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DNA sequence analysis has emerged as one of the
major disciplines of theoretical biology and has become
an essential tool for study in molecular biology. In this
article we review various methods currently available
for the analysis of genomes and large-scale DNA
sequences in order to detect potential genes out of
sequence information.
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THE extreme diversity that exists among biological sys-
tems is essentially governed by the information content
of DNA molecules that make up the hereditary ele-
ments — collectively called the genome — which are trans-
ferred from one individual to another!. Genetic
information is decoded through the ‘genetic code’, which
aliows specific proteins to be synthesized according to
the information present in DNA.

Many features of this genetic code are by now quite
well-known®>. DNA molecules are composed of four
nucleotides, the purines adenine (A) and guanine (G)
and the pyrimidines, thymine (T) and cytosine (C). The
three-dimensional structure of DNA is double helical,
with nucleotides on the two strands paired A-T and
G-C. The actual arrangement, i.e. the sequence, and the
length of the DNA differs from organism to organism
and determines 1ts complete biology. One major function
of the DNA is to manufacture specific proteins, and
nucleotide sequences that contain this information are
called the protein-coding regions or genes. There are
also ancillary regions of the DNA which regulate and
control expression of the proteins at specific times and
under specific conditions.

At the same time, there are vast stretches of DNA
sequence, principally in higher organisms, whose function
is not yet known'. Thus, it is still not possible to predict
the complete biological functions of a given organism
1n spite of knowing the complete sequence of its genome.
Gene functions can be experimentally determined using
the techniques of molecular genetics and biochemistry.
Given the time taken for these experiments, though,
analysis of a complete genome is still an intractable
task. Moreover, for most organisms, such experimental
methods and approaches are not yet feasible. Thus, the
development of theoretical and computational methods**
for analysis of DNA sequences could significantly aid
and accelerate understanding of functions of different
regions of DNA.
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Availability of entire genome sequences of organisms
can help, at the very least, to establish a complete
genetic map of the organisms. Further, a comparative
analysis of the genomes of a given family of organisms
can help determine the minimal set of genes necessary
for development and organization within that family.
However, the large amounts of sequence information
already avatlable and continuously pouring in (in se-
quence librartes or repositories such as GenBank) pose
a challenge, insofar as interpretation and analysis is
concerned. There are several ongoing projects to sequence
the entire genome of a number of organisms. Within
the next few years the intention is to have a complete
genome map of organisms such as Drosophila melanogas-
ter (genome length =165 Mbp, consisting of = 15000
genes), Escherichia coli (4.7 Mbp, 3000 genes), Arabi-
dopsis thaliana (100 Mbp, 13100 genes), nematode
Caenorhabditis elegans (100 Mbp, 15000 genes), the
puffer-fish Fugu rubripes (390 Mbp, 80000 genes) and
the human genome (3000 Mbp, 100000 genes). Recently,
the entire genomes of Haemophilus influenzae (1.83
Mbp, 1727 genes) and Mycoplasma genitalium (0.58
Mbp, 482 genes) have been sequenced®®, and the entire
genome sequence of yeast Saccharomyces cerevisiae
(12.5 Mbp, 6400 genes) is expected in a few months.

Megabasepair DNA sequencing is, by now, a well-
developed technology’. In the standard strategy, the
genome 1S organized into a library of overlapping frag-
ments, randomly cloned into a number of available
vectors such as cosmids, phage P1, BAC or YAC. These
vectors are designed to accept large fragments of DNA
sO that the entire genome of an organism is represented
in the library. The choice of a specific c¢loning vector,
to a large extent, depends upon the size of a specitic
genome. The large fragments are further subcloned in
usually M13-based plasmid vectors, to get short stretches
of DNA, which are sequenced using Sanger’s dideoxy
chain termination method’. These segments are then
re-assembled to form the genome with the help of
overlaps, filling of gaps, etc. To accomplish the task
of assembling the sequence of a large genome in a
reasonable time-span, there is need for the continual
development of innovative methods, especially those
leading to automation®, which can further accelerate the
speed of sequencing. Currently, a ‘random shotgun’
method™® has been used for H. influenzae and M.
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genitalium sequences where the genome was randomly
cut into segments and sequenced, with alignment done
entirely on computer. This approach is feasible only
with short genomes or cloned DNA fragments.

The central i1ssue, stated simply, is to identify the
functional regions of the sequences —the genes on the
genome. As mentioned before, in a complex genome,
only a small part is functional, in that it is decoded
into a protein with the amino acid sequence determined
by the DNA sequence. Another small part performs
regulatory role by determining the time and extent of
decoding in the life of an organism. Protein-coding
DNA, along with associated regulatory sequences, is
what ‘makes sense’. However, a major part of the
genome is composed of highly repetitive sequences of
unknown or uncertain function - which were previously
termed ‘junk’ or ‘selfish® DNA. Thus the identification
of protein-coding regions on the genome becomes a
major goal of DNA sequencing and sequence analysis.

DNA can be considered as a linear string of the
symbols, A, T, G, and C, and it i1s necessary to specify
the sequence along either one of the strands alone since
the sequence along the complementary strand is auto-
matically specified. Proteins are synthesized by reading
a code from DNA sequence, with a triplet of nucleo-
tides —a codon — corresponding to a given amino acid.
Since 20 amino acids are the constituents of naturally
occurring proteins, and there are 64 (=4°) codons, the
genetic code is degenerate. The elementary grammar of
the genetic code also includes a rule for initiation of
protein synthesis (the start codon) and a rule to signal
the end (the three stop or non-sense codons) (Figure 1).

The task of gene recognition and identification poses
a challenge for several reasons. One can 1magine iden-
tifying genes by one of two possible routes, either from
the expressed protein back to the DNA or from the
DNA directly. The route from the protein back to the
DNA is made difficult (and uncertain) by the fact that
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Figure 1. Schematic of the different regions in und around a gene

in a genomic sequence, showing the organization of exons, Inrons,
inttiation and termination sites, intergenmic spacers and promoturs.
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the amino acid-to-codon correspondence is not unique.
Since a complete knowledge of the sequences of all
proteins in an organism is a distant goal, this approach
1s of limited utility. In any case, identifying a gene is
not simply a matter of finding an open reading frame
(ORF), namely a portion of DNA of length at least
100 bp which starts with a start codon and ends with
a stop codon (with no other intermediate stop codons).
While prokaryotic genes are often continuous ORFs, the
expressed part of a gene in the majority of eukaryotes
1s split into several discrete segments called ‘exons’
which are interspersed with noncoding intermediate
regions, the ‘introns’. Exons may be mixed and matched
in various combinations to create new genes, and some-
times one gene’s exon may be another gene’s intron'.
The entire gene is transcribed into an RNA molecule,
from which introns are spliced out, resulting in a mes-
senger RNA that 1s a continuous ORF and is translated
into the corresponding polypeptide.

There are several theoretical approaches to the problem
of identifying coding regions in DNA sequences. A
variety of mathematical techniques have been brought
into play; these include statistical analysis, stochastic
modelling, dynamical systems theory and dynamical
programming. Current developments in the physical sci-
ences such as chaos theory or the study of neural
networks have also been applied, with equal effectiveness.
Most of these methods rely quite heavily on computa-
tional tools, and the past decade has seen the development
of several computer programs that accomplish the task
of predicting the coding properties of unknown sequences
with varying degrees of success.

The purpose of this article 1s t0 present an exposition
of the current state of the art of gene identification
through computational (in silico) methods. In the fol-
lowing section, we discuss the desirable features of
coding sequence finders in general, and in this context
describe several of the currently employed techniques
for gene identification. These methods include both
prokaryotic gene detection methods which need to look
for coding ORFs, as well as eukaryotic gene detectors,
that must locate exons and also determine how these
are to be joined in order to make a functional gene.
While we have tried to describe the main methods
currently employed, our list is not exhaustive; other
techniques and algorithms have been reviewed recently
by Fickett’ and Burset and Guigé'. This is followed
by a discussion and summary,

Gene identification

Given a genome sequence, the task is to locate all the
genes. In an ideal sitoation, this implics identifying all
the exonic, intronic and intergenic regions, and start
and stop codons pertaining ta ¢ach gene.
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Gene-finding methods can be classified’' as being
signal-based, content-based, or, as is increasingly more
efficient, a combination of both. Given a DNA sequence,
there are six reading frames to be examined. These arise
from the three possibilities for the origin of the sequence
(owing to the triplet nature of the codon) and the two
possibilities for the relevant strand of DNA. Signal-based
techniques look for a signature in the sequences — start
and stop codons, promoters, consensus splice sites, ele-
ments upstream of a gene which determine the trans-
cription start site, polyadenylation signal at the 3"-end
of the messenger RNA transcripts and similar motifs.
Content methods look for codon usage biases, oligonu-
cleotide frequencies, correlation exponents or related
similar indicators.

Three measures which are used to evaluate the per-
formance of a gene-finding technique are the sensitivity
S, the specificity S ,.and the correlation coefficient C..
These are defined as'?

¢ - TP
" TP+ FN'’

5 = TP |
P TP+ FP

c - TP-TN—-FP-FN _
©  N(TP+ FP)(FP+ TN)TP + FN)(TN + FN)

(1)

where FP is the number of false positives, i.e. the
number of bases predicted as coding, but which are
subsequently, through experiments or homology, declared
noncoding. Similarly, FN, the number of false negatives,
is defined as the number of bases, which are experi-
mentally confirmed as coding but are declared noncoding
by the computational method. TP are the true positives,
1.e. the number of bases correctly predicted as exonic,
while TN are the true negatives, the bases correctly
predicted as noncoding. The average of the specificity
and sensitivity'? gives some measure of the accuracy of
a given method. Although the above measures are evalu-
ated at the nucleotide level, these can similarly be
defined at the exon level.

Looking for a signal alone has its drawbacks, chief’
among which are the degeneracy and the fack of un-
equivocal definitions of signals, which can reduce the
sensitivity or specificity. Looking for content alone
involves the calculation of several statistical measures,
the analysis of which is organism-specific, and which
does not always give unambiguous results for the coding
potential of a sequence.

The smallest eukaryotic genes are typically about
300 bp in length. Therefore, the existence of an open
reading frame (ORF) of reasonable length suggests the
possibility of a gene, but this alone is insufficient as
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evidence of coding potential, since start and stop codons
could occur randomly with some (small) probability. In
addition, single base errors iIn sequencing cause frame-
shifts, which may abruptly and erroneously terminate
an otherwise long ORF,

‘Compositional heterogeneity’ is a hallmark of func-
tional proteins. Examination of the entire protein databank
(PIR database) shows that the 20 different amino acids
are used in very different proportions in functional
proteins (Table 1). This automatically implies that there
must, similarly, be fairly stringent constraints on nu-
cleotide usage at the level of the DNA sequence. All
genomes have a bias in the base composition, possibly
decided by evolution. This restricts the choice of which
codons are used in designating a given amino acid.
Thus coding regions have a very wunegual usage of
codons. |

Constraints on the amino acid composition of functional
proteins thus can lead to regularities in a coding sequence.
This feature can be probed with the help of certain
statistical measures, which have been used in the earliest
methods to locate genes. These are discussed in the
following subsection.

Oligonucleotide distribution-based methods

In these methods, ‘unequal codon usage’ is the funda-
mental measure for identifying protein coding stretches.
This asymmetry in codon frequency gives rise to com-
positional variations. However, it has been observed that
unequal usage of amino acids, without the codon pre-
ference or base composition bias, is enough to produce
significant compositional variations in all the three read-
ing frames for codons and bases. It 1s useful to go

Table 1. Average amino acid usage

by proteins
Amino acid Frequency (%)
Ala | 7.60
Arg 5.23
Asn 4.36
Asp 5.21
Cys .89
Gln 4.17
Glu 6.32
Gly 7.19
His 2.28
fle 5.29
Leu 5.81
Lys 9.17
Met 2.29
Phe 3.97
Pro 5.20
Ser 7.15
Thr 5.87
Trp 1.31
Tyr 321
Val 6.49
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beyond the level of the trinucleotide codon and examine -

the distribution of other oligomers, which is also quite
distinctive.

Testcode. This observation can be used to develop a
method to distinguish coding regions from non-coding
ones in genomes'*">. The first step involves setting up
a codon frequency table for coding regions, which can
be achieved by using prior information coming from
previously determined genes or open reading frames.
Then a window is moved along the sequence, three
bases at a time. For each window, the codon frequency
i1s evaluated in each of the three reading frames, and
compared to the one evaluated for a known set of genes.
The trame in which the deviation 1s comparable to that
for the test set of genes 1s adjudged as a coding frame,
whereas 1f the deviation is large in all the three frames
the region is identified as noncoding.

While asymmetry in codon usage has been used by
Staden' to develop a method for the identification of
genes, Fickett' exploited compositional variations
observed in coding and noncoding regions. In the tech-
nique TESTCODE a total of eight parameters — four
positional and four content parameters, one for each
nucleotide — are used to judge whether a sequence 1is
coding or not. The positional parameter is the ratio

P = MAX(fS 1.5 L)Y/MIN({S, L5 19 . (2)

where f“ i1s the frequency of the base a at position i
in the codon, and measures the extent to which a base
1s favoured in one codon position over another. Since
it is not relevant which of the codon position favours
the base, the positional parameters have fairly similar
distributions in all sequences, regardless of the differences
in codon usage strategy between organisms. The content
parameter for a nucleotide is simply its frequency.

A standardized table, giving the coding probability of
a sequence for a range of each of the eight parameters
can be devised from existing sequence information avail-
able. (In Fickett’s implementation of TESTCODE, this
table derives from the Los Alamos Sequence Library.)
Each of these parameters is used with a different weight,
determined as follows: The parameter is used alone to
predict coding function, from the standardized table, and
the sequence deemed to be coding if the probability
exceeds 1/2. The weight of the parameter is the per-
centage of times this guess is correct, less 50% (the
random level). For a test sequence of unknown func-
tionality, one calculates the eight parameters and obtains
the probabilities p, and weights w, for each of them
from the tables. The sum Z*_ | pw. is evaluated to get
the TESTCODLIE indicator, and the prediction 1s then
obtained from the standardized look-up table of the

sample set.
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By itself TESTCODE cannot find exact boundaries
for coding sequences, but it is well adapted for com-
bination with other techniques such as searches for
ORFs, ribosome binding sites, intron boundaries. The
reliability of the method when checked by taking half
of the sequences in the Los Alamos Library as sample
set and the other half as test set gives an error rate of
prediction of around 5%.

GeneMark. Differences in oligonucleotide frequencies
have been exploited in the technique GeneMark!®, The
Markov model is a convenient means for evaluating
the probabilities of occurrence of oligonucleotides
while taking into account correlations between fre-
quencies 1n different positions. This model has been
widely used for the study of one-dimensional strings
generated in dynamical systems or those involved in
language theories, to assess the correlation structure
of the sequences and frequencies of words of length
m in strings of length N.

A Markov process assumes that the state of a system
at time ¢ depends on its state at time f£— 1 only. This
rule, when interpreted for strings of symbols, states that
the probability of the symbol «, at position i depends
only on the probability of the symbol a._, at position
i—-1. For DNA sequences, this model reproduces the
dinucleotide frequencies. For higher oligonucleotide fre-
quencies, - higher order Markov processes have to be
invoked. For example, in a second order Markov model,
the probability of symbol a, at position i depends on
the probability of the doublet «,_,a _, at positions
i—1 and i—2, and this reproduces the trinucleotide
frequencies in DNA.

Since correlation between nucleotides differs in coding
and noncoding sequences, the corresponding Markov
models are also different. The fact that the reading
frame plays an important role in coding regions is
accounted for by considering ‘phased’ or non-homo-
geneous Markov models. In these the probability of an
oligonucleotide depends on which of the three codon
positions its first nucleotide occupies. Recent studies
have shown that in-phase hexamer statistics are very
effective in distinguishing coding regions, since they
take into account not only the codon bias but also the
correlations between the various positions of neighbour-
ing codons. Thus GeneMark uses phased fitfth order
Markov chains to make its predictions of coding
regions.

A sliding window is uscd, which moves along the
scquence in steps, which are a multiple of three. For
each window, the algorithm calculates it the DNA
fragment is modclled by the phased Markov model in
one of the six frames or the ordinary Markov model.
In the first-order Markoy model (which ¢an be gener-
alized to fifth order, below), the probability that a
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sequence § of length L is noncoding is given by the
ordinary Markov chain formula

P(SINON) = Pia )X Pa,la)

(3)

X...xXPla, la, ).

Here, P, (a, la, _|) 1s the conditional probability of ob-
serving the nucleotide «, in position L, given that
a, _, is observed at position L~ 1, and P, is the initial
probability. P, values are calculated on the training set
of noncoding sequences.

The probability of the frame 1 in § being coding is
given by the phased Markov chain

P(SICOD)) = Plla)xP,(a,la)xP(a,la,)

(4)

XP(a,la)xPlala)x.. xXPla,la,_ ).
Here, P,, P, and P, are respectively the probabilities
determined for the three codon positions in frame 1 and
P, is the initial probability. The values P, and P? are

]
defined from the training set of coding sequences. For

the other frames (2-6) the probabilities P(S|COD ) are
defined by similar formulae. The fifth order case is a
generalization of the first order model and the proba-
bilities are determined from Bayes formula'’.

6
P(COD_1S) = P(SICOD )x P(COD ) ) P(S1COD )

m=|

x P(COD )+ P(SINON) x P(NON) , (5)

where P(COD_1S) is the a priori probability that an
unspecified fragment § is coding and its first nucleotide
1s located in the codon position defined by index m.
P(NON) is the probability that S is noncoding and is
assumed to be the same as P(COD ) and equal to 1/2.

For each sequence to be analysed GeneMark determines
all possible ORFs and the average value of
P(COD_1S8) is computed for each ORF. If the value is
greater than (.5, the cutoff, the ORF is included in the
list of predicted genes. If there is more than one reading
frame in which this probability is greater than 0.5, the
frame with a higher probability is chosen. When applied
to the unannotated sequences of E. coli, the technique
found many new genes'’.

Geneld. The simple method described above can be
made more sophisticated. For example, Geneld'®, a
hierarchical rule-based system for identifying probable
protein coding genes, starts by identifying all possible
signals, such as initiation and stop codons, donor and
acceptor sites, promoters, poly-adenylation signals and
assigns each a rank, according to the preferred ordering
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and spacing among the various sites. Using these ‘atomic
sites’, all possible exons are constructed and ranked by
computing some of the statistically significant properties
equivalent to those described above and comparing with
a cutoff value obtained from a sample set. Thus each
exon is sequentially filtered through the cutoff for each
of the statistical measures. These exons are then classified
into equivalence classes. Two exons are said to be
equivalent if they occur in exactly the same gene. These
classes of equivalent exons are then assembled to form
the gene. A function of values assigned to each of the
component exon classes is assigned to the potential
gene, and this score is used to rank the gene'®.

The sample sets that have been used in Geneld consist
of the first, internal and terminal exons from the primate,
mammalian, rodent and vertebrate groups of GenBank
64.0, excluding those with alternative splicing sites,
mutants, pseudogenes, etc. These have been used to
derive profiles for the prediction of the various gene-
finding signals and to calculate the cut-off values for
the variables used to derive the rules through which the
exons are filtered. Weights are assigned to the sample
set of exons to correct for the unequal representation
of homologous gene families in the database. (Each
family of similar exons is assigned a weight of 1.0,
the weights of the sequences are assigned according to
the topology of the family, and these weights are used
in the derivation of the profiles.)

Given a DNA sequence, the first step involves the
identification of the various atomic sites. These are
confirmed by several context-based rules. For example,
the first ATG does not necessarily correspond to the
first AUG of the mRNA. To determine the potential
start site, sequence context and distance to the cap site
are used as criteria. The profile for initiation codon is
derived using first expressed exons.

Similar weighted profiles are constructed for donor
and acceptor sites from a set of internal exons, and
respective cut-offs are established. In the case of start
codons, the distance of the codon to the cap site 1s
computed, and from the frequency distribution of this
distance, a cut-off can be determined beyond which very
few exons have their start. Similarly, for the stop codon,
the distance to the end of transcription unit 1s computed
for the set of last exons, and from the frequency
distribution, the critical distance can be fixed. These
statistics are used to establish the authenticity of a given
eXOon.

Apart from these, some of the standard statistical
measures — nucleotide  frequency, positional correla-
tions —can also be used to further filter the exons. The
average correlation coefficient and sensitivity for this
method, for 222 sequences from a variety of orga-
nisms — human, chicken, goat, rat, etc.—are .79 and
0.88, respectively.
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Neural networks

Neural networks' are numerical algorithms which allow
a system to learn, recognize and classify patterns. The
underlying 1dea for these methods derives from the
nervous system of living organisms. A model neuron
1s a simplified version of the biological neuron, and is
a two-state threshold device having outputs +1 or 0
corresponding to the firing or non-firing state of the
neuron, respectively. A multiply-connected collection of
model neurons forms a neural network”.

The simplest application of the collective computation
of a neural network 1s associative memory, i.e. storage
and recall of information by association with other
information. This process is modelled by a neural network
as follows. For a set of N two-state neurons the total
number of patterns are 2" and P of these patterns are
stored in memory. If a new (or ‘test’) pattern is now
presented to the network, it should be able to recall
the stored pattern that resembles it most strongly, This
1s achieved by defining a dissipative dynamics on a
surface wherein the stored patterns are made to corre-
spond to local minima, and the test pattern i1s allowed
.to evolve under the dynamics so as to flow into the
local minimum with the closest pattern match. The
dynamical evolution of the state s. of neuron i in the
presented pattern 1s defined as

. -
s(t+1) = Sgn | > ws(n-0, } (6)

i

= )

where s, 1s the state of neuron i, w, are the synaptic
coupling strengths and the threshold 0. is usually chosen
to be 0, for simplicity. The choice of the weights, or
coupling strengths, defines the learning rule of the
network. The earliest of learning rules used is the Hebb
rule, which defines the coupling strength as

F
]
WU = 'N— z UEFUJ.#, (7)
H=1

where ¢ is the state of ncuron ¢, in the stored pattern ge.

Similar to the task described above, of storing and
recalling information, ncural nets can be designed to
recognize and classify patterns. Such nets have a fun-
damentally different structure, consisting of an input
layer, a black-box consisting of one or several hidden
layers, and an output layer. The signals received by the
net through the ncurons of the input layer are processed
in the hidden layers, and the result 1s sent to the output
layer. Since information flows in one direction these
nets are called feed-forward layered networks or, more
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simply, perceptrons. Again, in this case too the output
signal depends on the input signal and the coupling
strengths of the synapses,

4
S, =1 2, wo,l. (8)
\ k

where S, is the state of the ith neuron of the output
layer and g, that of the kth neuron in the input layer.
As before, the choice of the weights defines the learning
rule. The learning is said to be supervised, if the output
iIs known for a sample set and the weights, initially
chosen randomly, are monitored by the output error.
This learning 1s not very realistic, since it requires
complete and detailed knowledge of the output, which
1S very uncharacteristic of the actual system they simulate.
For this reason other concepts of learning have been
studied, which are based on reward and penalty, for
example. These come in the general class of unsupervised
learning.

In supervised learning, an extensively used learning
rule is the gradient learning. In this learning, the total
deviation between the actual output and the desired
output, and 1ts gradient with respect to the synaptic
weights, 1s computed. In the next iteration, the synapses
are modified by a small fraction of the gradient. The
disadvantage of this method is that it cannot be applied
to perceptrons built with deterministic, binary-value neu-
rons. The major advantage is that it can be generalized
to multi-layered perceptrons. Multi-layered perceptrons
become necessary because some very simple problems
become intractable with simple perceptrons®.

A method based on the generalization of the gradient
rule to multi-layered nets, i1s error back-propagation,
when the gradient rule is applied recursively to the
synapses of the output and those of the hidden layers.
In applying the rule to the hidden layers, the gradient
of the total output deviation with respect to the weights
of the hidden layer is computed, and the weights are
then modified by a small multiple of this gradient. Thus,
the error at the output is propagated back to determine
the weights of all the hidden layers. This 1S a very
powerful learning rule, and has been used extensively.

GRAIL. The widely used method GRAIL employs a
ncural network algorithm to implement a method similar
to that of Geneld. In this case, however, instead of
looking for the various atomic sites, several statistical
measures are evaluated and the multi-sensor neural net-
work processes them to define a score for the coding
region. As depicted in Figure 2, seven sensors are used,
including Fickett’s measure™, the positional base fre-
quency to determine the coding frame, and hexamer
(requencies. These are evaluated for a simple set, and
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Figure 2. The ncural network used by GRAIL with an input layer
of seven podes, two hidden layers of fourteen and 5 nodes respectively
and an output layer of single node. (Adapted from ref. 20).

the weights of the measures are extracted. Using these
weights the neural net evaluates potential coding regions.

The sample sequences originally used for the evaluation
of the weights®”, were 18 genes from the human genome.
A 99-base window, centered at each position, was used
to evaluate seven sensors, scaled between 0.0 and 1.0.
These values were passed through the neural net and
at the end of the training, the weights of the net were
extracted. The sensors used are:

1. Frame bias matrix. This 1s a 3 X4 matrix containing
the frequency with which a particular base occupies
each of the three positions in a codon. This measure
relies on the fact that while in the noncoding region
or the incorrect reading frame of a coding region the
distribution of positional frequencies is nearly uniform,
in the coding frame there is a significant deviation from
the random distribution. The standard bias matrix has
been obtained from coding exons of human sequences.
The correlation coefficient between the standard matrix
and that of the three reading frames of each window
Is evaluated. The difference between the best and the
worst coefficient is used as an indicator of the correct
coding frame.

2. Fickett’s measures, These are the same parameters
used by Fickett in TESTCODE. The output of TEST-
CODE is used as the value of this sensor.

3. Dinucleotide fractal dimension. It is known that dinu-
cleotide frequencies are far from random. The various
dinucleotides can be grouped according to their frequen-
cies of occurrence. It is thus possible to view a DNA
sequence as a dynamic function, by examining transitions
of sequential dinucleotides, i.e. asking whether the next
dinucleotide belongs to the same frequency group or
not. These fluctuations are characterized by a fractal
dimension®'. This dimension has a lower value in coding
regions as compared to noncoding regions. Thus the
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sensor value is the difference in the dimension between
a reference value derived from introns and that for the
test window.

4. Coding 6-tuple word preferences. This measure is
the sum of the 6-tuple preferences, defined as the
logarithmic ratio of the normalized frequency of 6-tuple
words i1n coding and noncoding regions. It has been
noticed”” that, in addition to uneven codon frequencies,
there exist correlations between nucleotide positions of
adjacent codons in coding exons. Hexamer, or dicodon,
frequencies are a measure of both, the codon bias and
correlations between nucleotides of neighbouring codons.
5. Coding 6-tuple in-frame preferences. This is the same
as the previous measure, except that the 6-tuple fre-
quencies are compared with the preference values of
in-frame 6-tuples in coding DNA.

6. Word commonality. This 1s the logarithmic ratio of
the normalized frequency to the expected random fre-
quency of hexamers. The word commonality measure
is summed over the entire window.

7. Repetitive 6-tuple word preferences. This measure is
the same as the above, except that the comparison here
1s with several classes of repetitive DNA.

Sensor 1 helps to establish the correct reading frame
of a coding sequence. Sensors 2—6 are various statistical
measures, which are significantly different for coding
and noncoding DNA. Sensor 7 is a negative indicator,
since it is a statement that repetitive DNA rarely codes
for protein.

These seven sensors form the nodes of the input layer
to the neural network constructed in GRAIL. In addition,
there are two hidden layers of 14 and 5 nodes, and an
output node. For training sets, the correct output value
(0 for noncoding and 1 for coding) is also provided.
In the learning phase, the net compares the output value
with its prediction and adjusts its weights, using the
back-propagation algorithm. The net thus optimizes its
performance by continuous evaluation of the output
error.

When tested” on a sample set of human genes, the
overall sensitivity and correlation coefficient was found
to be 0.54 and 0.69 respectively. However, the perform-
ance of a later and improved version, GRAIL2 (ref.
23), on a similar data set, showed a significant
improvement, with the overall correlation coefficients
and sensitivity as 0.80 and 0.86 respectively.

GeneParser. GeneParser** combines the connectionist ap-
proach, adopted by GRAIL®, with a recursive optimi-
zation procedure dynamic programming®, to predict
intron—exon structures of genes. The dynamic program-
ming algorithm is used first to parse a sequence into
basically four classes, namely introns, first, internal and
last exons, subject to certain ‘grammatical’ constraints.
In the second step, a neural network 1s trained totweigh
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several content and site statistics, and score the intervals
of interest 1n the sequence. Finally, the suboptimal
solutions of the parsing problem are obtained and pre-
sented 1n a graphical format, enabling the user to identify
which of the predicted splice junctions are most likely
to be correct.

Like the previous technique, here also multiple lines
of evidence are used to identify exons. The content
statistics used in this case are in-frame hexamer fre-
quencies, local compositional complexity, intron—exon
length distributions, bulk hexamer frequencies and
BLAST similarity scores®™. In the site statistics, splice
sites and translation initiation sites were discriminated
with the help of occurrence of specific nucleotides in
the vicinity of the sites.

In-frame hexamers are used to determine the correct
reading frame. The logarithmic ratio of the frequency
of a hexamer to that of its frequency in a random
sequence of the same base composition 1s summed over
to define the hexamer score. Preferred hexamers have
a positive score, while those avoided have a negative
score. While in-frame hexamers are evaluated in a
particular reading frame, bulk hexamer frequencies are
calculated disregarding reading frames. These frequencies
“differ significantly between sequences ot ditterent func-
tionality.

Local compositional complexity is quantified through
the Shannon entropy?’ for oligonucleotides of length
L =8, which provides a measure of redundancy. This
quantity distinguishes between coding and noncoding
regions by virtue of repetitive sequences which occur
typically in noncoding regions. Error tolerance can be
incorporated into the method by introducing random
frameshift and substitution errors with predetermined
error rates into the sequences of the training set.

The method was tested on 28 human sequences used
by Geneld and GRAIL. The sensitivity and the correlation
coefficient for this set turned out to be 0.87 and 0.78
for the latest version of GeneParser. This is a significant
improvement as far as the sensitivity of the method 1s
concerned.

Linguistic analysis

The spoken languages of the world have two remarkable
features. The first is Zipf's law®®, which is essentially
the observation that the frequency of word usage has
a power-law dependence. A histogram of the total number
of occurrences of each word in a text versus the rank
of the word follows a power law, with an c¢xponent
E ~~1. This is an empirical observation and s scen to
hold for all languages™.

The other common feature of all languages, 15 redun-
dancy®, i.e. words (or sentences) do not become unin-
telligible by the omission of some Jetters (or words).
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This notion of redundancy can be quantified through
the Shannon entropy. If p™(A,,...,A ) is the probability
to find a word (4,,...,A) in a string of length n then
the Shannon entropy is defined as

n

H = -Xp™A,...,A)Inp™A, ... A). 9)

Such analysis can also be adapted to DNA symbol
sequences”, if one can properly define the concept of
a word. In coding regions, the 64 codons can be
considered as words, but putative words in noncoding
regions could have lengths greater than 3. The word of
length n can be considered as a parameter that varies
from three upward, and a DNA sequence is considered
as an overlapping set of word n-tuples. Sequences from
different categories of organisms were analysed”, and
the Zipt exponents were larger for noncoding sequences
than for coding sequences —indeed the largest exponent
obtained was for the noncoding sequences of C. elegans,
& =0.537. This result (which is not entirely uncon-
troversial’') suggests out that noncoding regions were
closer to the natural languages than the coding regions,
and implies that noncoding regions may have a structured
‘language’. .

It 1s conceivable that this difference in language-like
properties between coding and non-coding regions can
be adapted to a method to distinguish between coding
and noncoding regions, similar to the coding sequence
finder (CSF) described in section ‘Coding sequence
finder’ below. However, linguistic analysis-based meth-
ods for gene identification, on the other hand, exploit
the formal structures of languages and grammars.

Genlang. Formal language theory views languages as
sets of strings defined over some alphabet with concise
sets of rules called grammars. Theoretically, for a given
alphabet one can define an infinite number of languages.
Grammars have been studied intensively with the help
of computers, and have been used to describe the
complex structures of strings of symbols. In the process
computer programs, called parsers, have been developed,
which are capable of determining whether a given string
satisfies the rules of the grammar. These programs have
been applied to the problem of scarching for complex
patterns specified by grammars, in a technique known
as syntactic pattern recognition.

The information encoded in the DNA scguences uses
an alphabet of four letters, with a st of rules determining
the protein-coding regions. Thus the techniques of lan-
guage theory can be applicd to identify the syntactic
patterns of the DNA language. The problem consists n
defining the protein-encoding gene gramumars, The core
of the gramnuu“ can be presented in the form of a
binary tree (Figure 3). The root node is the gene, which
is hicrarchically built up. It is analogous to the sentence
ol a natural language. 1t consists of a start (und body)
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Figure 3. Graphical represenmation Gf" the core grammar structure used
in Genlang. (Adapted from ref. 12).

and a termination. There are various rules which define
the start (first exon) and the body (internal exons and
introns), and the termination (last exon). At the bottom
of the tree are what are termed as ‘leaf’ rules, variously
called sensors {neural network technique) or ‘prelexical’
in the linguistic context. These are derived directly from
the sequence. There are 13 leaf rules used in GenLlang,
including rules for determining a true initiation of trans-
lation, such as consensus for the start codon, its distance
from the ATG preceding it upstream, etc.

Fach leaf rule is assigned a ‘cost’, or a threshold
error, which it can accept. The cost of consensus sequence
(signal), for example, is defined as the sum of the
negative logarithm of individual base position frequen-
cies, normalized so that the most likely base in each
position contributes zero cost. Costs are propagated up
the parse tree and summed at each node, which is
connected to two leaves or other nodes, so that each
subtree has its own threshold cost. The cost at node N
is defined in terms of the costs of the two lower-level
rules — left (L) and right (R) child—as follows

Cost, = (1 —u) Cost, +u Cost, , (10)

where @ is a mixing parameter, with values ranging
between ) and 1. As for the neural networks, values
of 1 are determined from sample sequences. In addition,
each node is associated to a pair of threshold costs,
0, and 0, If the cost accumulated from a subtree at a
node exceeds the threshold cost, that path is discarded
and the grammar may backtrack or retry the node at
the next iteration. Even if a gene is developed success-
fully, the grammar can be made to backtrack, in an
attempt to minimize the overall cost.

20

The training set currently used' consists of sequences
from organisms including man, mouse, Drosophila and
dicot plants clustered into groups of similar genes, as
in Geneld, to take into account the over-representation
of some classes of genes (e.g. globins) in the databank.
The performance of the technique was assessed, using
various measures, including the standard sensitivity and
correlation coefficients. For a test set (also from the
same organisms) these values were 0.83 and 0.77 re-
spectively. The other measures were more stringent,
such as the fraction of genes correctly predicted com-
pletely and the fraction of correctly predicted exons.
Typical values for these were 0.1 and 0.5 respectively.

Correlation methods

One feature of all methods described above is that they
are context dependent, 1.e. in each case a sample set is
required, and parameters obtained from this sample set
are then used to determine the potential coding properties
of a test sequence. Two approaches that do not require
any particular prior information to determine the coding
potential of a DNA sequence, which are based on the
correlation properties, have recently been developed.
In recent years there has been a flurry of activity,
primarily in the physics literature, on the study of long
and short-ranged correlations in long genomic sequences.
A widely used tool to study the short and long range
correlation structure of symbolic strings is the discrete
Fourier transform. For a symbolic sequence {Sj(a)},
j=1,...,N, of symbols {&} this can be defined as

V2

N
] .
S =¥ S(f) =2 N2 2, S, ()
[/ 4 o j..—..l
where
Sjﬂ =1 1if Sj =
=0 if Sj £ .

The analysis of a large set of coding and noncoding
sequences has revealed®’ that the Fourier transform of
coding sequences has a distinct peak at frequency
f=1/3, as in Figure 4 a, while this peak is absent fror
noncoding sequences as in Figure 4 b, independent o;
organism and base composition. On the other hand
long-ranged correlations show up as a 1/f fall-oft ir
the frequency, and this can be seen either in the simple
power spectrum defined above’ ™, or in more involvec
analyses such as the wavelet transform™.

Another method to detect long-range correlations pro
ceeds through the construction of a so-called DN/
walk®, which is defined as follows. Starting from th
origin of a square lattice, one considers a directe
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Figure 4. The Fourier transform of a coding (a) and a noncoding
(b) sequence from chromosome Il of S. cerevisiae.
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random walker who takes steps up or right according
to the nature of the DNA sequence under analysis. For
a pyrimidine at site i, the walker takes a step upward,
u(i)=+1, and for a purine, a step rightward u(i) =- 1.
The net displacement y(n) after n steps scales as y(rn) ~ n<,
For an uncorrelated or short-range correlated walk, the
theory of random walks gives the well-known result
that «=0.5, and thus deviations from this scaling
behaviour are indicative of long-ranged correlations in
the data.

One difficulty of applying this approach directly to
DNA sequences i1s that, DNA has a patchy structure,
1.e. the average base composition varics {from region to
region, and this can give nse to features similar to
those observed in long-range correlations. To overcome

CURRENT SCIENCE, VOL. 71, NO, I, 10 JULY 1996

this difficulty, a technique termed Detrended Fluctuation
Analysis (DFA)”, which involves dividing the region
of interest of length N, into N/I non-overlapping windows
of length [/ is adopted. For each window, the ordinate
of the least squares fit for the net displacement of the
DNA walk is defined as the local trend, and the detrended
walk 1s then defined as the difference between the
original walk and the local trend. The variance about
the local trend in each window is calculated and averaged
over to give a quantity F (/). It was shown that F () ~ I
where a =1/2 for patchy, but otherwise uncorrelated or
short-range correlated sequences, while for long-range
correlations a > 1/2.

Results of studies of several DNA sequences, separately
analysed for coding and noncoding regions, have esta-
blished the result that coding regions have short-range
correlations, while noncoding and intronic regions have
long-range correlations. Although this result is somewhat
controversial®, there is enough evidence to suggest that
the scaling exponents do indeed behave differently in
the two cases®’.

The above empirical observations can be adapted as
the basis of techniques to then predict coding potential,
either by looking for the presence of short-range cor-
relations, in the Fourier method GeneScan®® outlined
below, or by looking for the absence of long-range
correlations, as in the coding sequence finder (CSF)
algorithm®'.

Another technique developed®* to study the correlation
structure of DNA sequence uses the ideas of the so-called
chaos game. The chaos game representation (CGR) of
a DNA sequence can be constructed as follows. The
four corners of a square are labelled by the four nu-
cleotides in DNA, A, T, G, C respectively. Starting
from the origin (the centre of the square), a point is
plotted midway to the corner corresponding to the first
nucleotide of the sequence. Subsequent points are the
successive midpoints between the previous point and
the corner corresponding to the current nucleotide, as
the sequence 1s read through. What emerges is a pictorial
representation of the DNA sequence. The density of
points in the different part of the square indicates the
various correlations between nucleotides. For a random
sequence, for example, the square fills up uniformly.
This technique has so far been used only to classify™
different groups of genes. The difficulty of using the
technique to recognize coding regions is that a CGR
pattern becomes distinct only for fairly long sequences
(> 1000 bp).

GeneScan, In earlier work™, we have used the existence
of the 1/3 periodicity in coding regions to develop the
technique GeneScan which detects the coding potential
in genomic regions as follows. A window of length Af,
1s moved along a sequence of length N, and the local
peak-10-noise ratio at =173, defined L3
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P (j)=P(1/3)/P, is measured. Here P(1/3) is the peak
height at f=1/3, P Is the average peak height of the
spectrum and j 1s the position of the centre of the
window. Study of a very large number of previously
identified genes and noncoding sequences has shown
that the peak-to-notse ratio of the spectral feature at
f=1/3 exceeds 4 in almost every coding sequence,
while for a noncoding sequence, this ratio is less than
4 (and usually less than 3). This empirical observation
can be used to set a threshold, which, if the local peak
to noise, P,[(j) exceeds, then the window is deemed
to overlap with a coding region. This simple procedure
thereby gives the approximate location of coding exons.
Figure 5 shows a representative result, for bases 15000—
25000 of §. cerevisiae chromosome III. The size of the
window to be used depends on whether or not we
expect short (<200bp) exonic regions. Once the ap-
proximate position of the coding region is located, the
sequences are further scanned to find, in any of the six
reading frames, the exact location of the initiation and
the stop codon, or the location of possible consensus
splice sites. For prokaryotic genes, our procedure works
extremely well, and a typical result, from the analysis
of the H. influenzae genome is given in Table 2. We
have similarly studied a host of organism ranging from
S. cerevisiae (9 of the 16 chromosomes), E. histolytica,
A. vinelandii, A. californica, C. elegans, M. genitalium
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and several human genome sequences as well. The overall
quality of the results is similar to that in Table 2.

For eukaryotic sequences, where exons can be very
short, the scanning windows need to be adjusted to an
optimal length. Furthermore, other techniques for locating
splice sites to determine the exact location of the introns
and exons also need to be used. As a consequence, the
technique does not have the same level of sensitivity
or specificity at the nucleotide level, for genes composed
of several exonic regions®, although the overall quality
of results i1s very similar to that afforded by other
techniques'®.

Coding sequence finder. The observation of the diffe-
rence in correlation exponents between coding and non-
coding regions can also be implemented to scan a
genome to determine the potential coding regions*'. Here
also, a window of length W is moved along the genomic
sequence. For each window, a double logarithmic plot
of F (I) vs | is constructed. The exponent ¢ is obtained
as the (least squares) slope of this graph, and this value
of a is plotted against the position of the window
(defined as the centre of the window). For noncoding
regions « > 0.5, while for coding regions a ~ (.5. Thus
a dip in the plot indicates a probable coding region and
one can essentially read the coding regions off the
graph; see Figure 6.

- The major drawback of this method is the large size
of the window required to observe long-range correla-
tions, which sets a limit on the smallest size of coding
region detectable (usually about 1000 bp). Furthermore,
the boundaries of the coding stretches are only very

Coding Sequence Finder

15 - | -

Figure 5. The results of window analysis using GeneScan on a stretch
of the chromosome 11l of yeast. The regions where the graph exceeds

the base (here taken as 4) indicate probable coding regions.

Table 2. Summary of results from GeneScan for
the complete genome of H. influenzae (the quoted
specificity and sensitivity are at the gene level)

ORFs reponed® 1727
ORFs detected 1499
False positives 0
Specificity 1.0
Sensitivity 0.87
Genes reported® 933
Genes detected 867
Sensitivity 0.93
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Figure 6. Typical results from the coding sequence-finder algorithm.
A detrended DNA walk is constructed from a DNA sequence and the
correlation exponent is determined for a stretch of about 1000 bp. The
dip in the value of the scaling exponent indicates potential coding
regions. (Adapted from ref. 41),
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approximately determined by this method, although this
can be improved by combining this with other techniques.

Discussion and summary

Rapid assessment of sequence information is possible
only through computational techniques which are now
being developed and refined. The different methods
available have been briefly described and reviewed in
the previous section, and it is clear that each algorithm
or technique has something to offer.

Experience-based methods — for example those that use
neural networks®*#?* or prior information from Markov
chain analysis'®!®, are currently the most widely used.
These offer the advantages of pattern recognition and
pattern selection. Methods that do not rely on prior
information, such as those based on correlation proper-
ties*>*!, offer, in principle, the possibility of wider
applicability. It is also likely that no single technique
is complete in itself. A recent review by Burset and
Guigé'® has benchmarked a variety of gene structure
prediction programs against a large database, and finds
that on average, the predictive accuracy of most methods
ranges between 60 and 70%, for eukaryotic genes. Some
techniques that are presently being developed further
look for homology between the derived protein sequence
and existing protein databases to completely identify
genes; these are currently the most accurate methods
available. However, it is perhaps unreasonable to expect

that any one computer algorithm — or even a combination

of several of them — will predict the location of protein

coding regions with perfect specificity and sensitivity.
Practical wisdom would dictate that one uses some or
all of the methods available to decipher a given genome*.
As the technology for DNA sequencing becomes in-
creasingly sophisticated, there is bound to be a virtual
flood of nucleotide sequences pouring in from a wide
variety of organisms. The challenge is to make sense
out of this sequence information, for the ultimate answers
to the mystery of life may well lie in nature’s deliberate
choice of certain nucleotide sequences over others.
Data coming out from sequencing projects has brought
home the realization that our level of genetic 1gnorance
is much higher than we imagined. The example of yeast,
S. cerevisiae, is telling. An organism which one thought
was genetically beaten to pulp by decades of intensive
research, has actually revealed only about one-third of
its secrets to molecular geneticists. From new sequencing
data — and as of today all 16 chromosomes of S. cerevisiae
have been completely sequenced —we now know that
this organism houses a much greater number of potential
genes than hitherto suspected. Since it i1s difficult to
experimentally identify genes on a mass scale given the
level of technology today, it is absolutely necessary 1o
weed out noncoding sequences (especially noncoding
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ORFs) so that one has fewer potential genes for ex-
perimental verification. Computational methods do pro-
vide a quick assessment of possible coding regions, and
this information can help workers know where to look
for probable genes and make an experimental verification
of the predictions.

At the heart of it is the problem that we still do not
know all that makes a stretch of DNA evolve 1nto a
protein-coding sequence. Only as more and more DNAS
are sequenced and analysed, will the statistics will get
better and we may then develop a better understanding
of why some parts in DNA are coding. Mathematical
methods may also provide insights into the vast amounts
of non-protein-coding DNA found in complex genomes.
Is this DNA truly ‘junk’ or is there a pattern in it
which we do not comprehend? The architectural details
of genomes will provide clues to the inevitable question
of how life originated and evolved on this planet.
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Record of prolific and indubitable acritarchs
from the Lower Paleozoic strata of the
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Tethyan Garhwal Himalaya and age
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Exceptionally well-preserved and prolific fossil acri-
tarchs (a group of acid insoluble microfossils with
uncertain affinities) have been recorded from the Shiala
and Yong formations of the Tethyan Garhwal Hima-
laya, India. The presence of age marker forms of
acritarch reveals that the Ordovician/Silurian bound-
ary lies within the Shiala Formation and not at the
contact of Shiala and the Yong formations, as was

proposed by earlier workers'”.

THe Lower Paleozoic acritarchs are known from through-
out the world, especially from UK, USA, Canada,
Norway, Spain, Belgium, Southern Africa, Russia, China
and Arabian Sahara. However, the record from India is
almost negligible due to rare occurrence of marine
Paleozoic sediments in the Peninsular India. Only the
simple Leiosphaerids, sphaeromorphs, acanthomorphs

24

and netromorphs, are so far recorded from the marine
Precambrian/Cambrian rocks of the Peninsular India
(Vindhyan, Kaladgi, etc.)’® and the Extrapeninsular India
(Krol belt, Lesser Himalaya, Tethys Himalaya)*’"". In
the Extrapeninsular India, the Lower Paleozoic marine
sediments are well recognized in the Tethyan zone of
Kashmir, Spiti and Kumaon—-Garhwal Himalaya and con-
tain a variety of invertebrate Paleozoic fossiis.

The term ‘Tethys’ was conceived by Suess'® for a
long expanse of Mesozoic seaway separating the old
continental masses of the Gondwanaland in the south
and Angaraland in the north. The ‘Tethys Himalaya’
refers to the widespread sedimentary basin to the north
of the central crystalline rocks'*', The Tethyan sediments
range in age from Precambrian/Cambrian to Early Ter-
tiary'’ and are rich in fossil contents. The Tethyan
sediments of the Garhwal Himalaya have received
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