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Quantum Monte Carlo techniques:

Chemical applications
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Quantum Monte Carlo (QMC) methods are stochastic
simulation methods for quantum many-body systems.
Here we provide an overview of QMC methods
designed for simulation of atomic and molecular
systems, and discuss main ideas behind the variational,
diffusion and path integral QMC methods. We also
review application of these fechmques 1o some
problems of interest in chemistry.

-

The underlying physical taws necessary for the mathcmatical
theory of a large pant of physics and the whole of chemistry
are (thus) completely known, and-the difficulty is only that
the exact apphcation of (hese laws leuds to equalions much
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too complicated to be solvable. It therefore becomes desirable
that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explana-
tion of the main features of complex atomic systems without
too much computation.

SIncE P. A. M. Dirac wrote the above lines in 1929
(ref. 1), both the range of approximate quantum mechani-
cal methods, and the notion of what constitutes 'too
much computation’ have undergone dramatic changey.

Over the past few decades, chemists have come to
understand  the interactions and dynamics of small
molecules and clusters very well. Both theory and ex-
periment can, for instance, provide a very accurate
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understanding of the H,O molecule and a reasonable
one of the dimeric and trimeric aggregates (H,O), and
(H,0), (refs 2,3). The macroscopic end of the scale,
such as the thermodynamics and spectroscopy of bulk
liquids and solids is again well understood from a
phenomenological point of view; for example, bulk water
i1s known to be a complex fluid with an elaborate phase
diagram®, The conceptual connection between micro-
scopic and macroscopic behaviour is made by statistical
mechanics. Computer simulation methods complement
the elegant but simplified statistical mechanical models
by providing a much clearer connection between ex-
perimental and calculated quantities, the ability to make
quantitative or semiquantitative predictions and the
opportunity for performing numerical or computer ex-
periments for systems or conditions which may not be
easily realizable 1 a laboratory.

Currently, most simulations are performed using either
classical Monte Carlo methods or the molecular dynamics
approach’. Applications of these methods range from
geochemistry to protein structure®™’. Both techniques
assume the Born—Oppenheimer separation of electronic
and nuclear motion. The nuclei are assumed to be
classical particles moving according to the Newtonian
equations of motion on the electronic potential energy
surface (PES). The PES itself is constructed as a sum
of pair (or at most three- and four-body) interactions
between atoms, 1.e. the total interaction energy of a
system is assumed to be the sum of the interaction
energies between all unique pairs. These few-body poten-
tials are derived from independent studies of small
aggregates and provide the necessary simulation input
about the details of the microscopic interaction®. Classical
Monte Carlo technmiques generate the equilibrium statis-
tical mechanical properties of a system, usually within
the canonical ensemble, such as the average potential
energy, structural quantities such as the radial distribution
function and phase transition behaviour. For an N-atom
system, such Monte Carlo techniques construct a random
walk through the 3N-dimensional configuration space
with a bias such that for sufficiently long walks, a set
of configurations, X, distributed according to the
Boltzmann formula e P"® s generated. If N is sufficiently
large and suitable boundary conditions are applied, then
equilibrium properties of the bulk system can be
generated. MC integration is an inherently multidimen-
sional approach with a statistical accuracy in the results
that is proportional to (n/1)!/2, where n is the number
of MC configurations and T is a measure of the degree
of correlation between successive configurations. While
T does tend to increase with dimensionality of the
system, this dependence is generally small. Consequently,
MC methods scale relatively favourably with system
size, in terms of computational cost.

Classical molecular dynamics, instead of using a ran-
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dom walk approach, involves numerical integration of
the classical equations of motion to generate the trajectory
of the N-particle system through phase space. Provided
certain conditions are satisfied (ergodicity, sufficient
length of trajectory and the like), the phase space points
sampled during the course of an MD run provide
information on both the equilibrium and dynamical statis-
tical mechanical quantities, Thus, unlike MC, MD
methods can provide time-correlation functions related
to transport properties and spectroscopy. However, MD
can prove inefficient relative to MC for systems with
multiple time scales. For example, in binary solid solu-
tions, the rates of diffusion of the two species are much
slower than the high frequency lattice vibrations®.

An important development in the past decade has
been the formulation of ab initio MD methods, which
attempt to overcome the problems of inadequate
parametrization of the PES surface. Such problems are
most acute in the case of semiconductor and metal
systems; the delocalized nature of the valence electrons
in such materials implies that the pair potential approxi-
mation 1s very poor. This is also true for chemical
reactions where changes in electronic structure and
nuclear configuration are very strongly correlated.
Polarizability effects are also notoriously hard to incor-
porate within a pair potential approach. The ab initio
MD methods attempt to solve this problem by solving
the electronic structure problem simultaneously with the
integration of the classical equations of motion and, in
principle, require no input other than electronic and
nuclear masses and ¢lectric charges.

The most successful ab initio MD approach to date
is the Car-Parinello (CP) formulation. The CP technique
uses the Born—Oppenheimer approach to separate motion
of the ionic cores from that of the valence electrons.
The motion of ionic cores is treated by using classical
MD equations of motion. To obtain a suitable electronic
PES, the ground state electronic energy for any given
ionic configuration must be found. To do this both
accurately and efficiently, three important simplifications
are made: (1) Density functional theory (DFT) 1s used
to model electron—electron interactions. DFT 1s a
mean-field approach which introduces electron correla-
tion effects in an approximate way. Results for a variety
of ground state properties using DFT have been shown
to be accurate to within a few per cent. (11) Pseudo-
potential theory is used to model electron—ion 1nterac-
tions. Pseudopotentials smooth out the strongly varying
recions of the potential for small ion—electron distances
while retaining the salient characteristics of valence
electron in a bulk medium, (iii) Dynamical minimization
techniques are based on the insight that the variational
solution to the density functional equations can be
obtained by a constrained optimization scheme in which
basis functions for the electronic structure problem are
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treated as dynamical variables. The advantage of this
approach is that the real-time dynamics of the ionic
cores and the fictitious dynamics associated with the
electronic variables can be coupled together in a very
powerful computational scheme. The net result is that
the classical motion of atoms on the ground state
Born-Oppenheimer PES is obtained. The CP method
has provided remarkable results for many problems of
current interest in materials science'®. The technique is
at least an order of magnitude more expensive than
classical MD.

Quantum Monte Carlo (QMC) methods, as the name
suggests, are stochastic simulation methods for quantum
many-body systems''™'®, The term QMC covers a battery
of techniques used in a variety of fields such as condensed
matter physics, nuclear physics, statistical mechanics
and chemistry. This review is intended to provide an
overview of QMC methods designed for simulation of
atomic and molecular systems of interest in chemistry.

One situation in which QMC methods become essential
for chemical systems 1s when the atomic nuclei are
sufficiently light or temperatures are sufficiently low
that the approximation of treating nuclear motion clas-
sically becomes a poor one. For example, quantum
effects are important in the water and ice because of
hydrogen-bonding. Electron and proton transfer proces-
ses, vital to many biochemical processes, are intrinsically
quantum mechanical. Many solids such as ammonium
halides and solid H, show phase transitions, with large
isotope effects indicative of strong quantum effects?.
Even solid argon must be modelled with significant
quantum corrections to thermodynamic properties’.

Electronic structure problems are a second area of
chemistry where QMC methods are applicable when
accuracy requires improvements over density functional
theory (the basis of Car—Parrinello) or when the Born—
Oppenheimer approximation fails due to strong coupling
between nuclear and electronic motion",

The review is organized as follows. Sections 1, 2 and
3 present the essential ideas behind the variational,
diffusion and path integral Monte Carlo methods respec-
tively. Section 4 briefly reviews the application of QMC
methods to some problems of interest in traditional
chemistry where the simulations provide interesting
insights and connections between experimental data and
simplified theoretical models.

1. Variational quantum Monte Carlo methods

The variational Monte Carlo (VMC) approach is based
on the variation principle which states that for a given
Hamiltonian H, the energy E, associated with a trial
wavefunction v, defined as

E = jwf ;}‘4’; d't/_[ Yy, dT (1)
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will always be greater than or equal to the exact ground
state energy E, of the system'’. Minimizing E  with
respect to the parameters of y, provides the best approxi-
mation to the ground state wavefunction within the
limitations of a given functional form. Conventional
quantum chemical methods expand the trial wavefunction
Y, as a linear combination of a suitable set of basis
functions and then utilize the variation theorem to obtain
the optimum set of linear combinations. While such
methods can provide very accurate energies and
wavefunctions, they scale very inefficiently with the
system size or dimensionality. For example, configuration
interaction methods scale as N’, where N is the number
of basis functions, implying that such studies are only
feasible for small molecules.

VMC methods use the favourable scaling of Monte
Carlo methods with system size by interpreting lp: v,
as a probability distribution. Standard random walk
methods can be used to create a set of configurations,
x, distributed according to 1|f:" (x) v, (x) and E, can be
defined as the average over this set of configurations
of the local energy, E, =H v, (x)/y(x). The form of the
trial wavefunction is usually derived from a knowledge
of the basic physics of the problem and the parameters
can then be optimized by minimizing E, or, better still,
the variance in E .

VMC methods are computationally relatively inexpen-
sive and can provide considerable physical insight. The
limitations of VMC methods are two-fold: (i) the accu-
racy of the calculation is limited by the choice of
functional form of y; (ii) being essentially a ground
state method, information on excited state energies and
wavefunctions is difficult to obtain though not impossible.
Despite these limitations, VMC calculations are capable
of providing accurate results for a variety of systems.
As an example of an application to solid state electronic
structure calculation, the bulk cohesive energy of
diamond and graphite was calculated to within 1% of
the experimental value using VMC!. VMC simulations
of helium have provided very accurate results, when
compared with experiment, for properties of helium in
the bulk, at surfaces and in droplets'.

2. Diftfusion Monte Carlo methods

Diffusion Monte Carlo (DMCQC), like VMC, is a zero-
temperature approach that is geared towards finding the
ground state wavefunction. Unlike VMC, which provides
an upper bound to the ground state energy, DMC is,
in principle, capable of generating the exact ground
state energy and wavefunction'!-6,

The starting point of the DMC method is the time-
dependent Schrodinger equation

J'V

A
i =~ = HY, ()
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where t is the time coordinate. If t is treated as an
imaginary quantity #=-iu (where u is real), then the
above equation can be rewritten as:

\,P A
- H %‘;‘- HY (3)
Oor
\Pﬁna} =€ HL‘I‘H q,m:tul . (4)

M

By an analogy with the density operator, e P, used in
statistical mechanics, imaginary time in the above equa-
tion can be interpreted as proportional to the inverse
temperature, = 1/kgT such that « =B A, T is the absolute
temperature and kg is the Boltzmann constant. It can
be shown that regardless of the choice of W s Yo
will converge exponentially to the ground state wavefunc-
tion ¥, with energy E, in the limit p— e, T—0. If
it is assumed that the ground state wavefunction 1s
nodeless, as is the case for bosons or distinguishable
particles, then the above equation can be interpreted as
the evolution of an initial, arbitrary probability distribu-
tion to the final stationary state distribution given by
¥,. To understand the basis of the computational scheme,
consider the evolution of the distribution over a very
small imaginary time interval, €= /M, from time y, to
u;+). Then it 15 p0551ble to factorize e BH/M a5 @~ BK/M
e-BWM, where K and V are the kinetic and potential
energy operators rtespectively. Considering a one-
dimensional system for notational simplicity, the dis-
tribution at time u, can be represented as a set of points
distributed on the x-axis according to the initial dis-
tribution @,(u,, x,). To carry out the evolution over the
time interval €, we first apply e- BV/M on D (u,, x) to
give e BV@-EVM & (4, x), where V (x) 1s measured
with respect to some .energy E. This will imply that
in regions of low potential energy, the probability dis-
tribution will be enhanced whereas in regions of high
potential energy, the distribution will be attenuated
(birth/death process). To complete the evolution we must
then act using the operator e P~ which results in

Jm/zm e—M/?.E{IH_"--ﬂ}I e_[}V[II]/M (I)l (ul, x‘) . (5)

Note that the positions obtained at the end of the time
step, x,,,, are Gaussian distributed about the positons
x, at time u . This can be interpreted as a diffusion
step with diffusion constant #/2m, Thus a short-time
propagation corresponds to a birth/death step followed
by a diffusion step. Repeated application of such short
time evolutionary operators will result in convergence
to the ground state.

For all but the simplest system, the naive DMC
algorithm described above must be made more efficient
by introducing importance sampling. Importance sam-
pling biases the random walk towards the most important
regions of configuration space by using the information
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provided by a good approximate wavefunction, usually
derived from a VMC calculation. A different formulation
of this zero-temperature approach, equivalent to the
DMC method, is Green’s Function Monte Carlo (GFMC).

Monte Carlo methods require the definition of a
probability distribution function that is always positive.
In the case of VMC simulations, the modulus squared
of the wavefunction provides a positive probability dis-
tribution function. In DMC simulations of bosons or
distinguishable particles, the nodeless ground state
wavefunction can be treated as a probability distribution.
In the case of interacting fermions, however, the ground
state cannot be assumed to be nodeless. The anti-
symmetrization requirement for fermions implies that
nodes will exist in the wavefunction whenever positions
of two fermions with identical spins coincide. Continuity
of the wavefunction and its first derivative then implies
that the wavefunction must change sign at these nodal
planes. Consequently, the interpretation of the ground
state wavefunction as a probability distribution is invalid,
leading to the well-known ‘fermion-sign’ problem. Fixed-
node methods which are surprisingly accurate though
not, in principle, exact, have been developed to circum-
vent this problem. A very important application of this
fixed-node DMC technique has been in deducing the
exchange correlation functional for the uniform electron
gas, which forms the basis of most density functional
and ab initio MD calculations'™.

3. Path integral Monte Carlo method

Path integral Monte Carlo (PIMC) techniques allow for
simulations of quantum many-body systems in the canoni-
cal ensemble (constant number &, volume V and tem-
perature T). The equilibrium properties of a system in
the NVT ensemble are determined by the canonical
partition function, Q. For a quantum system, ¢ must
be expressed as a trace over the density operator
e P#. evaluation of the trace in the coordinate repre-
sentation then leads to:

0 = Tr{e )} = de(x e PMx) (6)
where x is the position vector for the N-particle system.
Path integral methods interpret eP¥ as a propagator In
imaginary time (note the similarity with DMC) and
express the density matrix elements as the functional
integral

(x e~ ) x) = J@(x(u))e‘““f“”’ T (7)

where the integral represents the sum over all possible
paths, x(x), in imaginary time u which satisfy the
condition that x(0)= x and x (B7)=x. The weighting
of individual paths is given by the exponential of the
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action in imaginary time, S(x(«)). Note that only cyclic
quantum paths with the same initial and final point can

contribute to Q. The classical path is the path of least

action®.

PIMC methods involve finding paths which contribute
the most to the partition function. For example, in the
discretized path integral approach, any quantum path is
represented as a set of configurations, {x }, at equispaced
intervals in imaginary time, u=0, (BA/M), BA/M),
..., Pfi. Using this representation, Q for an N-particle
system can be written as

1 Mm )
Q = NT | 202 deldxz...dxM X
\ /
— Miin

exp{ -—;1-4@ (V(x)+ V(x2)+...V(xM))}, (8)

where x =Ix —x 1. The partition function in equation
(8) has the same structure as the classical configurational
integral with 3NM spatial degrees of freedom. The
interpretation of the above partition function is, hawever,
somewhat novel. In the classical limit, a particle is
characterized by 3 position degrees of freedom. In the
discretized path representation, the single quantum par-
ticle is replaced by a cyclic polymer of M subunits,
with adjacent subunits held by a harmonic interaction;
the external potential felt by each subunit is V(x)/M.
The average extent of the polymer is proportional to
the thermal de Broglie wavelength of the particle. Equa-
tion (8) can be used directly in conjunction with the
Metropolis algorithm to simulate a many-particle quan-
tum system. It 1s, however, often computationally more
efficient to employ alternative representations of the
path integral®’. The common feature of all such PIMC
methods 1S the quantum classical isomorphism — by
introducing auxilliary degrees of freedom (such as the
M —1 additional position degrees of freedom for the
polymer subunits), the trace over the density operator
1s written as a classical configurational integral of much
higher dimensionality. The fermion sign problem present
in DMC recurs also for the finite temperature formulation
and methods analogous to the zero-temperature are cur-
rently being devised. An interesting and unsolved prob-
lem is whether the imaginary time PIMC formulation
can be adapted for real-time problems. While this is
one approach towards achieving the tantalizing goal of
devising a simulation method for many-body quantum
dynamics, so far it has met with little success®'.
PIMC methods have been applied extensively to
molecular systems. The best studied system 1s hquid
*‘He which shows a Bose-Einstein transition to a super-
fluid state; simulation results compare very well to the
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experiment'>. Good approximation methods for finite
temperature fermionic systems have been developed
recently and applied to liquid "He and electronic struc-
ture*>®, An interesting possibility is combining PIMC
methods for nuclei with Car—Parinello techpiques for
obtaining the electronic structure. While prohibitively
expensive at present for bulk systems, it has been applied
to CHS. The structure of CH} has long been controversial
with arguments that it is a unique carbonium atom as
opposed to the theory that it is the prototype for a
nonclassical hyper-coordinate carbocation, with a ground
state dominated by 3-centre-2-electron bonding. The
combined PIMC and ab initio MD calculations indicate

that the quantum ground state is dominated by 3c¢-2e
bonding**®,

4. Some applications

Surface adsorption

The 1mportance of surface adsorption, from practical
applications in heterogeneous catalysis to theoretical
models for phase transitions in two-dimensional systems,
does not require emphasis. As a result, classical simula-
tion of surfaces and interfaces is by now a well-developed
field®. Appreciable quantum effects can, however, be
expected for light adsorbates, e.g. H,, He, Ne, N, and
CO, specially at low temperatures. One of the first
surface adsorption problems to be studied by PIMC was
"He and “He adsorption on graphite’’. The quantum
simulations corroborated experimental results for the
different phase diagrams of the two isotopes and provided
interesting insights 1nto the microstructure associated
with different phases. In addition, DMC/GFMC calcula-
tions have been carried out to explore the zero tempera-
ture limit of the He/graphite system'’. In contrast to
atomic substrates, diatomic molecules can exhibit a range
of orientational transitions, For example, N,/graphite
shows a herringbone transition; PIMC simulations have
quantified that the lowering of the transition temperatures
due to quantum effects is 10% (30K) (ref. 28). The
CO/graphite system is analogous to the N, adsorption
problem except for a heat capacity anomaly at
approximately § K. Recent PIMC simulations have shown
that this must correspond to the head-to-tail ordering
transition for the two-dimensional CO system™., To my
knowledge, there have been no zero-temperature studies
of molecular adsorption, largely because interest in this
area centres on finite temperature phase transitions.

Solvated electrons

The solvated electron, a ‘free’ clectron trapped in a
cavity formed by solvent molecules, plays an important
role in a variety of chemical phenomena, The hydiated
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electron has been shown to be a transient species of
crucial importance in solution photochemistry since its
identification more than 30 years ago™. The solvated
clectron is central to the mctal-insulator transitions
observed in alkali metal-ammonia solutions and related
systems. The localized versus extended states responsible
for the metal-insulator transition are also connected to
electron mobilities in fluids and other disordered media;
therefore the general problem of excess electron
mobilities in a variety of solvents has attracted much
theoretical and experimental attention®™‘. The structure
of a solvated electron in a fluid will be determined by
the competition between two factors: a tendency to
delocalize and occupy as large a volume as possible 1n
order to minimize the kinetic energy and a tendency to
minimize potential energy by optimizing electron—solvent
interactions. In the case of the dominant contribution
to the electron-solvent interaction being an excluded
volume or repulsion interaction, the electron will tend
to localize in regions of low fluid density. If the
attractive interactions can be enhanced in these low
density traps (for example, by the presence of oriented
solvent dipoles) then the size of the cavity can be
substantially reduced. The fact that the characteristics
of solvated electron systems will depend on this type
of complex interplay between a variety of factors, makes
simulations a virtual necessity. Different simulation tech-
niques can then be used (o provide complementary
information on these systems.

Among the best-studied solvated electron systems,
both from an experimental and simulation perspective,
are the alkali metal-ammonia solutions which have a
long experimental history”. Alkali metals dissolve in
liquid ammonia and, at very low concentrations, form
a light blue solution. Spectroscopic and other evidences
indicate that, as in the case of F-centres in alkali halides,
the blue colour is due to the optical spectrum of an
isolated solvated electron. As the concentration of metal
is increased, the magnetic susceptibility falls, indicating
that some type of spin pairing process 1S in operation.
However, as the metal concentration increases, a metal
insulator transition takes place and a bronze-coloured
liguid metal is formed. At still higher concentrations,
metallic solid compounds are formed. The dilute limit
is ideally treated by PIMC methods®. The results show
the trapping or localization of single electrons in solvent
cavities with an effective size of about 4 A. In fact, a
transition from a delocalized to a localized, trapped
state is seen as solvent concentration is increased. The
results of the simulation agree well with experiment as
well as with predictions of the RISM-polaron theory”.
The metallic limit with high electron concentration can
be treated by Car-Parrinello methods™ ™. The inter-
mediate regime, especially where spin-pairing occurs,
can be treated by both approaches. In the spin-pairing
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regime, the simulations show that electron-pairs form
singlet states which occupy a peanut-shaped cavity with
the two peaks in the electron density separated by 7 A.
The triplet state is unstable with respect to the singlet
state by approximately 0.6 eV. Thus, this series of
simulations on the alkali metal-ammonia solutions has
provided considerable insight into the microstructure and
dynamics associated with the metal-insulator transition.

Quantum clusters

Clusters have attracted much attention by virtue of being
small systems which bridge the transition from molecular
to bulk properties*' ™. While clusters can show properties
similar to those of bulk matter, €.g. collective behaviour
analogous to a phase transition, they are sufficiently
small to be studied at the same level of microscopic
detail as molecular systems. In this section, some of
the applications of QMC methods to quantum clusters
are summarized. Quantum clusters denote small, finite
atomic or molecular systems (about 10-1000 atoms)
where the nuclei have appreciable quantum character.
Recent experiments on rare-gas—SF, clusters have added
to the interest in quantum clusters®. Electronic structure
aspects, of special relevance to metallic and semicon-
ductor clusters, are not considered here. It should be
pointed out that cluster simulations have played an
important role in the development of QMC methods;
for example, one of the first applications of VMC and
GFMC methods was to helium clusters to test the
reliability of liquid drop models for clusters®.

Atomic clusters, such as those of He, Ne, H, and D,
have been very useful in understanding quantum effects
on phase transitions*>% For example, *He, with n> 60
shows clear remnants of the bulk superfluid transition
and QMC simulations can provide a corresponding micro-
scopic model®. Bulk melting has its cluster analogue
and has been studied in clusters with a view to under-
standing the role played by quantum fluctuations In
modifying phase transition characteristics. For example,
Figure 1 shows the lowering of the position and height
of the specific heat curve for a Ne, cluster due to
quantum effects®®. Increasing quantum delocalization can
be shown to result in a cluster solid-liquid transition
analogous to the thermal melting transition®. The effects
of such delocalization can be seen in Figure 2, where
the angular distributions for the Ne,;, (para-H,); and
(ortho-D.)),, are compared with those of a classical
thirteen atom Lennard—Jones cluster”. A purely quantum
analogue of the classical binary phase separation can
be shown to occur in isotopically mixed clusters using
PIMC methods®®. Figure 3 shows the density profiles
for the two isotopic species in a mixed para-H,/ortho-D,
cluster; the heavier isotope can be seen to be preferen-
tially located in the cluster intertor.
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A second category of clusters with large quantum
effects are the so-called solvent clusters such as (H,0) ,

(NH,), and (HF). Understanding the structure and
dynamics of such systems is of particular importance
from the point of view of solvation, liquid structure
and hydrogen bonding. Small aggregates of two, three
or four monomers have been intensively studied by
QMC methods (mostly DMC). Such studies are very
valuable from the point of view of deriving accurate

intermolecular potentials by comparison and fitting to
spectroscopic data.

Electron transfer

Electron transfer is fundamental to a variety of chemical

and biochemical processes. An electron transfer process
may be represented as:

Acceptor(A) + Donor(D”) — A+ D, (9)

where A and D may be ions or molecules and the
reaction takes place in a dielectric solvent. A simple
model for electron transfer envisages the electron as
being trapped on one of two wells, localized on either
A or D, with shapes and relative energies of the two
wells determined by the classical degrees of freedom
of the nuclei composing A, D and solvent. The electron
transfer process between the two wells corresponds to
a tunnelling transition. In the limit that the coupling of
the electronic (quantum) and classical degrees of freedom
1s weak, the rate constant for electron transfer can be
related to the tunnelling splitting and a Franck—Condon
factor. PIMC calculations can be used to calculate the
magnitude of the tunnelling splitting®”. The computation
of the tunnelling splitting assumes a large scale separation
between the frequency of tunnelling (or inter-well) and
intra-well motions. Tunnelling paths correspond to quan-
tum paths which connect the two wells, The fraction
of imaginary time spent in the barrier region along such
a path will be small because the potential energy in
the barrier region is high. This type of rapid process
or instanton is then said to ¢orrespond to a kink in the
quantum path and the tunnelling constant can be related
to the free energy required to create a Khink in the
quantum path. Estimation of this free energy can be
accomplished in MC simulations by standard thermo-
dynamic Integration methods. The Franck-Condon factor
can bc related to fluctuations in the relative energy of
the two potential wells and estimated from classical MC
or MD simulations. An ambitious application of this
approach has been in explaining some of the unusual
features of the primary electron transfer step in bacterial
photosynthesis®™?, It should be noted that the above
approach estimates a dynamical quantity, the rate con-

. - ’ g - v bi)
stant, in terms of equilibriwm thermodynamic averages™,
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This can be shown to be a plausible approximation for
many sysiems and has been applied to calculate rates
for quantum processes such as proton transfer and
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