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1. Introduction

Given a function f on R, consider its Fourier transform
defined by

7©= | fexear,

The classical Paley—Wiener theorem characterizes com-

pactly-supported functions in terms of their Fourier
transforms.

Theorem 1.1. The function f is compactly supported if

and only if its Fourier transform § originally defined

on R extends to C as an entire function of exponential
fype.

An immediate consequence of this theorem is the fol-
lowing uncertainty principle. If f is compactly sup-
ported, then f cannot have compact support unless
f=0. Let us call this a Paley—Wiener property of the

Fourier transform on the real line. More refined versions
of this property are known, A result of M. Benedicks'

says that 1t the sets ={x: fix)# 0} and
= {&: £ (§) # 0} both have finite Lebesgue measure,

then f= 0. These results involve the size of the supports
of fand f. There are also versions of the Paley—Wiener
property that involve decay of the function at infinity.

For example, 1if f is compactly supported, then its
Fourier transform cannot have any decay of the form

| £ (5 < Ce " unless f= 0. For, then f can be extended

as a holomorphic function on the strip containing the

real line. A much more refined version of this property
is the theorem of Hardy.

Theorem 1.2, Suppose we have |f(x)| < Ce
I}'(.E)I = Cchmaz. Then f = 0 whenever ab > -};

and

A search for similar Paley—Wiener properties of the
Fourier transform on general locally compact unimodu-
lar groups has been going on for sometime, Scott and
Sitaram® proved among other things, a Paley-Wiener
property for the Fourier transform on the Heiscnberg
group. They conjectured that an analogue of Benedicks’
theorem holds for all connected, simply connected nil-
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potent Lie groups. That is, if f1s a compactly-supported
function on such a group G, then its Fourier transform
n(f) cannot vanish on a set of positive Plancherel
measure unless f=0. Moss® and Park® proved this con-
Jecture for certain special classes of nilpotent Lie groups
and recently several proofs of the conjecture were ob-
tatned by Ltpsman and Rosenberg’, Arnal and Ludwig®
and Garimella’.

The problem of proving exact analogues of the Paley-—
Wiener theorem for.the group Fourier transform has
been taken up by several authors. In the case of the
Helsenberg group, such theorems ha\re been proved by
Kumahara®, Ando’ and Thangavelu'® and for step two nil-
potent groups Thangavelu has proved a Paley—Wiener theo-
rem for the modified Fourier transform (see ref. 11). It
will be interesting to prove such Paley~Wiener theorems
for general nilpotent Lie groups and also to find their rela-
tion to the Paley-Wiener properties.

In the conjecture of Scott and Sitaram, it is assumed
that the group Fourier transform sz( f) vanishes on a set
of positive Plancherel measure. For nilpotent Lie groups
the group Fourier transform is operator valued. Thus the
requirement that ;z( f) =0 imposes very strong restric-
tions on the function. To see how strong this condition
is, let us take the case of the Heisenberg group H". In
this case the Fourier transform is parametrized by non-
zero reals A and for each A the operator m;( f) acts on
L*(R"). The condition Jrﬂ(f) O translates mtof (2) =
for all ze C", where £ is the inverse Fourier transform
of f in the central variable. Undoubtedly this is a very
strong assumption to make.

It is therefore desirable to replace the assumption
7(f)=0 by a weaker one. To certain extent this prob-
lem on the Heisenberg group has been treated by Sita-
ram et al.'*. Our aim in this article is to elaborate on this

and prove an analogue of Hardy's theorem for the Heis-
enberg group.

2. Paley—Wiener properties of Hilbert-Schmidt
operators

As we have already noted, the Fourier transform on nil-
potent Lie groups is operator-valued. If xr is an 1rre-
ducible unitary representation of a nilpotent Lie group G
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and if f1s a squarc integrable function on G, then z( f)
will be a Hilbert-Schmidt operator acting on a suitable
Hilbert space. So, we necd to study Paley-Wiencr theo-
rems and Paley=Wicner properties of such operators tn
order to study the same for the group Fourier transform.
In this section we formulate analogues of the Paley-

Wiener thcorem and Hardy's theorem for opcerators. For

the sake of simplicity we consider operators acting on
L*(R).

Let T be a Hilbert-Schmidt operator acting on L*(R).
We define the Fourier transform of T 1n the following
way. Consider the projective representation 7(z) of C
acting on L*(R) given by

xS + 'l-.r}')

ApE)=e""7 2 (6 +y),

where ¢ € L*(R) and z = x + iy. Using this we define
T(&) =& +iENTa(-& - i),

where & = (&', £&") € R* and call this Fourier transform of
the operator 7. Now we use the fact that every Hilbert—
Schmidt operator 7 on L*(R) is the Weyl transform of a
function fe L*(C). That is to say, there 1s f e L*(C) such
that 7= W{ f), where W(f) 1s the Weyl transform of f

given by
W(f) = lcf (Qn(z)dz:
If fand T are related as above, we call T (€) the

Fourier—Weyl transform of the function f on C. For this -

transform we have the following analogue of the Paley-
Wiener theorem.

Theorem 2.1. Let fe LXC) and let T= W(f). Then f is
supported in 12l < B if and only if its Fourier-Weyl
transform T (E) extends to C* as an entire function sat-

isfying the estimate IT (Ol < Ce®™ where Il is the
Hilbert—Schmidt operator norm.

When the function f on R is supported in Ixf < B, it fol-
lows from the definition of the Fourier transform that

the derivatives of f satisfy the estimates D" f@f)l

< C:B* and this is equivalent to saying that 7 extends

to an entire function of exponential type. Similarly, in
the above theorem we can state the conditions in terms
of certain derivations of the operator 7. In order to de-
fine these derivations, we use the annihilation and crea-
tion operators of quantum mechanics: A = (d/dx)+ x and

A* = —(d/dx)+ x. We define 8T and 0 Tby 6T =TA - AT

and 0 T=A*T — TA*. In terms of these deri\{ations the
above theorem takes the following form.

Theorem 2.2. Let fand T be as in the previous theorem.
Then f is supported in 12l <B if and only If
16’ & T < CB™ for all j and k.
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The above derivations 8T and & T take particularly
simplc form when the opcrator T is diagonal in the
Hermite basis. Let

H = %—(AA* + A*A) = -A + bl

be the Hermite operator and consider its spectral de-

compostition A = Z(2k+l)pk. When the operator T is
k=0
of the form

T=p(H)=) ¢k+DF,
k=0

then it can be verified that
I8 T = ) Cr (A% AT M) (H),

where the sum 1s extended over all non-negative integers
r such that 0<r<j<k+r. Here A_ and A, are the
backward and forward finite difference operators. Thus
the conditions on the derivatives of T translate into
conditions on the derivatives of the function ¢. Note
that 1n this particular case the sequence ¢(2k + 1) gives
the singular numbers of the operator 7.

We now look for a condition on the operator T that is

analogous to | f (&) < Ce™"", In the case of operators of

the form T =¢(H), the natural condition 1is that
o2k + D)l < Ce™**V 1n the general case we state the
condition in terms of the operator e which is bounded
when ¢t < 0 but unbounded when t > 0. This is a densely-

defined operator and the operator analogue of the con-
dition | (&)} = Ce™™" is that Te?” is Hilbert-Schmidt.

Note that when T = ¢(H) this condition transfates into
the exponential decay of ¢(2k + 1). We now have the
following Paley-~Wiener property of the Weyl transform.

Theorem 2.3. Let fe L*C) be compactly supported, If

for some b > 0 the operator W( f)e"" is Hilbert-Schmidt

then f= 0.

The proof of the above theorem uses some properties of
special Hermite expansions and an elliptic regularity
theorem of Kotake and Narasimhan. The condition on
the operator T does not directly imply exponential decay
of its singular numbers. However, it does imply expo-
nential decay of the singular numbers of certain Fourier
coefficients of the operator T. We now briefly recall
how the Fourier coefficients of an operator are defined.
In defining the Fourier transform of an operator, we
have made use of the Schrodinger representation of the
Heisenberg group. To define the Fourier coefficients we
make use of the so-called metaplectic representation.
For each real @ there exists a unitary operator u(6)
acting on the Hilbert space L*%R) such that
n(eigz)=p(9)ar(z);x(9)*. Using this we can define the
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operator valued function T(0) = u(8)Tu(0)*. Then, the
Fourier coefficients 7, of the operator T are defined by

27
T, = J T(6)e" 040,

With this definition we can show that the condition
ITe"|| < = translates into exponential decay of the sin-
gular numbers of the Fourier coefficients 7,,. In terms of
the Fourier coefficients and the Fourier transform we
have the following Paley—Wiener property.

Theorem 2.4. Let T be a Hilbert-Schmidt operator on
L*(R). If for every integer m the singular numbers of T,
are exponentially decaying and the Fourier transform

T extends to entire functions of exponential type, then
T=0.

IfT=W(f)and T,, = W(/f,) then f and f, are related by
1 27
fu@) === | f(e¥2)e b,
27 A

The condition on the singular numbers of T, implies that
f. are real analytic whereas the conditions on 7, show
that f,, are compactly supported. Hence f,, = 0 for all m,
thus proving the theorem. We can now assume €Xxpo-
nential decay of f and prove an analogue of Hardy’s
theorem for the Weyl transform.

Theorem 2.5. Let f be a function on C which verifies

| f (2] < Ce™® and let W(f)ebH be bounded for some a

and b positive. Then f =0 whenever a (tanh (b/2)) > +

This theorem is proved by appealing to the Hardy"s
theorem for the Fourier transformon R, If T= W(f) and

T, = W(£,) then we have | ()| < Ce ¥, We will show
that Iﬁn (7))l < Ce~(anhB2N ppa theorem will then fol-

low immediately from Hardy’s theorem. In order to get
estimates on the Fourier transforms of f,, we first ob-
serve that the condition 117¢”ll < o implies that
IT,e?71l < 0. This follows from the fact that the unitary
operators p#(6) all commute with the Hermite operator H.
Now we can write down the special Hermite expansion
of f, which reduces to a Laguerre expansion owing to
the fact that the functions f,, are homogeneous. Then it 1s
easy to calculate the singular numbers of T,, which are
expressible 1n terms of the Laguerre coefficients of f,.
The condition IIT,e?”ll < o then translates into expo-
nential decay of the Laguerre coefficients of f,. As the
Laguerre functions are eigenfunctions of the symplectic
Fourier transform, we get estimates on the Laguerre co-
cfficients of the Fourier transform of f,,. Then we usc a
generating function identity for Laguerre functions and

get the required exponential decay of fu. We refer to
ref, 13 for the details of the proof.
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3. Paley-Wiener properties of the Heisenberg
group

In this section we use the results of the previous section
to formulate some Paley-Wiener properties of the Heis-
enberg group H". For the sake of simplicity we assume
n =1 but whatever we say for this case has analogues
for the higher dimensional case as well. First we recall
the relevant facts from the representations of the Heis-

enberg group. This group, which we denote by G 1s just
C X R equipped with the group law

(2, I“)(w,s) =(z+w,t+ s+%[m(z.W)).

There are two kinds of representations of G: one di-
mensional and infinite dimensional. In the definition of
the group Fourier transform, only the latter is involved.
These unitary representations are parametrized by non-
zero reals and all of them are realized on the same Hil-
bert space, namely L*(R). Thus, for each non-zero X € R

and (z, 1) € &G we have the unitary operator m,(z, 1)
whose action on L*(R) is given by

IA(xE+3xy)

' 7, (z, (&) = eMe (& +y),

where ¢ € L (R) For a nice 1ntr0duct10n o the repre-

sentation theory of the Heisenberg group we refer to ref,
14.

Given a function f on G the group Fourier transform
of f1s defined by

f (A) = Jf (Z: 1), (z, t)dzde.
G

Thus for each A # 0, f(l) is an operator on L*(R). Tt
can be shown that the Fourier transform iﬁitially defined
on L'(G) can be defined for L? functions as well and for
such functions f (&) is a Hilbert—-Schmidt Opérator. The

simplest version of the Paley—Wiener property of G 1s
given in the following theorem (see ref. 2).

Theorem 3.1. Let f € L'(G) be compactly supported as a
function of t. Then, f(A) as an operator valued function

_ of A cannot vanish on a set of positive measure unless

f=0.

From the definition of the Fourier transform it follows
that

HOE J.f’l(z):r;l(z 0)dz,

where f is the inverse Fouricr transform off in the
variable. The vanishing of f (A1) means thntf =0 as a

function on C and if it is s0 on a set of positive measure
then by Benedick’s theorem for the Fourier transtorm
f=0. It is clear that this is just a version of the Paley-
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Wicner property which takes into account only the sup-
port properties of fas a function of ¢.

Combining the results of the previous section, we ob-
tain several stronger versions of the Palcy-Wiener prop-

erty.

Theorem 3.2. Let fe G be compactly supported and let
E C R be a set of positive Lebesgue measure. Suppose
that for every non-zero A € E there is b(A) > 0 such that
i ()" is finite. Then f= 0.

We also have the following version of Hardy’s theorem
for the Fourier transform on the Heisenberg group.

Theorem 3.3. Let fbe compactly supported as a function
of t and satisfy the estimate \ f(z, )] < Ce® as a func-
tion of z. Let E C R be a set of positive measure with
the property that for every non-zero A€ E there is

b(A)> 0 such that f (l)eb('l)‘q is Hilbert—-Schmidt. If
a(tanh(b(A)/2)) > 1/4 then f = 0.

Combining the results of the previous section with the
results of Lipsman—Rosenburg’, Arnal-Ludwig® and
Garimella’ we can obtain various versions of the Paley—
Wiener property for general nilpotent Lie groups. There
is also an exact analogue of Paley—-Wiener theorem for

the Fourier transform on the Heilsenberg group. Let us
write Tj in place of f (4).

Theorem 3.4. Let fe LYG). Then f is compactly sup-
ported in the z variable if and only if for each non-zero

A the Fourier-Weyl transform T, extends to an entire

function of exponential type.

We also have another verston of the Paley—Wiener theo-
rem for the modified Fourier transform on G which
respects both the variables z and ¢. We refer to ref. 11
for formulation and proof of this result where 1t is
proved in the more general set up of step two nilpotent
Lie groups. It 1s an interesting open problem to formu-
late such a Paley—Wiener theorem for general nilpotent

Lie groups.
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