Hawking’s derivation is based on semiclassical quantum
field theory, which treats gravity as a classical field

while treating the other fields using quantum
mechanics.

Vaidya (metric) and Raychaudhuri (equation) to
the rescue

It may be appropriate to digress a little bit and describe
the way Vaidya metric® and the Raychaudhuri equation®
were used to settle one of the controversial points about
Hawking radiation in 1980-81. In 1980, Tipler’ ques-
tioned the ‘static’ approximation under which Hawking
had derived the presence of radiation. Tipler argued
that due to back reaction the collapse of the radiating
black hole takes place either in a very short time (of
the order of 1 s for a black hole of one solar mass) or
does not take place at all! He concluded that Hawking
radiation was not a realistic phenomenon. For his
arguments, he used for the time dependence of the
horizon an equation obtained from the Raychaudhuri
equation which can be reduced, when shear and vorticity
are absent, to the form

d’r/dP = 2k dr/de—4n (T, )1"r,

where £ = 1/8M and {? 1s the tangent vector to a null
geodesic generator of the horizon. Using the fact that
initially the horizon is static, he took d°r/d# =0
(incorrectly as it turned out), tmplying dr/dt = const,
so that

2L dr/dt = 4n (T, ) 1"r.

For a Hawking black hole, T at the horizon ts known
to be nepgative. At the horizon theie 18 an ingotng Tl
of negative encrgy which balances the outgoing Hawking
radiation at large distances, Tipler then argued that
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very soon d°r/df becomes positive as r decreases, as
E=1/rand {(T,) = 1/r% and the horizon would start
expanding again unless the singularity 1s reached before
that. This gave a lifetime of the order of a second and
made the static approximation questionable. Tipler con-
cluded that a black hole does not evaporate.

Hajicek and Israel® and Bardeen’ obtained the equation
for r as a function of time directly from WVaidya’'s
radiating metric’

—[1=2m(r)/r)dt?+2 dodr+r? dr,

and showed that d*r/d:? never becomes zero but stays
negative all the time. This showed that taking
d*r/dt* = 0 in Raychaudhuri’s equation was not justified.
Thus, the wrong use of Raychaudhuri’s equation was
discovered by the correct use of Vaidya's equation! It
is not only at the JAGRG meetings that these two
doyens cooperate to help in the amicable settlement of
disputes! There is also an unusual derivation of Hawking
radiation using the quasinormal modes of the Vaidya
metric by York'®. But I shall not discuss it here.

Information loss problem

Hawking was among the first to realize that black-hole
evaporation poses a serious problem 1n preserving
unitarity in time evolution of a quantum-mechanical
state. It had been known earlier that information that
went into a black hole was lost, but the presence of
an event horizon made this unobjectionable. Black-hole
evaporation (without any remnant singularity) would
remove the event horizon, but does it also give back
the information that went into the black hole? A purely
thermal Hawking radiation cannot carry and give back
any information and so in the process of black-hole
evaporation we expect to lose information. In quantums-
mechanical language, a pure state goes into a mixed
state and there is violation of unitarity (Figure 3).
One might think that in a macroscopic phenomenon
like black-hole evaporation, it is difficult to keep track
of all the degrees of freedom involved. But we know
that in the absence of the effects of gravitation this
can, in principle, be done, like when a large block of
ice melts or a bomb explodes. According to the standard
rules of quantum field theory, in a fixed Minkowski
space—time the time evolution of any system from a
given initial state 1s described unambiguously by a
unitary transformation acting on the state. This implies
that there is no loss of fundamental, fine-grained infor-
mation, Hawking argued that this is no longer true in
the presence of a black hole. The main problem 1is to
know what happens to the black hole when all its mass
1s radiated away, and what happens to all the information
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Figure 3. Pure state going into a mixed state

that has gone into the black hole through the one-way
membrane but has not been able to come out.

Normally, one equates unitarity with conservation of
probability. Hawking'' proposed a change in the basic
structure of time evolution in quantum mechanics, con-
serving probability but allowing for unitarity violation.
He proposed replacing the usual time evolution operator
U = exp (—iHf) by another operator § acting linearly
on matrices, and taking p the density matrix to $p.
Here $ is called the superscattering operator. It can
conserve probability but generically violates unitarity.

However, Banks et al.'’ showed that violation of
unitarity necessarily implies violation of conservation of
energy. Information transfer seems to require some en-
ergy transfer along with it. So Hawking’s way of dealing
with the problem by introducing a superscattering
operator does not seem to be correct.

In general, one has the following possibilities, when
one wonders about the information that went into the
black hole: information is (1) lost, (2) reemitted and/or
(3) retained in some remnant of the black hole. In the
first case, loss could also mean going to another universe
through a wormhole. In the case of reemission, it could
take place either before or after the matter crosses the
horizon. The former, called ‘bleaching’, is generally
considered not possible in view of the fact that nothing
out of the ordinary i1s expected to happen to matter
freely falling into black hole at the horizon (as all
physical quantities are finite there). To get information
after the matter has crossed the horizon would 1mply
noncausal behaviour as the time inside the horizon is
infinite in the distant observer’s frame and information
will have to travel back in time. If a remnant of the
hole carries all the information and radiates it out, 1
must be a long-living one as a lot of information has
to be sent out by an object of small mass (of the order
of Planck mass). So, at first sight, the second and third
alternatives do not seem very feasible. A discussion of
the whole problem requires a knowledge of the back
reaction on the metric due to emission of Hawking
radiation. One has not been able to work this out yet.
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Toy models (two-dimensional)

Recently, there was a lot of excitement when hopes
were ratsed that a toy model based on string theory in
two dimensions can be solved exactly, even including
quantum effects. This claim has not been sustained, but
in the resulting activity one has still learnt a lot. It all
began in 1991 with the discovery of a black hole in
two-dimensional string model by Mandal et al.’” and
independently by Witten™. The string black hole is quite
similar to the Schwarzschild one. The metric is

ds* = dr2—tanh® r dr .

[t appears to have a singularity at r = 0, but the scalar
curvature R has no singularity there as R = 4/cosh’ r.

So, one makes a Kruskal-like transformation to
2u = exp(r =) and 2v = exp(r +1), where ¥ is the
tortoise-like coordinate ¥ = r+In[l1-exp(—2r)] and
drf = cothr dr (' = —eo when r = Q), to get

ds* = —du dv/(1 - uv).
While the horizon is at wo = 0 (r =0, ¥ = —o0),

uv = 1 is a real singularity as cosh®r = Q there. If we
take

Ii

—--15_ In {1 —uv) = In(cosh’r)

¢

In(1+exp(2r)/4],

we have ds* = —exp(2¢) du dv. The Kruskal diagram
for this case is shown in Figure 4,

Callan et al.” have proposed a model similar to this
and claimed that it was solvable, which was what led
to some excitement. In their model,

ds’* = ~dotdo /(1 + Mexp(c~—-0"))

]
-

T r

[v I

Uy = 1

Vi

Figure 4. Penrose dragram for & two-dunensional black hole,

CURRENT SCIENCE, VOL., 68, NO 9, 10 MAY 1995

Jr— .

GENERAL ARTICLES

= (do®—dr®)/[1 + M exp (—20)],
with ¢* = 1+0.
Writing
¢ = —5 In [M+exp 20)),
we get
ds? = exp (20 + 20) (do? - dt2).

The presence of field ¢ makes this a metric of dilaton
gravity. The action is given by

i .
$ == J o VTe) fexp(-20) (R+4 (Voy +412)

-2 Y (Vf)Y1

The last term 1s due to the N matter fields that are
present. The summation 1s over the N fields f,...,
fy- For M =0, § = -0 and we have a flat metric and
the space 1s called linear dilaton. For M > 0, the solution
13 a black hole given by the Penrose diagram (Figure
5). The horizon is at ¢"'—0~ = 26 — —o (0 cor-
responds to 7 here) and we have a black hole with
singularities of the type that a stnng black hole had.
At the horizon, exp(2¢), = 1/M. For M < 0, it is a
naked singularity,

If we have infalling matter f = F(c™) falling into
the linear dilaton vacuum, it forms a black hole as
shown in Figure S.

The solutions before and after the infall are given by

ds* = —do*tdo,
ds* = —do*do/[1+Mexp (6™ -0 - Aexp (67)],
exp (- 20)= M+exp (G*) [-exp (5™) - Al,

hor

¢ = —0 (linear dilaton),

Singularity

Figure 5. The Penrose duigram for a collapasing blak hole formed
from a lelt-moving matter dninbution
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Tt = ‘%‘ (a+ F)z

M = JdG‘*TH, A= Jdﬁ"'exp (-o")T,, .

Using & =~Infexp(-07)=4), &=0¢"; d¢=
—dEtdE /{1 +Mexp(E-&M)).

Hawking radiation is described by exp (—iw§™) as posi-
tive frequency. This is a combination of exp (—iwG™)
and exp{iwo™). That 1s a mixture of positive and
negative frequencies of an asymptotic observer, which
leads to emission with Hawking temperature in the usual
way.

Back reaction

The back reaction problem seemed solvable under the
assumption that dilaton and metric fluctuations are neg-
ligible compared to the fluctuations of the matter fields
f . Quantization 1s considered via the functional integral

| DgD¢ exp S, lg. 01 | Df exp (- i/4m)

x[do\N=g T (VF)-

By using methods of string theory like Polyokov—
Liouville action, trace anomaly, we can show

N 1 ]
THnw am 1 _ — Maner
(T2%) 48[ [’1+f_‘u;=:;r.p(§')]2 (T2,
thus providing consistent energy-momentum balance

between infalling matter and the emitted Hawking
radiation.

Disaster

Calculation of collapse along these lines'®, unfortunately,
develops a singularity (kinetic operator degenerates) at
¢, where exp(2¢_) = 12/N. This singularity is hidden
behind an apparent  horizon, defined by
[Vexp(-$)JF = 0. Here exp(—¢) is like a radius. So,
the two-dimensional model seems as unsolvable as the
four-dimensional one. This singularity 1s present even
for the linear dilaton. So, this model is also not solvable
and we are not much wiser about the problem of
unitarity violation (Figure 6).

Giddings'’ still argues that no information comes out
in order-by-order calculation in 1/N approximation. He
uses the fact that Hawking radiation emerges at weak
coupling before ¢ becomes critical. In this theory
exp(2¢) corresponds to the gravitational coupling.

Black hole complementarity

Susskind et al'® have come up with an attractive idea
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Figure 6. Singularity hne at ¢ = ¢_.

to analyse the black hole formation and evaporation
based on the two-dimensional model. This approach is
based on the idea that one should not attempt to describe
in the same framework the situation as seen by a freely
falling observer and an asymptotic stationary observer.
These views are complementary. In this approach, unitary
evolution is demanded by assumption and formulated
as a postulate. When this idea is pushed to its logical
limit, we find that it leads to prediction of some form
of ‘bleaching’ or information reemission. This approach
seems easier to formulate in terms of the ‘membrane’
idea pioneered by Thorne et al.” in the astrophysical
context. The event horizon is very important for the
distant or asymptotic observer. Nothing can come outside
of it. It is normally claimed that there cannot be any
drastic change at the horizon as all the known physical
quantities of interest, like curvature, are finite there.
Though this may be true for the infalling observer
(locally), for the asymptotic observer the event horizon,
or more exactly, the membrane which 1s very close to
the event horizon, may play an important physical role.
The idea is expressed in the form of three postulates'®.

Postulate 1. The formation and evaporation of black
holes as viewed by the distant observer can be described
within the context of standard quantum theory. There
exists a unitary S-matrix which describes the evolution
from infalling matter to outgoing Hawking-like radiation.

Postulate 2. Qutside the stretched horizon of a black
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hole, physics can be described to a good approximation
by a set of semiclassical field equations.

Postulate 3. To a distant observer the black hole appears
to be a quantum system with discrete energy levels.
The dimension of the subspace of states describing a
black hole of mass M is the exponential of the entropy

S(M).

Specifically, it is assumed that the origin of thermo-
Qynamic behaviour of black hole is the coarse graining
of a large, complex, ergodic but conventionally quantum
system. It is also accepted that a freely falling observer
experiences nothing out of the ordinary when crossing
the horizon as required by equivalence principle. It
might seem contradictory to postulate one in the fol-
lowing way.

If space—time is foliated with a family of Cauchy
surfaces £ as shown 1in Figure 7, which shows the
Penrose diagram for the evaporating black hole, the
S-matrix relates the surface below and above the point
P (where global event horizon intersects the curvature
singularity), The Hilbert space of states can be written
as a tensor product of black hole and outside Hilbert
spaces. If there 1s a unitary operator which relates the
outside state before the formation of black hole to the
ouiside state after the evaporation of black hole, this
would imply that there is no net information transfer
to the black hole. So, any information received must
have been sent back from the horizon or some membrane
outside it.

Thus, all distinctions between initial states of infalling

figure 7. Penrose dugram for black-hole evolution
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matter must be obliterated before the state crosses the
global horizon. But this is an unreasonable violation of
the equivalence principle that nothing out of the ordinary
happens at the event horizon. According to these
authors'®, this conclusion is not correct, as a state
describing interior and exterior together is unphysical
because this implies correlations which have no opera-
tional meaning as no information can come out from
inside. Only a superobserver outside our universe (GOD!)
can make use of the product Hilbert space. So, it is
claimed that the assumptions that (i) distant observer
sees all infalling information returned in Hawking-like
radiation and (ii) infalling observer sees nothing unusual
at event horizon are not contradictory. If one demands
a standard quantum theory valid for both observers, it
IS Inconsistent with the postulates. One can call this a
sophisticated ‘bleaching’ scenario, which many of us
may find attractive.

In discussing this idea in the context of two-dimen-
sional models, Susskind ez al.'"® avoid the problem of
singularity at ¢_ by imposing suitable boundary condi-
tions, which is somewhat unsatisfactory. They feel that
discussion in terms of the membrane or stretched horizon
is more physical and satisfactory though the treatment
is still qualitative.

Stretched horizon and two kinds of entropy

\

Classically, quasistationary black holes can be described
by outside observers in terms of a ‘stretched horizon’!
which behaves like a physical membrane with certain
mechanical, electrical and thermal properties. The
description is coarse-grained 1n character. It has time-
irreversibility and dissipation properties of a system
described by ordinary thermodynamics. The membrane
is very real to the outside observer. If he or she is
suspended just above the stretched horizon, an intense
flux of energetic radiation will be observed, apparently
emanating from the membrane. He or she will also see
other electrical, mechanical and thermal properties. If,
however, the observer lets go the suspension and falls
freely, the membrane will disappear and they cannot
even report this fact to the outside world. In this sense,
there 1s a complementarity between observations made
by infalling observers and distant observers.

To mmplement the postulates, it is assumed that the
coarse-grained thermodynamic  description  of the
membrane has an underlying microphysical basis. The
microphysical degrees of freedom appear in the quantum
Hamiltonian used to describe the observable world. They
must be of sulficient complexity to behave ergodically
and lead to a coarse-gramed descripuion.

Lagrangian mechanics and thermods nanues uare quite
different descriptions of a system, In Lagrangian mecha-
nics, the motion of any system is reveewble and the
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concept of heat and entropy has no place. Thermo-
dynamics 1s the theory of irreversible dissipation of
organized energy into heat. The thermodynamic descrip-
tion anses from the coarse graining of the mechanical
description. In thermodynamics, configurations that are
macroscopically similar are considered identical.

To discuss black hole formation and evaporation, it
is useful to distinguish the two kinds of entropy that
normally arise: entropy of entanglement and entropy of
ignorance (or thermal entropy). The former is of quantum
origin. Consider a quantum system composed of two
parts or subsystems A and B. In our discussions these
two subsystems will refer to the stretched horizon and
the radiation field outside the stretched horizon.

Let the total Hilbert space be a product of the two
sub Hilbert spaces. H = H,xH,. If {la)}, {i1b)} are
orthonormal bases tor H, and H,, respectively, a
general ketly) in H may be written as ly) =
Ty(a, b)la)yxlb).

The density matrix of a subsystem A In the basis

{la)} is
p.(aa’)y= ), v(ab) yv*(d,b)
b

and that of B 1s

Py (b, b)) = 2, w(ab) y*(ab).

Note that the composite system A W B is in a pure state.
The entropies of entanglement of subsystems A and B
are defined by

S Ay=-Tr[p, Inp,] and S (B)=—-Tr[p, Inp/].

S. (A) = §5; (B) if composite system 1is in a pure state
as A and B together are In our case. 5. = 0 only if
the ket | y ) 1s an uncorrelated product state. The entropy
of entanglement S is not subject to the second law of
thermodynamics. It can increase or decrease with time.
If H, is of dimension D, and H, of dimension D, then

Se(B) .. =~In(D,) = §.(A) ., where D, < D,

Entropy of ignorance or thermal entropy arises as we
have to assign a density matrix to a system not because
it is quantum-entangled with a second system but because
we are ignorant about its state. We assign a probability
to each state. If we know nothing, we take p proportional
to 1. If we know only its energy, we take p # O only
in allowed energy space. Thermal entropy arises because
of the practical inability to follow the fine-grained details
of a system. For a system in thermal equilibrium with
A TCServolr

PMax-Bolzmen — Pmp = /A exp (- )

882

and

ST = = Tl”[ Pma ]n(pma)]-

Formation and evaporation of black hole

Now let us consider the formation and evaporation of
a two-dimensional black hole. The evolution of entropy
with time is shown in Figure 8. Initially, the stretched
horizon 1s tn the ground state with minimum area and
radiation 1s in a pure state, so S, = 0. When the area
of horizon increases because of infalling matter, Hawking
radiation in the forrn of f-quanta are emitted. The states
of f-quanta are correlated to the state of the horizon
and so S; increases. But S (H) < §(H;) = A(1)." So,
Se 1s bounded and must return to zero as the hornzon
goes to the vacuum value. Page™ has shown that S,
follows S, in the beginning. He also showed that the
dependence on the parameter m, /M is nonanalytic so
that Giddings conclusion, mentioned earlier, that in
weak-coupling approximation no information comes out,
may not be vahd.

The final outgoing radiation is different from thermal.
To see this, notice that halfway through the evaporation
process S, = S, and fine-grain total entropy 1s zero.
But radiation is correlated to the degrees of freedom
of the horizon (H;). As more time passes, the horizon
emits more quanta and the earlier correlation between
horizon and radiation is replaced by a correlation between
the earlier and the newly emitted later quanta. Because
of the transfer of these correlations to the radiation
itself, the S; goes to zero and the horizon 1s no longer
correlated to the radiation. Local properties will be
thermal but there are correlations spread over entire
time occupied by the outgoing flux energy. In this way
information is sent back to the outside system and no
loss of unitarity is there.

> Sy (Hs) Sy(Rad)

(.-"'"'h.\ -
' o ,’ff
| Mo //

! ¥
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Figure 8. Entangliement entropy of radiation and stretched honzon.
The dashed curves wndicate the thermal entropies.
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General remarks

A strange ambiguity seems to prevail when one discusses
the event horizon of a black hole. On the one hand, it
1s a monster gobbling up things which will never return.
On the other, it is a harmless region, as curvature and
other physical variables are finite there for the freely
falling observer. Is the event horizon eventful or a
neutral spectator? The contradiction arises due to the
need for reconciling two opposite points of view: that
of the freely falling observer and the asymptotic observer.
The suggestion that they are complementary and we
cannoi listen to both, thus, seems an attractive idea.
When all the dust has settled down, what has been
chalked up on the board? We are no wiser as even the
two-dimensional models have turned out to be not
solvable in closed form. Some new ideas and a lot of
new techniques have come up in the process. The
black-hole complementarity seems a very attractive idea.
However, the theorists working in this area (both particle
physicists and general relativists) have to get a lot more
confidence in their mathematical techniques before a
consensus emerges. Can an observable prediction
emerge? One can always hope. Maybe in the area of
cosmology, where too we have an event horizon, a
prediction may emerge!
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New routes for the synthesis of organo-

In recent years, organometallic reagents have been utilized in numerous functional group
transformations and C-C bond-forming reactions in organic synthesis. However, several of these
synthetic methods require reagents which are not readily accessible to practising organic
chemists. We have undertaken research efforts to synthesize some of these useful reagents in
situ from readily available starting materials for applications in organic synthesis. For example,
hydroboration of olefins can be readily achieved by the CH,COOH/NaBH, or (CH,COO),Hg /NabH
combinations'™. These reagent combinations work as good as or better than the exotic reagent
systems previously employed in certain selective lzydroborarfons?”4

IT has been known for some time that the reaction of  method has not been widely utilized for the generation

I, with NaBH, 1n diglyme gives B,H, gas which 1s also
relatively pure compared to the reagent generated using
F.B:OEt, in place of I, (ref. 5). It appears that this
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of B,H_ because these authors utilized vacuum line
techniques for the isolation of the reagent in a seties
of liquid N, traps’ ®. We have found that B,H_ can be
rcadily generated fiom the 1,-NaBIl, combination using
the apparatus recommended for the BEJ/NaBH, reagent
system®™’, Several amine-BlI, complexes, including chial
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