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General requirements in modelling spatio-temporal
associative memory and learning complex sequences
are discussed in the context of human memory. A
formal definition of the problem of spatio-temporal
association employing neural networks is given. A
survey of the known models is presented and the models
are examined for their closeness to human memory in
their ability to learn and recall spatio-temporal pat-
terns. Based on the nature of their recall dynamics,
the models are classified as synchronous or asynchro-
nous. In both cases models involving plastic synapses
as well as those involving transmission delays are
discussed. Sentences in natural Janguages are viewed
as special cases of complex sequences, and learning of
rules and constraints of a language is commented upon.
A discussion on possible directions for future work
concludes the paper.

MODELLING associative memory by means of an assembly
ol Interacting neurons is an active area of research in
neural networks. From the time Hopfield' proposed a
model of a completely interconnected assembly of
neurons with associative memory capabilities, a lot of
work has been done in analysing his model as well as
in extending it*™*. Most of this refers to storing and
assoclatively recalling time-invariant or spatial patterns
using the standard Hopfield model and its variants™®.
Storing a pattern would involve creating a corresponding
local minimum in the state space of the model; recalling
would mean the model’s dynamical descent to and
settling in the nearest local minimum. A model’s con-
figuration is usually decided by the choice of encoding
of the patterns to be stored.

The main problem in such modelling is to calculate
the strengths of synaptic interconnections as a function
of patterns to be stored. The solutions are called learning
rules, the important ones among them being Hebb’,
pseudo-inverse®, iterative’ and linear programming” .
In the case of time-invariant patterns the main interest
is to maximize both the number of patterns to be stored
and the basins of attractions in the state space around
each one of the patterns. The linear programming rule
helps one achieve that, though unlike Hebb’s rule it is
not biologically plausible.

Associative memory of time-invariant patterns is inter-
esting and important in its own right; human and animal
visual memory falls in this category. However, the more
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interesting case is that of time-varying or what are
known as spatio-temporal patterns. The former can even
be considered as a special case of the latter. Human
musical memory, motor skills as well as the faculty of
speech and language all come under the category of
spatio-temporal patterns. Modelling neural networks with
spatio-temporal associative capabilities is, therefore, a
very challenging and active area of current research. A
number of models have been proposed by workers in
this field. Some are based on transmission delays while
others are based on short-term modifiable or plastic
synapses. Though many of these models have been
demonstrated to function satisfactorily, their scope is at
present rather limited and one is still far away from
modelling the prodigious spatio-temporal associative
capabilities of an average human brain. Much work
needs to be done and new 1deas forged before one can
do that.

In this paper we follow the development in this field
since the early eighties and review most of the known
models. The context of human memory and biological
plausibility is kept in the background while discussing
their capabilities and limitations. To begin with, general
requirements of a model for spatio-temporal association
are discussed. It is followed by a formal, though
restricted, definition of the problem of modelling spatio-
temporal association. The known models are classified
as synchronous and asynchronous based on their dyna-
mics. In both classes, models based on transmission
delays as well as those based on plastic synapses are
discussed. The next section discusses some syntactical
aspects of natural languages and explores the connection
between complex sequences stored in neural networks
and valid sentences of natural languages. Some ideas
for a new model are suggested for learning rules and
constraints of a language from a set of sample sentences.
The last section concludes with comments on possible
directions for future research in this field.

General requirements

Modelling spatio-temporal associative capabilities of
human memory is a problem which is as interesting as
it 15 difficult. Solutions to this problem would help us
understand such complex human faculiics as making
and enjoying muasic, playing physical games, and heaning
and speech, In view of the enormous number of neurons
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and their interconnections in an average brain, modelling
by simulation is restricted to only toy-level scales. Also,
rescarch work in this area has begun only recently.
Therctore, most of the hnown meodels solve only limited
versians of this problem. In fact, the definition of this
problem given in the next section is also somewhat
rostricted. However, here we shall take a broad look at
spatio-temporal association from the viewpoint of full
range of human memeory’s capabilities and organization.
Bestdes the spatio~temporal, the spatial aspect will also
be kept in view. With this brief prelude, the general
requirements are stated below:

(1) The model should be able to store spatial patterns
in its state space and recall any one among them with
only a content of it being given as initial condition.

(i1) It should store directed sequences of distinct pat-
terns in the state space and recall any sequence step
by step with only a content of any one of its patterns
being given as initial condition,

(1) At each pattern in a sequence being recalled, it
should persist for a known finite period of time. The
last pattern in a sequence inay be a fixed point of recall
dynamics or may lead to a transition to the first pattern
(the former case corresponds to an open sequence and
the latter to a closed one).

(1tv) It should store and recall combinations of open
and closed sequences which share one or more patterns
(such combinations are referred to as complex sequences).

(v) It should have two modes of dynamics, namely
learning and recall. One need not exclude the other,
i.c. both may operate concurrently on the model,

(vi) Special or predesigned events should trigger the
model from one mode to the other. In particular, a new
input pattern should set the model in learning mode
while a content of a pattern learnt previously should
set it in recall mode. Also, a successful recall shouid
reinforce learning of the recalled output,

(vil) From the viewpoint of speech and language, the
model should be able to learn classes of patterns, such
as nouns, verbs, etc., as well as the associated syntactical
constraints from a set of sample sentences as sequences.
It should generate new valid sequences of members of
these ciasses satisfying the constraints.

(vii1) The model's recalling ability should exhibit
recency and primary effects. That is, recently lcarnt
patterns must be recalled with greater ease and tolerance;
also some patterns should be stored with greater basins
or vailleys of attractions compared 1o others, a choice
left to the designer,

(ix) The model should be robust, i.e. any damage to
a small part of 1t should not aifect its performance
drastically. Furthermore, it should be able to work with
incomplete and noisy input.

(x) As far as possible the model should be biologically
plausible.
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With the current level of research and understanding
of neural networks, constructing a model to meet all
the above requirements will be a tall job. However,
many ideas proposed so far In the literature suggest
steps in the right direction. In the following sections
we will discuss them in the background of the require-
ments enfisted here.

Before we begin, an introduction to the common ideas
and concepts as well as the notations involved in the
study of neural networks is in order.

The basic umt in models of neural networks is a
neuron, denoted by ©, where i is its index. It is either
in a firing or in a non-firing (quiescent) state denoted
by +1 or —1, respectively. The synaptic interaction
strength from neuron j to neuron # is denoted by J, .
Positive value for J, means the synapse is excitatory
and negative value means inhibitory, The number of
neurons in a model 1s denoted by N while p denotes
the number of patterns in a temporal sequence. The
transmission delay from neuron j to neuwron i is denoted
by T,. Some models involve modifiable or plastic synap-
ses, which are denoted by J;". To incorporate architec-
ture-related features, most models have a weight function
dependent on delays, denoted by €(x,).

Coming to the input pattern sequences, =" denotes
the pth pattern vector among the p patterns; & denotes
the ith bit of the uth pattern. Depending upon the
context, bold-faced English letters and capital Greek
letters will denote either vectors or matrices. The overlap
between fith and vth patterns is denoted by O,,. While
recalling a temporal sequence, the model is expected
to persist in each pattern for a known period of time
denoted by A. When the input pattern s indicated as
a function of time as &"(#), it means that the input
corresponds to the pth training session of duration D,.

One important aspect in the interface between neurons
and theit input 1s the input sensitivity. Denoted by mn,
it may take any value between 0 and 1 and 1t could
be a tunction of time.

Lastly, there is the concept of order of a sequence
of patterns. Denoted by g, the order of a sequence
signifies the minimum number of previous patterns
(excluding the current one) required to specify the
transition to the next pattern in the sequence. In other
words, 1f the recall dynamics is given a description in
terms of a differennial equation, then g is nothing but
the order of the differential equation minus one. Examples
of sequences of order one and two are given in one
of the subsequent sections. Sequences of order zero are
sometimes referred to as simple sequences.

Definition of the problem

Briefly, the problem of spatio-temporal association may
be stated as follows. Given a set of time-dependent

CURRENT SCIENCE, VOL 68, NO 9, 10 MAY 1995



REVIEW ARTICLE

vectors (or patterns) of a specific dimension and duration,
how to devise a dynamical model such that the attractors
in its state space correspond to these vectors identically?
The dynamical model in question is to be designed wiih
two-state neurons as its building blocks. The central
problem is, therefore, to compute the synaptic interaction
strengths between the neurons with or without introducing
time delays in their interactions. A more detailed descrip-
tion of the problem may be obtained by referring to
Figure 1.

Three basic components in the model are shown in
the figure. They are, respectively, the time-dependent
sensory input vectors {& (#)}, the set of neural state
variables {0, (f)} denoted as internal state, and the set
of synaptic interaction strengths {J (f)}. As one can
see, there are two types of dynamics which are involved
in the design. The first one, which modifies {J (1)} as
a function of {§, (1)} and {o, (f)} is called the learning
dynamics. This dynamics helps in computing the synaptic
intgraction strengths {J ()}. The second one, called the
recall dynamics, changes the internal state of the model
from current time step to the next. The learning dynamics
has to be designed such that new sensory input patterns
become the attractors of the recall dynamics. During
recall, the input to the model, which 1s some part of
one of the memorized patterns, determines towards which
attractor the recall dynamics will drive the model. Once
the model settles down 1n an attractor, that attractor is
said to be recalled for whatever input was impressed
on the model to initiate the recall dynamics.

Symbolically, a spatio-temporal pattern (3TP) may be
defined as STP = {E (): i =1,...,N; te [0-D]}. A
part of an STP, called content, is then C = {, (9):
i=n,...,ny te [ty ~t,]}, where both n, and n, are
less than N. Both ¢, and ¢, lie between 0 and D, where
D is the duration of the pattern. After modifying
{J,} as a function of one or more STPs using the
learning dynamics, the model must be capable of recalling
the required STP given only a content of it as the
initializing input for the recall dynamics. In some models
of neural networks an explicit phase of learning may
not be present. Instead, one computes the synaptic
strengths as functions of STPs using specific formulas.

The recall dynamics in neural network models 1s
simple and well known and is defined as follows,
ignoring delays In interactions:

A local field A, (f) at neuron { is computed as

h) = J,00,0), (1a)
1 € CUi)

where C(i) denotes the subset of neurons which are
connected to neuron f.
The new state at necuron i is then obtained using

o, ¢+ o) = sgn(h, (). (1b)
CURRENT SCIENCE, VOL. 68, NO 9, J0MAY 1995

If all the neurons are updated simultaneously at perio-
dic times, the dynamics is called synchronous. On the
other hand, if the neurons are picked at random times
for updating, the dynamics is asynchronous. Equation
(1b) applies to the case of zero ‘temperature’. When
the temperature T iS not zero, one may use Glauber
dynamics as indicated below instead of (1b):

Prob [0, (t+81) = +1]=(1/2) [ 1 £ tanh(B 4, ()], (lc)

where B = 1/kT and k is a suitable scaling factor. In
the context of human memory, a non-zero temperature
can be used to model the effects of synaptic noise. The
class of subsets {C(i)}, which are functions of neuron
i, 1s dependent on the architecture of the model. In the
standard Hopfield model each C(i) is equal to the entire
set of neurons excluding neuron i.

As shown in Figure 1, the main variables which
influence the outcome of the recall dynamics are the
synaptic strengths {J,(¢#)}. Therefore, it is the design
of the learning dynamics as well as the architecture
which is the central problem in the design of the model,
There are a few general guidelines which one may
follow in its solution. Some of these guidelines are
restrictive while others enhance the options for a designer.

Firstly, the modification of J, , the synaptic connection

Sefisory
input

Internal
state

Synaptic
strengthg

Recall
dynamics

Leaming dynamics

Figure 1. Schematic dypamic model of spatio-tempotal assoctative
memory, See text for a detwied explunation
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from ncuron j to neuron j, may be determined purely
by what happens in neurons § and j. This is known as
Hebb's hypothesis”. Secondly, some of the J,’s may be
presumed to change during recall dynamics, tmplying
that synapses need not remain hard during recall. Thirdly,
delays in interactions do exist in natural neural networks
either due to transmission or due to the presence of
the so-calied interneurons. To learn and recall correlations
between patterns at various instances of time, such
delays may be made use of. One may even Consider
the possibility of modifying the amount of delays as
part of the learning dynamics.

To sum up, the problem of designing a model of
spatio-temporal association js one of computing the
synaptic interactions {J } as a function of STPs, which
need to be embedded as attractors in the model’s state
space. The process of computing {J } is called the
learning dynamics, which may follow certain guidelines.
Given the contents of any STP as initial conditions, the
recall dynamics should drive the model into the cor-
responding attractor. We begin with a survey of
synchronous models.

Synchronous dypamical models

Extension to the standard Hopfield model

One of the first attempts to store simple sequences of

unbiased patterns in a neural network was made by
Hopfield . Let
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provide stability to the uth pattern. The transition to

the (p+ 1)th pattern can be effected by the ‘forward
projecting” synapses

P
£ -
J;:} — - B&i.l-l-l ; (3)
po= 1
The local field is then given by
h(D) =2, U+ 1) 0, ) (4a)
J
P
=D, E+eg ) m, () (4b)
p=1
where
]
m, (1) = = D, & o). ()
Assuming that the model is in state = and p << N,
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Therefore for € > 1, the model will make a transition

to Z'*'. The dynamics of recall must, of course, be

synchronous. With asynchronous dynamics, transitions

to adjacent patterns are known to get mixed up, leading

to a failure in recatling any stored sequence. In fact,
some  models

which we shall discuss under the
asynchronous category later are essentially borne out of
attempts to remedy this problem’.

The pseudo-inverse method

In this section we discuss the model proposed by Guyon
et al.''. First we consider the case of simple sequences,
wherein the patterns 1n a given sequence are all distinct.

Let the patterns be {Z: u = 1,...,p}. The required
transitions are

Eu+ I =i+

——-.H

= 5

(say) (7)
for i = 1,..., p. To store an open sequence, i+ 1 may
be set to p when u = p. For a closed sequence,
L+ 1 may be set to 1 when W = p. The transitions (7)
are ensured if J satisfies

JEH = M forpu=1,...,p (8a)
or, equivalently,
JE ==, (8b}

where Z is the pattern matrix whose columns are ="’s.
The general solution of (8) is

(9)

where Z' is the pseudo-inverse'? of =
arbitrary matrix of dimension N xN.

and B 1s an

-y
[ L
o ol - e

= (ET5) =
Therefore, irrespective of the dimension of Z one needs
only to find the inverse of (' =), which is a pxp

square matrix. In fact, ' £ = O (overlap matrix). Thus,

J==2"(O)=" (10)
taking B to be the null matrix. Using this approach a
maximum of N transitions can be stored. The N transitions
may all correspond to a single simple sequence or many
smaller simple sequences. The fact that no two ='s
may be identical ensures that O will be nonsingular.
In complex sequences of order one or more, transition

from the current to the next pattern cannot be decided
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by current pattern alone. Two examples of complex + 2 Jﬂ;.” o,() o,.(t—1). (12)
sequences are given in Figure 2, '
The most general formulation to learn and recall

: Two simple solutions concerning (12) may be obtained
complex sequences iIs

by selectively ignoring some summands in its right-hand
side (RHS).

.1
RO =Y D JPc(t-1)
1=0 i

Linear local field: In this solution, all summands which
are quadratic in ¢’s in (12) are ignored. As a result,

(1) _ —
+ 2 z oy G -1)o,t=1) equation (12) can be written in a compact form using
" Y,(f) to denote the remaining two linear terms on its
¥ RHS as follows:
JO8 5 (1) o (t=1)--- © (t—g).
2 Go®. 0, () 0,01 , ( 3)(“) ho) = Y J, 1.0 (13)
or )
For order g = 1 equation (11) reduces to h(?) = JI(y), (14)
h@) =) J o)+ Z J o (- where
j (1)
I'(t) = DS
+ ) JOD q,(r) o, (1) ) [ (1) ]
3’
The required ftransitions are still represented by (7);
(.1 ~ (1t — quirc P Y \Uh
¥ E‘ Lo G=1) 0.(t=1) therefore, J may be computed by solving
JIY =2 forp=1,...,p, (15a)
C

a b / \ where

An equivalent matrix formulation of (135a) is

/ JFEJ[E_J=E+. (15b)
f

A particular solution of J from (15) is

flabcdaef]a
J=Z'I'
b
b > C = Z(I' D I, (16)

where I and I'" are the pseudo-inverse and transpose
of I', respectively.

— ——————

a d . L

Quadratic local field: All terms linear in O's in the

RHS of (12) are ignored in this solution. Besides, the
synchronous correlations between o's, i.e. terms such as

\ / O, (1) 0;-(¢), are also ignored. Therefore, (12) reduces to
f

h(t) = JT() = J [E(r) ® Z(¢ - 1)), (17
td [ abcdaefd ] ab with ® denoting the termwise product. Using transitions
(7)
Figure 2. a4, Complex scquence of order one with six different e | —rt |
patterns; b, complex sequence of order two, JI't=J[="®Z = = (17a)
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Jr=J[EZ&

{1)

7=z (17b)

As in the case of linear field, a particular solution of
(17) 15

J==r=2=(TI"1'r" (18)

The above approach can be generalized for higher-order
sequences In a straightforward manner.

Though lacking in biological plausibility, this model
solves the problem of spatio-temporal association in a
most direct manner. It does not have any explicit learning
dy namics; the synaptic strengths are calculated directly
by formulas, It can store and recall complex sequences,
and would be acceptable for anyone looking for an
engineering solution. Guyon et al.'' point out a problem
in identifying the basic units in a sequence. In learning
any verse as a complex sequence, one has four choices
of basic units, viz. letters, words, lines and sentences.
The larger the basic unit, the smaller is the number of
transitions, the smaller the order sometimes but larger
becomes the network size. Words, perhaps, are the
natural basic units in the case of natural language
sequences, as we argue in a subsequent section.

Optimal stability

The pseudo-inverse approach ensures large, but not
necessarily maximal, basins and valleys of attraction
around sequences to be stored. Employing the method
of linear programming is one way of maximizing the
sizes of these basins and valleys of attractions.

Given the p patterns and the associated transitions,
the conditions for learning them can be set down as'’

i=1, ..., N and
w=1,...,p (19)

-
ppilie

Z J yHe" >k for

where k represents the size of the basin or valley of
attraction. The pN inequality constraints (19) are linear
in {J_}. Therefore, the method of linear programming
can be applied™' to find the optimal value for k. As
a by-product one can obtain {J,}.

Alternatively, one may use an iterative approach ¢ la

Gardner’ to compute {J ) starting from a desired value
for k.

Modelling with plastic synapses

In majority of models the synaptic strengths get modified
only during the operation of learning dynamics. During

recall they stay invariant. However, there is evidence

that some synapses do change even during recall
dynamics. Alternatively, one can say that the model
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learns even while it is recalling. Dehaene et al." propose
a model for spatio-temporal association based on synapses
which get modified during recall.

In their model, the basic units are clusters which are
made up of several neurons. Within a cluster, these
heurons are interconnected by excitatory synapses.
The activity level of a cluster is a continuous variable
{, € [0-1]. In practical applications, clusters may denote
words, notes, etc. Clusters are interconnected by inhi-
bitory and modulating bundles of synapses. Thus, J, is
inhibitory when i # j and excitatory otherwise; J." denotes
a modulated synapse from cluster j to the cluster i. The
local field is computed using

by = JLm+ 3 INH L, (20)

} € m(7)

where m(i) denotes a set of clusters having modulated
connections with cluster i. The updating of { (¢) is done

Dy
]
1 +exp(—~A (r))'

The modulated synapses themselves undergo the follow-
ing dynamics depending on the activity of the cluster
(here k) which influences the modulation:

C(t+ A = (21)

m _ . 4 5.
1o Ay =] IrO+ (1= L@ HLO>05. 22
oy J,; (1) if (,(1) <0.5, (22b)
where

o, = exp(—At/T))
is called the rate of potentiation and

1s called the rate of decay. T, and 7, are parameters
of the model. Physically, equation (22) means that
J,(t) tend towards a current maximum L, (r) if activity
of the modulating cluster 1s high, else it decays to zero.

The current maximum L, (¢) is also subject to change
as follows. If

J,(¢=2A0 L (¢ =241 > 05 L, (f)
then

L,(1+ Af) = B L,(n+(1-B)L if L) > 0.5, (23a)
) ) B.L, (0 if (1) < 0.5, (23b)

where 8, and B, are the normalized rate constants and
are parameters of the architecture. L is the absolute
limiting value for modulated synaptic strengths. Physi-
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cally, (23) means that if J, and {, at two time steps
earlier were high and the activity of i is high now,
then increase L, else decrease L,. This is indeed a
kind of Hebb’s principle.

With these dynamics, let us sce the action of a
synaptic triad illustrated in Figure 3. Let cluster j’s
activity be high ({ () = 1), s activity be low
(L) =0) and Kk’s activity be medium high
(L () > 0.5). Also, let L,(r) > J, and J, and J, be small.
Then as time increases, J,(f) will increase towards
L, (). After a certain period, J,'() > J,. Consequently,
,(f) will tend towards 1. Through inhibitory J,, C ()
will tend towards zero. Thus, activity will be propagated
from cluster j to cluster i. Simple sequences can be
stored and recalled with a ring of such triads. Sequences
of higher order can also be stored and recalled as
demonstrated by Dehaene et al."” using suitable inter-
connections between clusters. However, general
guidelines for configuring an architecture for specific
complex sequences are yet to be identified.

The major criticism against this model is that it does
not genuinely learn any STP'®. If the input matches
with any one of the latent attractors, then the model
merely performs a selection. Inputs which do not match
any of the latent attractors are neither learnt nor recalled.
However, the concept of modifiable synapses used in
this model is interesting and merits further studies.

Approach based on transmission delays

One way of learning temporal relationships in time-
varying sensory input is to compute autocorrelations of
the input with respect to time. Herz et al.”” point out
that in the presence of delays due to axonal transmission,

(Lij(t))

— —

among other types, Hebb’s principle indeed leads to the
computation of such autocorrelations. As a result, the
network can learn to store both spatial and temporal
information about the input in its synapses. The central
idea in a model proposed by Herz et al.” is associating
an integral delay with each synaptic connection. They
also assume that there may be more than one synaptic
connection between any given pair of neurons.

The application of Hebb’s rule in the presence of
delays is stated as foilows:

€(1)

——r—

J,+1;7) =J (50+ N

c,(t+1)o,(t—1). (24)
After p sessions of Jearning, each of duration D, one
may obtain

£(T)

5@ =~

> D o+, -1 (25)

=1 r“=l

In both (24) and (25) €(7) 1s a weight factor useful for
incorporating architectural features into the model.
The local field at neuron i is computed using

N max

by = (1-m) 2,

J=1 t=10

J,o,(t-1+n&(@. (26)

The constant 1} 1s the input sensitivity mentioned earlier.
Though the inner summation, indexed by 7T, refers to

all integral values from 0 to 7, it is not necessary
that all J,(t) are nonzeros. In the so-called ‘clamped’

learning mode 7 is set to 1 and so

O, (tu) = gl‘ (t,,l = 1)

)b

(27)

Jij" ()

Jji

Figure 3, A synaphic triad nvolving a modulated synapse Ji;"(r) from cluster J to cluster ¢, wath &k denobing the modulating cluster
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Once the training session, where the J,'s are updated,
is over, the network may be used for recalling stored
spatio-temporal patterns.

Herz et al.” consider a special case of patterns, 1.e.
simple cycles of duration D, where

L(n =&@-D). (28)
If the weight factors €(t) are selected such that
£(1) = e(D-2-1) (29)

then it is shown that there exists a Hamiltonian for
their model as given below:

D-1 Tras
Y ) o, (t-a)

aga=10 t = {)

Ht) = -3 2,
i.J= 1
X O,(t—(a+ 71+ 1) modD)). (30)

The Hamiltonian i1s a function of states between time
t+1—D and t; therefore, it is possible that solutions
of constant H need not necessarily be fixed points.
Indeed one can see that

~AH(®) = Y. [0,(t)-0,(t- D)} h,(t~1). (31)

i =1

Since O,(f) = sgn[h, (t-1)], — AH(¢) is always positive.
Consequently, as t—>o, AH() should tend to zero

because H 1s bounded. The end result is that the model
will have to settle In a state with

() =06(t—-D) fori=1,..., N

The existence of a Hamiltonian enables one to apply
statistical mechanics to the study of the model. The
application 1s simplified by defining a higher-dimensional
model with ND neurons so that the simple cycles
{€'1):¢t=1,...,D} can be mapped to points in the
higher-dimensional model. For that purpose let

J» =J ((b—a-1)modD) for a # b
and
J, =0 for all a.

Then the Hamiltonian of the larger model is given by

N D-|

H=-35> Y J*c,0, (32)

tLy)=1 ab=10

With the above form for the Hamiltonian, the model
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resembles the standard Hopfield kind with ND neurons.
Analytical results concerning the critical capacity (ratio
of p to N) as a function of D can then be gbtained
following the approach of Amit er al.’. Results from
numerical simulations are also reported by the authors.
Both are given in Table 1 for a comparison, which is

indeed good. Studies imply that uniform distribution of
€(1) leads to optimal values of o, and m,.

Overall, the model described here is very promising
though storing and recalling complex sequences needs
to be examined further. Despite the dynamics being
synchronous, learning 1is biologically plausible. Both
spatial and dynamic patterns can be stored and recalled
based on one and the same learning principle. Further
studies and extensions of this model will indeed be
very fruitful.

Asynchronous dynamical models

Models based on asynchronous dynamics are rather
limited in depth and variety compared to those based
on synchronous dynamics. The chief reason is that the
former are more difficult to construct and analyse com-
pared to the latter. Here we shall discuss two different
models for storing and recalling simple cycles, one of
which i1s based on modifiable synapses. Both these
models are in a way extensions of the first attempt by
Hopfield to the case of asynchronous dynamics. Models
based on transmission delays will be considered next,
followed by some observations on synchronization in
the presence of delays.

Transitions induced by noise

Using the idea of forward projection suggested by
Hopfield', Bhumann and Shulten'® proposed a model
with (0-1) type of neurons. Three types of interactions
are computed in their model, namely, excitatory, in-
hibitory and projectional as shown below:

P
_}'{f = E e 0'C, where € = 2 G,

u:] |=]

(33a)

Table 1.
aﬂ
D Analytical Numerical m,
3 _ 01190 0.12 095
4 0.116 0.125 0.96

Results from analytical and numerical studies of the model
described by equation (32). Analytical results were obtained from
an application of equihbrium statistical mechanics. The constant
D denotes the duration of simple cycles while &, and m,_ represent
the critical capacity and the corresponding threshold overlap.
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P P
==y Y X EC (33b)
H=1 v=1
P
J:: — 2 (Ep—lup——l qx-l_E;Hl Bu+1g|+l)§|'1- (33{:)
no=1

The projective type consists of excitatory forward and
inhibitory backward interactions. The final {J,} are
computed using

Jr, if 77 # 0,
Jb, if J; = 0 and
P
J, = X @+ 20, (34)
M=
P r
JLoaf Y Y e =0,
TR v=1
lu—-vi s 1.

The {o,(t)} are computed using Glauber dynamics
adapted for (0-1) representation of neurons. After suitable
tuning of o’s and J’s, the model is capable of transition
to successive patterns in the presence of nonzero tempera-
ture. The patterns have to be unbiased. The persistence
time, A, is naturally a function of temperature, o’s and
B’s. Smaller temperatures imply larger A’s. If the
temperature is zero, the model would not be able to
make transitions to successive patterns.

However, Nakamura and Nishimori'’ point out that
for the case of orthogonal patterns, using

J,= D (e ¢ et et Y Y (35)

t =1

it is possible to induce transitions even at zero tempera-
ture. As the patterns are orthogonal, the inhibitory term,
J, in the Bhumann and Shulten model gets excluded.
Otherwise (34) and (35) are very similar except for the
tuning parameters o and B, which are not functions of
i oin (35).

Though these models work for simple sequences, they
are rather fragile, having to depend on noise in one
case and requiring orthogonality of patterns in the other.
Nor are the ideas involved biologically plausible. Further

studies with these models may not give rise to any
interesting results.

Model with plastic synapses

In another extension to Hopfield’s model, Peretto and
Niez'" propose a set of modifiable synapses J;(#) besides

the ones defined in (2) and (3). The {J,'(1)} are computed
by
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At

J(t+ A = [ - — )J,j"(t)-— al

TN

T 0,(t) 0,5, (36)

where T, is a relaxation time constant controlling decay
of old contributions. 7, determines the rate of
destabilization of the current state. With a given history
{0,(t~kAD); k is an integer), using (36) one can get

J\?;’ z R C,(t— kAt) o,(t — kAD), (37)

ck=l

J, () = -

where R = (1 - At/T).
Let {o,(} = (&} for
Then, from (37)

t—=AnL E—2A2 ...,1—nAt.

T,
) = - o (1-RNEE - o
X ¥ R*'o,(t-kA) O, (1 — kAD). (38)

k=n+1

The first term in (38) with a minus sien destabilizes

the current state Z'. As n becomes large, Jf), the
forward projection term, will dominate over J.’, thereby

effecting a transition to Z'*'. The persistence time A
is easily obtained by setting the fields stabilizing &7
ZV*! equal:

and =
1—¢
A-“( ) T,.
P

The value of € has to be of course less than one.
The patterns have to be unbiased and only simple
sequences can be stored and recalled. The model is
biologically not plausible in spite of working with
asynchronous dynamics. The concept of modifiable
synapses 1s indeed original and needs to be explored
further in combination with the ideas of Dehaene et al.".

I

Models with transmission delays

The usefulness of transmission delays has been mentioned
earlier while discussing synchronous dynamics models.
Here we shall discuss two solutions to the problem of
spatio-temporal association based on delays in signal
transmission. The first one is yet another extension of
Hopfield’s idea of forward projection. The second is
based on Herz et al.’s proposal” in the light of
asynchronous dynamics.

Model with a single delay. Using a single delay, %,
assoclated with the forward projection term Jf}. Sompo-
linsky and Kanter” propose a model for the storage of
simple sequences. The local field A () is given by

by =3 J"o,m+ Y, S0, -1). (39)
J

J
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Using overlaps, m(f)'s defined by (15), (39) can be
writicn as

o
h(n =Y Emn+e8 " m(e—1). (40)
o= |
Assume that the model was in state ="' for

v

-1t <t <0 and it changed its state to & at ¢t = 0.
Assuming p << N and Z"'s are unbiased,

n‘l\,_l(f"'"t):::] for0 €<t

and

mir-1) =0 for p # v—-1.
The above equations tmply
h()=(0+68

soon after transition. That is, both the instantaneous and
retarded signals stabilize Z' till ¢ becomes T. When
r> T

mft—1) = 1
giving

h(f) = & +e&'"".
If € > 1, there will be a transition to E'"' at r = 7.
The entire scenario will repeat again to effect a transition
to ='*? at t+ = 2t and so on.

The persistence time A is nothing but 7T itself. If the
patterns have a common average bias a, then J," and
J,Y may be computed using

o1 &' -a)(§ -a)
I = (1+ % —

o £ {H 5 &' -a) (§f—a)}_
Tl

N 1-a

The assumption of a single delay may be questionable,
though the model works with asynchronous dynamics.
It can be viewed as a special case of the one proposed
by Herz et al."”. In the latter the delays range between
0 and a maximum of T,,, whereas Sormapolinsky and
Kanter'” limit themselves to two delays 1n their model,
namely, 0 and & and, hence, two synaptic connections
between every pair of neurons. It is not difficuit to
convince oneself that a training session employing Hebb’s
rule with an input (Y vir) = L t/1 ] mod p} will result
in computing J,” and J\” automatically. The factor €
1s, of course, to be put in externally. To be biologically
plausible delays will have to depend on neuronal indices
and also a spectrum of values smust be allowed for
them.

026

W — T

Hebbian learning with delays: 1In the presence of
transmission delays the local field A () has to be com-

puted by

b=, J,(t)0(t-1). (41)

The above equation applies only when the signal trans-
mission 1s soliton-like. If there is dispersion during
transmission, then

m() = 2, J,(1,) f; dt” ot 1) o, (t=1"), (42)
where

, 1
o' 1) = — e
T

models the dispersion. Updating of ¢’s is done using
G,(t+ A = sgn(h (D) (43)

as usual; synaptic noise may be introduced, if necessary,
using Glauber dynamics with nonzero temperatyre. The
generalized Hebb’s rule in the presence of delays is
then given by

AJ,(t; D = ¢,(c,t+An, o,(t—71).J,(T,: 1) (44)

The synaptic strength at time ¢, J,(7,; 1), 1s included
among the arguments of ¢, so that saturation effects
and, consequently, forgetfulness can also be modelled.
Using a simple correlative function for ¢, without any
nonlinearity,

€, 1 (' Y ,
J, (1) = T ﬁ .{{, o,(1) dt J‘U dt" w(t’, 1) o,(t—1") (45)

where T, 1s the period of learning,

Equation (43) is nothing but the continuous analogue
of (25). It also includes the effects of dispersion. The
usefulness of (45) depends on two critical factors: one
is the statistical distribution of delays and the other is
the rate of change of sensory input. On the one hand,
if the sensory input is time-invariant, or varies very
slowly, then we are concerned with spatial patterns only.
The learning dynamics (45) can compute the synaptic
connections appropriately. On the other hand, if the
variation of sensory input is too fast, then (45) cannot
extract meaningful autocorrelations of the input and so
nothing sensible will be learnt. The most useful situation
1s obtained only when the delays in the models and
time constants involved in the input match or resonate
with each other. This should be evident from the dis-
cussion on the model by Sompolinsky and Kanter” in
the previous section. When there is a resonance between
the delay distribution and time constants of the input,
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the time-varying sensory input can indeed be stored as
a single spatio-temporal object and recalled later. As
pointed out earlier, it is only the auditory input which
is fundamentally spatio-temporal and probably well
understood from a statistical point of view. The task is
then to configure a matching architecture for a model
for processing auditory signals. It may even be necessary
to consider introducing delays which are not necessarily
due to transmission.

Synchronization in the presence of delays: While Herz
et al.”” were pursuing the idea of Hebbian learning with
delays, Kerzberg and Zippelius® also were studying the
use of delays in learning spatio-temporal patterns. Their
work has resulted in some important findings regarding
the effect of dispersion and delays on synaptic noise.
They find that any synaptic noise is effectively countered
by dispersion-related integration. Also, combination of
delays and the integration leads to a smoother response
and resistance 1o various types of noise. Networks are
not too sensitive to sloppy synchronization due to delays.

Complex sequences and natural language

A composition in any natural language can be viewed
as a sequence In many ways: as a sequence of letters
of its alphabet, or a sequence of words or phrases or
even sentences. Clearly, the number of possible phrases
or sentences 1n any natural language is too large for
either of them to be considered as basic units. Letters,
on the other hand, are too atomic and are also devoid
of any semantic content to serve as basic units ecither.
That Jeaves us with words as the only choice. In fact,
research in linguistics suggests that maximal addres-
sability and choice in framing sentences exist only at
the level of words®' ™. As the word-set in any natural
language is finite, more than one occurrence of a word
In a single senience or composition is quite normal.
Thus, from a limited syntactical point of view a sentence
or composition is a complex sequence of words. Now,
most of the models for spatio-temporal association dis-
cussed earlier concern storing and recalling entire se-
quences. However, such an approach to store and recall
all kinds of sentences is impractical, if not downright
meaningless. New models of networks capable of learning
rules for choice of words based on syntax and semantics
need to be constructed. A study of formal languages
and attempts to build models which can recognize valid
formal language statements could be useful as inter-
mediate steps towards such an effort.

One major difference between formal and natural
languages lies in the size of their terminal symbol set.
We have already argued as to why words must be the
terminal symbols for a natural language. Compared to
the symbol sets of practical formal Janguages, the word-
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set of any natural language i1s much larger. The words
are also classified 1nto so many categories whose in-
terrelationship is indeed very hierarchical®. Furthermore,
there is this difference between the connotation and
denotation of one and the same word in natural languages.
Terminal symbols in formal languages, on the other
hand, have unambiguous meaning irrespective of where
they occur in a sentence. Sensitivity to context is another
complex characteristic of natural languages. Though
there is a formal definition of languages which are
context-sensitive, to apply any such definition to natural
languages is beset with problems. The main difficulty
1s that the number of possible contextual situations in
a natural language is again very large. Also, the relation-
ship between a context and the meaning of a word may
change from time to time. Therefore, one may not be
able to capture a context-sensitive aspect in the form
of a time-invariant rule. For instance, how is one sup-
posed to write a rule for the simple requirement in
‘good writing’ that repetition of words be kept to a
minimum. However, in spite of all these difficulties,
using concepts from formal language theory for con-
structing new models of neural networks may prove to
be fruitful.

In dealing with natural languages one major problem
is the sheer number of basic units involved. One way
to tackle the problem would be to limit oneself to a
highly restricted domain of the real world. That is, start
with a small set of objects and their characteristics. Let
the type of sentences also be limited to one or two
basic patterns. Then by a combination of syntactical
and semantical inputs, it would be possible for a two-
component neural network to learn and generate (not
recall) meaningful sentences in a limited natural lan-
guage. A small example to explain this idea is given
below.

Perhaps the best way to look at natural language
understanding using neural networks i1s to observe how
children learn their mother tongues. To begin with, they
learn the meaning of real life objects such as, say, a
cat or tree (nouns), and their attributes (adjectives), then
simple sentences linking these two types of parts of
speech. Suppose that the only sentences a child has
heard being spoken are: (a) ‘The cat is black’ and (b)
‘The tree is tall’. From this elementary universe of
sentences several syntactical rules can be extracted.
Firstly, every sentence starts with the word ‘The’.
Secondly, the third word of every sentence is ‘is’.
Thirdly, the second word of any sentence should be
from the set {cat, tree}. And, lastly, the final word is
from the set {black, tall}. Already the child can learn
from these two sample sentences, general concepts such
as ‘article’, *noun’, ‘linking verb’ and ‘adjective’. Key
to the generation of meaningful sentences is a spatial
type of association between visual representation of an
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object and its name, as well as between a charactetistic
of the object and the corresponding adjective. Such an
association is realizable using known models of neural
networks. On one bank or component, visual repre-
sentations could be stored and on another the correspond-
ing verbal equivalent. Visual input on the first will then
induce the associated word in the second. The second
component has to be of a spatio-temporal nature. Having
got into a state denoting a specific word, it should
make a transition to the next state which should cor-
respond to a meaningful word, and so on. Now, it is
possible that the transition to the next state 1s uniquely
decided by the current state. This situation is, in practice,
an exception rather than a rule. More often, two or
more branches may exist at many points in any complex
sequence. In fact, if the two sample sentences are viewed
as complex sequences of words, at the first word ‘The’
there are two branches; the third word ‘1’ also has
two branches. Whenever the current state does not
uniquely define a transition, one has two approaches.
The first one is to refer to one or more antecedent
states as In the case of dynamical models. Alternatively,
output from an external source, which could be an
independent dynamical model by itself, can be used to
decide the choice among the various branches. Going
back to the elementary universe of two sentences, the
choice between ‘cat’ and ‘tree’ should indeed be made
by such an output from the visual associative memory
rather than by referring to the past. The same can be
satd about the choice between the modifiers ‘tall’ and
‘black’. The interaction between spatial and spatio-tem-
poral components required here can be as described in
equation (20). The term corresponding to sensory input
can piay the role of output from the spatial component.
One problem would be to find out when to activate
this external influence. In other words, what kind of
dependence should m have on time? A simple solution
s t0 treat | as a constant. When not required, this
external influence will only act as random noise which
can be countered by the robustness of the spatio-temporal
component. At branch points though, it can help in
deciding the choice uniquely.

The above description of a two-component model for
sentence generation 1s, admittedly, sketchy. However,
the central idea i1s probably clear.

Conclusion

Some 1mportant concepts which emerge from the review
of known models are: transmission delays, plastic synap-
ses and complex sequences. Delays due to transmission
are known to exist not only due to the time required
for neural signals to travel the axonal length but also
due to the presence of the so-called interneurons in
their path. In fact, for temporal correlations across
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durations of the order of seconds, axonal delays alone
may not be sufficient; architectural mechanisms, such
as the presence of interneurons or synaptic triads"” may
also be required. The second concept, plastic synapses,
is a biologically meaningful one. There are at least two
arguments in favour of it. One is the existence of
short-term memory, which implies that some synapses
oet modified more often compared to others. The second
argument is based on evidence for the coexistence of
learning and recall processes in the human brain. Indeed,
the recency effect, exhibited by our brain, may be traced
to such a coexistence. Thirdly, the concept of complex
sequences provides the basic and complete foundation
for defining spatio-temporal patterns or attractors, at
least as far as synchronous dynamics is concerned.

Evidently, it is easier to construct and analyse models
based on synchronous dynamics compared to those based
on asynchronous dynamics. From an engineering view-
point, there is no reason to insist on asynchronous
dynamics. However, no evidence of any synchronization
mechanisms exists in living biological systems at the
level of neural assemblies. Therefore, for biological
plausibility, asynchronous dynamics is fundamental.
Nevertheless, one may take a route via synchronous
dynamics as far as model making is concerned, even
for understanding natural neural systems. Such an approach
is exemplified profitably by both Guyon et al.'' as well
as Herz et al.”.

Among the models reviewed, the ones based on delay
and plastic synapses are interesting. Further studies on
them should focus on understanding the shapes and
sizes of valleys of attractors in their state spaces. For
practical applications, 1t may be desirable that the sizes
of valleys of attractors are optimal. Using linear program-
ming to learn patterns would be one way of optimizing
the valleys of attractors.

Biological plausibility is important in its own right.
Models based on delays appear to be the most interesting
in that context. Numerical studies of models based on
transmission delays will highlight the possibilities of
resonance between the frequency distribution of the
sensory input and the distribution of delays. Simulating
variations in architectures in the form of limiting inter-
actions to within a neighbourhood will be a step towards
incorporating more biological realism in the models.
Architectures based on a fractal code could be another
variation. In fact, studies on biological growth suggest
that concepts from the theory of fractals may be useful
in constructing models of neural networks. Learning
dynamics in currently known models change only the
synaptic interaction strengths. Though it may seem far-
tetched, changing even the values of delays during the
learning process deserves some attention. The problem
of justifying it biologically may be considered later.

A final comment concerns the problem of storing and
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recalling words, basic units of natural language sentences.
The number of words which an average native speaker
is able to access readily is estimated”’ to be about
50,000. This number 1s rather small compared to the
number of neurons and their interconnections in the
segment of human brain which deals with speech. There-
fore, the method of encoding words can be safely
assumed to be sparse. Stmulation studies of the two-
component model outlined in the previous section may
do well to adhere to this aspect of encoding.
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A glucose-negative strain pfkl pfk2 of Saccharomyces
cerevisiae mutated in both the genes coding for the
soluble phosphofructokinase brings about nearly 30-
fold overexpression of the particulate phosphofruc-
tokinase (PFKII) when transformed with multiple
copies of PFK2. The overexpression is independent of
the dosage of PFKI-encoded P subunit. The elevated
enzyme activity correlates directly with the increased
particulate association of the polypeptide encoded by
PFK2. Multiple copies of the PFK2 gene appear to be
the only requirement for overproduction of the par-
ticulate phosphofructokinase.

—— il - Ay S

THE soluble phosphofructokinase of yeast (PFKI) is a
hetero-octameric enzyme, composed of 4o and 403 sub-
units'. This contrasts with the phosphofructokinase found
in the human muscle or in Escherichia coli, where the
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activity resides in a single polypeptide. Mutants in both
the subunits have been isolated in various laboratories.
This led to the identification and isolation of two genes
PFKIl and PFK2 coding for the B and o subunits,
respectively”'’ (note: the genes PFKI and PFK2 and
the encoded polypeptides have been named differently
in different laboratories. The nomenclature used here is
according to Gayatri and Maitra'). Analysis of a large
number of pf/kl and pfk2 mutants isolated in this
laboratory has shown that mutations in the pf&I (B)
gene abolish the enzyme activity while mutations in the

pfk2 (o) gene invariably give rise to an alteration of

the regulatory properties of the enzyme. Thus, the two
subunits have distinct roles to play in the hetero-
octamer'* ", Two mutanis that do not conform to thas
rule are DFY70 (&) and DFY250 (B), which exhibit
reverse phenotypes® ', Recently, it has been shown that
single-amino-acid changes in either of the two subunits

929



