HISTORICAL NOTES

Planck’s radiation thermodynamics and its consequence:
Laue’s thermodynamics of interference

Amar Nath Nigam*

A chronological account of Planck’s radiation thermodynamical relations, their consequences as applied
to interference by Laue are given from a pedagogic point of view. Planck’s approach, Laue’s thermo-
dynamics of interference and partial coherence and importance are described in brief. It is found that the
Planck’s law as well as the mathematical definition of partial coherence could be derived with preference of

the latter aspect over the former. An experiment about the visibility has been proposed for the first time.

Radiation thermodynamics was devel-
oped mainly by Wien and Planck and
later applied to interference by Laue.
All the original literature, therefore,
exists in German journals, Excellent
review articles exists on the work of
Wien and Planck in English but Laue’s
work has been overlooked. The present
article aims at giving a chronological
account of these works ifrom a peda-
gogic point of view.

To treat radiation as a thermodynamic
system owes its origin to the tollowing
facts: a) Radiation exerts pressure which
can be calculated from the electromag-
netic theory of Maxwell. b) The con-
ception of temperature was extended
from material bodies to radiation. This
was done by Wiedemann' who argued
that a sufficiently heated body emits
light. This light was ascribed the tem-
perature of the emitter. The luminescent
materials emit light at room and even
lower temperatures when excited exter-
nally by radiation of a suitable fre-
quency. The emitted luminescent
radiation was assigned the temperature
at which the luminescent material would
emit the same kind of light on heating
without being decomposed. Thus the
temperature of the luminescent light is
higher than that of the surrounding me-
dium. ¢) Wien? suggested the extension
of the entropy concept to the radiation.
If a body heated at temperature T loses
energy O by radiation, the former suf-
fers a loss in entropy S = Q/T and the
radiation gains this entropy which like
energy gets propagated away. d) Ex-
periments on black body radiation show
that the thermal radiation attains a state
of equilibrium with the cavity walls,
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thereafter no further energy exchange
occurs. Thus all thermodynamical vari-
ables can be assigned to radiation.

Planck’s entry

At this stage when enough evidence was
available to treat radiation as a thermo-
dynamic system, Max Planck entered
the scene. His route to radiation entropy
was different. He had a strong convic-
tion that the irreversible radiation proc-
esses of a thermal cavity should be
accounted for by the electromagnetic
theory of light. In his first two introduc-
tory papers>® Planck investigated the
equations of motion of an electric dipole
oscillator in presence of an electromag-
netic wave. The oscillator absorbs the
wave and re-emits it. The reaction of the
re-emitied wave causes radiation
damping in the oscillator. This differs
from the frictional damping in three
major aspects. Radiation damping is
independent of the oscillator material,
the amplitude of the oscillations 1s al-
ways finite and the principle of energy
conservation is satisfied, energy 1s not
consumed as in the case of frictional or
mechanical damping. This last property
convinced Planck’ that the irreversible
radiation processes should be accounted
for by the ‘conservative interaction’ of
the radiation damping. To ensure 1rre-
versibility of emission, Planck argued as
follows. The incident wave excites the
oscillator to re-emit energy that propa-
pates away with amplitude proportional
to 1/r. If after a small time interval all
the magnetic fields be reversed, the
wave will travel back again the same
distance r. On rearrival at the oscillator,
the amplitude is propottional to i/2r. All
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the phases and amplitudes get altered
and it is just impossible to reproduce
the original incident wave. The irre-
versibility 1s thus established. A charac-
teristic  of  irreversibility is  the
establishment of the state of equilib-
rium. The system cannot by itself return
to any of the states it possessed previ-
ously.

A spherical cavity {without oscillator)
emits thermal waves normal to its sur-
face. These spherical wavefronts con-
verge toward the centre from where they
diverge out, get reflected by the walls of
the spherical cavity and this process of
alternate convergence to and divergence
from the centre continues periodically
with a time interval 2R/c, which is the
time between two successive equidirec-
tional passages of the same wave
through a given point in the space of the
cavity. Such waves are called tuned or
ordered waves. Now if an oscillator be
put at the centre, it re-emits waves that
are not tuned or are called disordered.
The tuned waves do not satisfy the
conditions for the establishment of
equilibrium and have to be avoided for
explaining irreversibtlity.

These were the initial steps that led to
the idea of ‘natural radiation’, thus to
entropy of radiation in elcctromagnetic
terms®. Intensity of radiation can be
expressed as a Fourier sertes. Each term
is called a partial oscillation and in gen-
eral has a random phase, Radiation with
random phases in its partial osciilations
is called ‘natural radiation’. This ran-
domness in phases gives rise to entropy
of radiation. Thus the untuned or disor-
dered radiation is indecd natural radia-
tion, The existence of radiation entropy
is another philosophical thought 1n
Planck’s approach, supplemented by his
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remark  that radiation carries with it
entropy along with the electromagnetic
cnerey. The phase randomness in natu-
ral radiation is analogous to the posttion
and velocity randomness in £2as mole-
cules: they are in a state ol molecular
chaos.,

When  natural  radiation 1nteracts
with a single oscillator, the latter sutfers
interactions that are random. This

sives rise to the entropy of a single os-
cillator in presence ot the natural radia-
tion, This forms an answer to Jeans’
objection”"; how can a single oscillator
have an entropy? It is not the lone
osctllator but the random interactions of
the npatural radiation  with 1t that
give ris¢ to the entropy of the oscillator.
How this argument of Planck escaped
Jeans® attention is not clear. The ex-
pression for the total entropy of
the cavity plus the radiation was written
as

STM;II - zSu:H:iItnmrs + JS d/. (1)

The second term is the entropy of the
radiation field, s is the entropy density.
How Planck arrived at his radiation
formula from the entropy considerations
has been described by the present
author’ earlier partly in this journal and
partly elsewhere'”, His equation for
entropy corresponding to his radiation
formula was

§= (—-—({—+1]ln(—q-+l)—-{—/—lnﬂ-},
a .

avy ay av

(2)

av

where a’, a are constants.

We write below the expression for
radiation intensity derived by Planck
and later used by Laue. However
Planck® gave a justification for his in-
tensive expression (e is the base of natu-

ral logarithm, b a constant, & a
parameter),
L/ U U
Sosciy) = ———In——-= (3

av evb 6

= electromagnetic entropy given to
the radiation emitted,

which was one of the bases for deriving
eq. (2), where U is given by the classi-
cal result,

U:-'-'—,}-i\)p. (4)
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Liere R, is involved in defining the en-
ergy of a lincarly polarized beam in the
speetral range dv via R, dvdodQ as the
encrgy cmitted by a surface etement du
in time df in the solid angle dQ where ¢
1s the speed of light.

When radiation traverses lhrough a
diclectric, according to Kirchhofl-
Clausius law (reference not quoted by
Planck''), R, changes to R/r;z, where 7
1s the refractive index. Consider radia-
tion emitted from a surface element do
to another one do’ situated at a distance
r. In time d¢, in the frequency interval »
to ¥ + dv, energy flowing is

{2R, do do'dv dt)/r?, (5)

where 2R, is defined as the brightness

of the unpolarized radiation of fre-
quency v. Total intensity is defined by

7, = ZRPJdGJ'-‘E-, (6)

which 1s written as
J,=2R Fw, (7)

where F 1s the area of the image surface
and w 15 the solid angle. Now eq. (2)
gives the temperature of the radiation

8 = av/{In(abv’wFIc* 1)) (8)

and for a medium with refractive index
n,

8 = av/{In(2bv wn® FIct J)}. (9)

The so-calculated temperature € of
the radiation is called the electromag-
netic temperature and is maintained as
long as the radiation propagated unhin-
dered by absorption or splitting of the
beam. The free propagation of radiation
even with spreading is a reversible
process. If in refraction or reflection
there 1s no loss in energy again, the
process is reversible. Any weakening of
Intensity due to splitting of radiation in
two or more directions as in case of
diffuse reflection causes a lowering in
the temperature of radiation. Therefore
interference and diffraction are also
irreversible processes. Let us see how
Laue contradicted this statement. for
interference in a Michelson’s interfer-
ometer where no diffraction effects oc-
cur.

Laue’s thermodynamics of
interference

In thermodynamics we distinguish be-
tween reversible and irreversible proc-
esses from two points of views:

a) According to Clausius, a process is
reversible if it can run both forward
and backward. Planck modificd this
statement by adding the condition:
initial and  final thermodynamic
states must coincide.

b) Entropy in an irreversible process
always increases but in a reversible
process it either decreases or re-
mains constant.

We have two principles characterizing
entropy: a) the principle of increase of
entropy and b) additive property of en-
tropy. Using the additive property of
entropy, Laue'? proved that in case of
Interference the entropy of coherent
bundles of rays always decreases. For
this purpose he chose the example of
interference in a Michelson's interfer-
ometer to which equation (2) of Planck
(Note 1) can be applied directly.

Laue puts expression (5) in a slightly
ditfferent form. The energy of a plane
polarized radiation bundle with inten-
sity R 1n vacuum, frequency coming out
of a small opening with angle falling on
a focal plane with area f at angle @ in
time is proportional to

tfw In 6 R dv. (10)
The eq. (2) assumes the form
2 [ 2
V ¢c“K
S=r1wlnbk—]| 14+ ——
/ c2 [ I )
Y, 2 25
c“R c“R. "R
infl4+——1{- in dv, i1
( JJV3J v (th)

where ¢ ts the speed of light, k and & are
Boltzmann’s and Planck’s constants
respectively. Let there be two radiation
bundies wilh intensities R; and R,. How
does their entropy behave at constant
energy assuming the validity of the
addition theorem of entropy? In inter-
ference, the amplitude sums R, + R; and
the differences R, ~ R, are involved.
The constancy of encrgy implies
R, + R, = constant while entropy is a
function of R, ~R, (AS=AQ/T,
AQ = Rl ~ R}.) Pl.lt[iﬂg,
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R
< ;l =(a+x), - ’? ={(a—x), (12)
- hyv-
we obtain
] ¢? ﬁ
X = 2};3(RI "'Rg)
1 “2 - (13)
3“2;“&+&)

Thus x 1s proportional to entropy and ¢
to energy. By addition theorem, the
entropy of the two bundles is

FO=(l+a+x)In(l +a+x)
—-(a+x)in{fa+x)+ ({1 +a-x)
In(l+a-x)-(a-x)In (a - x).

(14)

Differentiation with respect to x gives

™

f'():)=lnl+a+'r _lnl+a—x
ad+ x (d— X } (15)
£y = — 2a’ +a—x°) |
[(1+a)* — x*(a* - x%)

Equating f’(x) to zero gives the range
—a < x < a in which f”(x) < 0. Thus f (x)
has only one maxtmum which lies at
x = 0. Entropy proportional to x thus
decreases with the difference R, ~ R-.
The shape of f(x) will be drawn in Fig-
ure 4. With the decrease in entropy the
temperature of the bundle of rays in
absolute units increases as the energy
remains constant,

LLauve applied these results to a
Michelson’s interferometer (Figure 1)
whose splitting plate P is totally unsil-
vered and is made out of a material
having negligible absorption coeffi-
cients. This assumption makes the phase
difference between the interfering rays
independent of wavelength. The two
side mirrors S, and S, are fully silvered
and are perfect reflectors. Let a wave of
unit intensity be incident on P. The re-
flected wave incident on S, will have
intensity », the transmitted wave inci-
dent on §, has intensity 1 — r, where r is
the coefficient of reflection of the sur-
face of the plate P. The reflected wave
1s represented by dashed lines while the
transmitted one by continuous. The mir-
rof S, reflects the ray with the same
intensity » which after transmission by P
has the intensity r(I - r). Likewise the
ray transmitted by P has the intensity
I —r and is reflected from S, with the

Figure 1. Laue's analysis of interference in Michelson's interferometer.

same 1Intensity then partially reflected
by P with intensity (1 - »)r and trans-
mitted with intensity (1 - r)°. The pair
marked (1) travels opposite to the inci-
dent wave with phase difference
2(6, —6)), o0, is the phase change on
reflection and 0, is the phase change on
transmission through the plate P. The
pair marked (2) travels with phase dif-
ference zero, each wave having intensity
r(1 — r). They interfere to give a maxi-
mum of intensity 45(1 — r). The remain-
ing intensity 1 — 4r(1 — r) equals that of
the pair (1).

Iy = (1 = 2r)° (16)

Waves of the first pair have intensi-
ties r and (1 = )7, i.c. the amplitudes
are r and | — r. The resultant on inlter-
ference 1s | — 2r. Their phase difference
20, —-0,) = = . We now usc indices
(1) and (2) for first and second retlec-
tion and transmission then

(B + 61y~ (8 + 82y = 0

> (17)
(O + 60 — (o1 + 62y = 12

g
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These equations hold true for all
wavelengths. It the bundle incident at P
has intensity R, the two rays that origi-
nate by reflection and transmission have
Intensities,

RI =rR )

Ry =(1- PR 8)

These are reflected normally by S,
and §,, return to P and are transformed
(O

Rl =4r(l—rR

> (1Y)
Ry =(1-2r)°R

By energy conservation

Ri+R =R +R>. (2

Encrgics of the tinal and initial states
are equal. To see the change inentropy
et us put < /2 then by eq. (2D
R <Ry, It 7> /4 by (I8 and (I
R, > R,and by (20 R," < R,

SN



HISTORICAL NOTES

-

When r> 172, R, > R, and for r < 1/4,
R, >R, and again (21} holds. Thus
cntropy decreases when

(22)

otherwise it always increases. In the
above range of r, interference 1s a re-
versible process and is an exception to
the general statcment that in interfer-
ence entropy INCreases.

Next Lauc discussed the relation of
Perpetiiom mobile (perpetual motion) of
the second kind to the thermodynamics
of interference. The continual working
of a machine that would create 1ts own
energy in violation of the first law of
thermodynamics is perpetuum mobile of
the first kind, while the continual op-
eration of a machine which would work
by utilizing energy of only one reservoir
in viclation with the second law s
called perpetuum mobile of the second
kind'?, Laue considered two diathermic
media (Figure 2) separated by a surface
E. S;. S5, S; and S, are perfect black
bodies. S; sends out rays that on reflec-
tion and refraction at f get absorbed by
S, and S; respectively. Likewise rays
sent by S; are absorbed by S; and §,.
The entire system is in thermal equilib-
rium.

If the rays from S, and S; interfere,
then etther S,; receives more energy
from f and S; less or vice versa. The
thermal equilibrium is then disturbed.
The bodies will be heated or cooled
without any associated changes. This
would violate the impossibility of per-
netual motion of the second kind. Equi-
librium is attained only by natural
r.nbiation in which coherence does not

=
S .
_ =
f.
S, >
Figure 2. !mpossibility of Perpetuum

Mobile inside a cavity maintained at
consiant temperature,

858

il

exist and no interference can occur, This
forms the basis of the validity of the
sccond law.

Boltzmann’s dcfinition of entropy 1n
terms of thermodynamic probability W
1S

S=klog W’ (23)

This explains all the above discussed
facts. If a systcm consists of two subsys-
tems with entropies §; and $-,

Si=klog Wy and S, =k log W,. (24)

By addition theorem, W= W, W,
which implies that the subsystems are

totally independent of each other. In

interference the two coherent beams are
not independent of each other and the
addition theorem is no longer applica-
ble.

We are omitting Laue’s discussion of
certain paradoxes and pass on to his
precise definition of partial coherence.

Partial coherence from
interference thermodynamics

Michelson defined visibility of interfer-
ence pattern by the ratio

V= ([mnx"' Imin)/(lmn; + Imin)- (25)

V=1 when [, =0, 1.e. when two co-
herent rays with equal intensities inter-
fere. V=0 when the rays are incoherent.
For intermediate values of V, the inter-
fering rays are said to be partially co-
herent. No measure of partial coherence
was so far defined. There is no perfectly
monochromatic source. Every spectral
line has a line width. In a Michelson’s
interferometer if the path difference 1s
increased, there comes a stage when
interference ceases to occur. This 1s
interpreted in terms of the line width of
the radiation used.

Laue’s starting point was the Fourner
integral representation of two waves
with frequencies v and v,

f() = fdvF, cos(2nvt - @,),

g(t)y = fdv'G,. cos(2nv’ —y,). (26)

If the sin function is used in place of
cos the corresponding quantities are
written as f* and g* When the two
waves (20) are superposed, their energy
(s the average

(27)

4y

fg= 1 dej dvdv’F,G,»
T
;
cos (2avt— ¢@,) cos 2av't—vy,). (28)

Here 7 is the shortest time interval
needed for doing a measurement, it is
large compared with the periods of os-
cillations. Integration with respect to
time gives

fg= ljj dvdv’'F, G- sm:r(t' —vIyl
2 v ~v)

COs [x(vr - 1!')(2! + y) = (}’F' - ‘pv)]
(29)

The term with ¥' +v is negligibly

small and 1is neglected. Introducing
variables
A=t -v), p==('-v,  (30)
2 2

only a narrow strip about the line u =0
comes into consideration where

{sin(2muy)}/2nuy = 1. (31)
Eq. (29) assumes the form

— 1

o= || 14 Ga

c0s 4711 = (Vap — P1)]- (32)

Thus fe=0 for both v =v' and v # v".

The phase ditference y;,, — ¢;, fiuctu-
ates randomly and rapidly with time.
For coherence we introduce a constant a

by

Vv — 9P, = 4@ (33)
and relate
G,=pF,, (34)

p being another constant. The above two
equations were used to write

g =p (fcos a+f*sina). (33)
Thus
Tz = p(f2 cosa + Jf *sina). (36)
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Putting

g=f*ie p=l a=y,-@,=n/2
3

JU
Va+u —Pi-u =?+(‘Pl+,u ~ Qi)

(37)

Equation (32) due to integration sym-
metric about 4 = 0 gives

-5 |
¥ = || dAduris uFic

sin [47tpt — (P14 — Pa-) = 0. (38)

Thus changing f to f* implies replacing
¢, by ¢, + /2. In eq. (29) all functions
change sign,

a) (f¥* =—f, 1
D) FFe0=f*+g*]

(39)

The following averages were derived:

a) fe = pcosa f*
b) fg* = —psina f*

) f*¥g*=fg g (40)
d) f** = f2
e) f*g=—fg*

Rewriting (36) as a completely coherent
function

gr=p (fcosa+f*sina), (41)
we say that g contains a coherent func-
‘tion f. Let g be an incoherent func-
tion, then we have a partially coherent
function,

g=gr+ &f. (42)
Further,
gz — g% -I-g}?' . (43)

Equations (40a), (40b) and (40e) are
still valid but g -» g~ Equations (38),
(41) and (40d) give

(ﬂ)g=ﬁzf_2
(b) fe? = —cosa f* g
@ F 5" = fg*? =sin%a. f2 . g*f .

(44)

I Agding (b) and (c) and rearranging,

- 2
f8+ fe** 8 .
4

i/, 18 called coherence of f in g. The
quantity

Jre =1 =g (46)
was defined as incoherence of f in g.
The hmiting cases i, =0 and 1 corre-
spond to absolute incoherence and
complete coherence.

Entropy of two partially
coherent bundles (Note 3)

It R 1s the intensity of radiation in vac-
uum, then in a medium of refractive
index n it is R/n". This is called specific
intensity defined as

k= R/m* (47)
The entropy S of radiation is'?
S=0o L (k) (48)

where ¢ is a constant and in analogy
with eq. (15),

p—

kv? c’k c’k
Lk)=—| | +—(In| | + —

ck c*k
3 ln “—3 .
hv- hv

B

(49)

Now consider two partially coherent
radiation bundles ¢ and 3 in Figure 3

polarized in plane of incidence fall on
the surface of separation ot two dielec-
tric media, If k; and &, be the specific
intensities, total energy is g(k) + kp) =
constant and

ki +ky =T (50)

is an invariant. At the boundary there
originate two new waves,

f=0¢p, g=-pp, (51)

where the negative sign of p means a
phase change of 7 in reflection, Since

F+?= ¢p2, we have
8 +pt=1. (52)

Ifp =0
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§ \Y

Figure 3. Reflection and refraction of
waves at the surface separating two
diathermic media.

f=py. g=0yp. (53)
Thus in general
= O + "
S =0p+py g (54)
g=—pp+0y,

Since the incoherence j satisfies the
equation

Jkiky = (1 ~ D)k k;
= f2g7 = (fg* + fg*7).

using (52) Laue expressed fz,gz,ﬁ:-

and fg2 in terms of ¢ and y, showing
that

f2e? —(fe’ + fg*%)

=¢° Y ~(py’ —py*?),  (595)
which implies that
Jkika=1T" (56)

is a second invariant. For complete in-
coherence,

3

J=Lkitky =1, kiky = 1"
kl =-£—(1’+JI"Q — 41"
KE :%({'—\/!’2-4]"

o
r

(57)

Thus the entropy tor two bundles 1s

S =afL{ky) + L(k3)]
- a[LH—!'-f—J!I B, 41"}

+-L{—_{—U’ -1 - 41“}] \

which tor 7 » ., becomes
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s=oft{iihi+ 40

# ik kT = Apkks b L{Eh + £

- ,ﬂ; + kb = AR }] (38)
and
(ki + &) = ik ks
= lLI - i:}‘" + 4”\'.!0{.':. (59}

To discuss this result graphically, Laue
put

-
¢k~

=a+ X, ; —{— X

fre-

(60)

eqs (49) and (58} show that § 1s propor-
tional to

@lx1) = fla +\/?“ —{l-i}a” - x~)

~fla=+Ja- = (1= iXa- —x). (61)
where f stands for the tunction
fix)=(1 +x)in(l +x)-xInx.
(62)

The quantity a = c*(k; + k,)/hv’ Temains
unchanged in reflection and refraction
and can be treated as a constant. Laue
regarded

L‘:(k] --k:) . .
x= S 4 P{x,1)
as three rectangular coordinates and
looked for surfaces that determine (61).
Since x appears as x” in (61) it is sym-
metric about the plane x =0, The do-
main of interest is defined by 0 =i < 1
and -a < x < a.

Fori=0,

®=F(x+a)+f(a-~x).

For x = ®xa, ¢ =f(2a), it rises with de-
creasing x, till x =0, i.e. for equally
intense radiation bundles ¢ = 2fa). This
ts shown in the upper part of Figure 4.
The quantity ¢ — f(2a) is in arbitrary
units and x is plotted on abscissa. The
hines i =1, x=*a and ¢ = f(2a) en-
close entropy surfaces.
Laue calcutated

'} ik
%ﬁ:{f’(a+ a -(l-i)(,az—;?)
di

-—f’(u-—\/ag' - (i - ;}{aj“! *——.x‘?")}

K9{)

> Difference in
intenstties

-] ')

08

Coherence

Figure 4. Upper part: variation of en-
tropy In interference with the difference
in intensities of two coherent beams.
Lower part: surfaces of constant entropy.

g5
{’12 —-— X"

JaZ —(1-i)a* - x%)

X

and since

f(x)= In(l +—l—)

X

decreases with increasing x, the physi-
cally meaningful range of curly brackets
is negative but its multiplier is positive,
thus o¢/di < 0 which holds at x =0 and
i =0 where

fla(l+Ji} = Fla(l = VD))

ap ..
— = limn
gt i-0 Ji
Ir _2
=2af (a)=
l+a

with increasing coherence; for constant
intensities the entropy of bundles de-
creases. Along the boundary lines
x=*a, d¢p/dt =0 but since k; and k,
here are both zero, coherence has no
meaning.

The mean conclusions drawn by Laue
were;

(1) The entropy surfaces are perpen-
dicular to the three bounding lines,.
Curves of equal entropy are,

(1 - i)(a?‘ —-xz) = (ﬂz -,rg), (63)

where x;, 1s a parameter of the curve,
This 1s shown in the lower part of
Figure 4. The differential equation
of these curves is:

di _ 2x(1-1)

= (64)
dx a’ - x?

(2Y Atx==xqa. i=1, di/dx is indctermi-
natc; there are singular points. The
lines x = * a, i = | are lowest level
lings. The highest level lines are de-
fined by x§j= 0.

(3) For all pairs of rays of equal energy,
there are two incoherent radiation
bundles with equal intensity having
highest entropy; for all level lines, |
has a maximum value x3/a,.

These curves of equal entropy show
changes like the coherence of a ray pair
in a simultaneous reflection and refrac-
tion. All the states which are repre-
sented by the points of the same curve
can be transformed into each other by a
suitable choice of reflection coefficient.
For example, two incoherent rays are
transformed into two partially coherent
ones when their intensities are wholly or
partially compensated. The maximum
coherence is achieved by complete
compensation. If the intensities of inco-
herent rays are K, and K5’ then

2 T 2
‘ X3 | Ki—-K3
[y = = . (65)
T @2 _Kj'—f-Ki]
Conversely, every pair of partially

coherent ray bundles can be by simulta-
neous rellection and refraction, trans-
formed into an incoherent pair when the
difference between their intensities is
increased. Exceptions are completely
coherent and completely incoherent
bundles.

The last part of this paper of Laue'®
discusses the partial coherence of three
radiation bundles. This aspect will not
be included here.

Importance of partial
coherence in modern optics

Laue used a single frequency in his cal-
culations. However monochromatic a
source may be, 1t has a spectral distri-
bution over a small frequency range.
This indeed required a modification in
LLaue’s theory. A rigorous treatment is
given by Born and Wolf'?, but a lucid
discussion is due to Matveev'®.

With a source having a spectral line
with a given intensity distribution
(Gaussian or Lorentzian) one calculates
out the visibility factor (eq. (23)) in
terms of certain integrals. It is found
that for small path differences, visibility
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is better for Gaussian line shape and for
larger path differences it is better for
Lorentzian line.

Another consequence of the modern
development 1is distinction between
temporal and spatial coherence. Every
analysis of interference involving divi-
sion of amplitude uses temporal coher-
ence which involves the spectral width
of the frequency used. If the intensity
maxima of 4 + dA4 falls on the intensity
minima of A, the interference pattern
becomes less distinct (more blurred). If
¢ is the angle between the rays and the
interferometer axis,

2dIn8=m A +dA)=(m+ 1/2)A,
mAA = Al2,

Oor
2
2d1ng = MAXA) A
2AA 2A
— lv el L‘I
TV
or
éj'._-_-__.éij Av y, = 1.
A V

y. is called the coherence time and cy,
the coherence length. These considera-
tions were applied to the Fabry-Renot
interferometer by Saha'’. When quad-
rupole radiation 1is wused, visibtlity
changes'®.

When the division of wavefront 1s 1n-
volved, e.g. Frenel’s biprism or mirror,
the size of the source comes into pic-
ture. Spatial coherence is now used. The
increase in the size of the source causes
decrease in the visibility of the fringes.
Different points in the source give rise

to different set of fringes mutually dis-
placed with respect to each other. The
pattern gets blurred. Path difference
between the rays coming from the ex-
treme parts of the source must be less
than A/2. The best description of spatial
coherence is given in terms of the sto-
chastic theory.. These details are re-
served for a separate review article.
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Notes

I. Equation (2) is the stage of bifurcation. If
one proceeds according to Planck, one
can arrive at his quantum formula of en-
ergy distribution — the Planck’s law. On
the other hand, if one follows Laue’s
method, one arrives at thermodynamics
of interference and mathematical defini-
tion of partial coherence. Since the pres-
ent article deals only with the
thermodynamics of radiation, the latter
aspect has been preferred over the for-
mer.

2. If the variation in- visibility with the re-
flection coefficient r of the plate P of
Michelson’s interferometer be studied, it
would be possible to test Laue’s predic-
tion, This can be done in two ways. Ei-
ther the plate P be subjected to controlled
partial silvering accurately varying r or
by choosing different dielectric materials
that have different reflectivities. To the
best of the author’s knowledge, such an
experiment has never beea reported.

‘3. Laue’s derivation is quite lengthy. Only a

summarized version highlighting the
main points is given here,
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