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The discovery of quasiperiodic and chaotic behaviour
of deceptively simple discrete population models is a
major unexpected development of the last few decades.
While these complex phenomena are relatively well
accepted and understood in physical sciences, the
biological significance of complex dynamics (chaos) is
still not acknowledged fully. Indeed field data of
biological populations has often been thought to some-
how avoid the predictions of the mathematical models.
Ecologically realistic reformulation of these models has
now begun to suggest that chaos is not biologically
unrealistic and that ecological processes such as
migration of individuals between populations can
appear to suppress complex oscillations.

Eyesight should learn from reason.
— Johannes Kepler

INn an otherwise descriptive experimental science of
biology, mathematical models have been used extensively
to study population growth processes in ecology. The
prime reason being the need to be able to predict the
future course of eveats for necessary manipulation/
intervention. These models have been applied to diverse
fields such as, demography, economics of natural resource
management, health and conservation studies. It has been
used for predicting guidelines for harvesting policies,
vaccination regimen, and growth and spread of infectious
diseases'™,

Living systems show two types of growth — continuous
and discrete. In many organisms such as humans, re-
production (growth) continues throughout most of their
lifetime, and, more than one generation can overlap at
any period of time. This is not the case with many
others such as, annual plants and insects, where
generations do not overlap and thus growth is discrete.
The mathematics used for modelling are different in
these two cases. Single populations of organisms with
non-overlapping generations are modelled using one-
dimensional discrete equations (maps), and continuously
growing organisms are modclled using ordinary differ-
ential equations.

A variety of biotic and abiotic factors contribute to
population growth. Thus the time series data from dif-
ferent systems (shown in Figure 1), incorporates the
resultant of all relevant factors to the population size.
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Controlling or even having knowledge of all the con-
tributing deterministic and stochastic factors is almost
impossible in field experiments, but can be attempted
in the laboratory. Therefore, single population models
described by few parameters such as, the intrinsic growth
rate of the species and carrying capacity of the envi-
ronment are highly idealized. Many ecological factors
contributing to a population’s growth such as, predation,
dispersal and competition are assimilated in the growth
rate and the carrying capacity, thus retaining the essence
of biological details. In spite of being simple, these
models have been found to be quite useful in describing

the temporal pattern of growth and are used regularly
in ecology®” '

The commonly used density-dependent, single popu-
lation, continuous models can either show exponential
growth, stabilize to the saturation value (carrying capacity
of the environment), or die depending on its intrinsic
growth rate and the carrying capacity. Some of the
factors that may induce regular or erratic oscillations
(as shown in Figure 1) are environmental noise, time
lag, growth rate regulation, and interactions with other
species (predator—prey, host—parasite, etc.). On the other
hand, the density-dependent single population models
for discrete growth exhibit a variety of dynamics de-
pending on the intrinsic growth rate R and other den-
sity-dependent factors. These models can show a range
of dynamics such as, equilibrium, penodic (including
higher period oscillations), and irregular, aperiodic os-
cillations or chaos'®”. Thus these models have complex
dynamics intrinsic to them and can show erratic fluc-
tuations even in the absence of stochastic environmental
factors.

The predominant perception in population dynamics
has been that of homeostasis. The concept of ‘balance
of nature’ is well-entrenched in biological thought and
a stable, equilibrium world is considered to be normal.
The erratic fluctuations observed in population size over
a span of time (as seen in Figure 1) have been generally
considered to reflect stochastic factors such as weather
conditions. There have been voices of dissent'” to this
view where the fluctuations have been attributed to
factors inherent to the system. Thus there has been a
continuing debate between the biotic and the climatic
schools over the relative importance of deterministic
versus stochastic forces in controlling ecological popu-
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lations'"'?. This debate has taken new meaning with the
concepts of chaos and complex dynamics in ecology.
Other than the philosophical argument against chaos,
there exists an evolutionary argument also. Chaos is
associated with violent oscillations with very low mini-
mum. Some feel™™ that this property of chaotic oscil-
lation increases the risk of extinction and, hence, chaos
must be evolutionarily selected against. It 1s common
sense and supported by many ficld studies'™'” that a
small population indeed has a higher risk of extinction
under any sudden environmental perturbation. Violent
oscillations aiso have high risk because they may stress
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Figure 1. Time serics dida representing population size variation for

three organisms: g, Laboratory culture of a stored-product beetie C.
maculutus®™. b, Number of cases of measles reported in New York
between 1928 to 1963 (ref. 36b). ¢, Number of larvae of a strain of
flour beetle T. casteneum over several generations™, |
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the environment with very high numbers and then create
cudden lows for even not-so-significant environmental
factors to act against it.

Thus having equations showing chaotic oscillations
do not necessarily justify the presence of chaos in
natural ecological systems. Are these models realistic
for natural populations? A study', that has been quoted
extensively in discrete population literature, collected
life table data for twenty-four field populations and four
laboratory populations of insects which show discrete
growth (Table 1). This data was fitted to a single-species,
discrete model developed based on detailed biological
considerations'®. The results showed that all natural
populations have population parameters lying in the
region of stable dynamics. This study, based on a large
data set, strengthened the perception that equilibrium
dynamics is normal in nature and not chaos. The insect
populations studied in the controtled conditions of the
laboratory came closest to true single-species situation
and showed regular or erratic osctllations in their growth
dynamics. Thus it was concluded that the equations are
realistic but only in the confines of the laboratory.

In this paper we enquire into the possible reasons of
absence of periodicity or chaos in natural populations
by considering the above-mentioned mathematical
model'®. We show that simple ecological processes like
density-independent migration, can act to suppress
oscillations or fluctuations (chaos) in a population with
unstable population parameters and thus exhibit stable
dynamics. We also reason against the evolutionary
argument and show that chaos per se may not increase
the risk of extinction even under regular emigration or
depletion. Thus the results on natural populations'” neither
argue against chaos in evolution, nor do they have
negative implications about the realism of the single
species discrete growth models in ecology.

In the following sections, we first describe the model
and 1ts dynamics during free growth; then study the
dynamics of the model under migration; and finally,
discuss the implications of our results.

The model and its dynamics

There are two different kinds of intraspecific competi-
tion — *scramble’ and ‘contest’ — that contribute to popu-
lation growth. ‘Scramble’ involves equal partitioning of
resources and either all individuals survive and reproduce
or the population goes extinct when resource is insuf-
ficient. In the case of ‘contest’, some successful indi-
viduals get all they require whereas some get insufficient
for survival and reproduction'”. These two are the extreme
forms and usually the situation is always mixed — there
Is some contest likely because some individuals will be
more successful than others. The model proposed by
Hassell® is based on the mortality and natality data of
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a number of insects (see Table 1) which show density-
dependent relationship due to intraspecific competition.
The one-dimensional discrete equation representing the

population size (N) at any two consecutive generations
(t and r+ 1) in this model is

N(t + 1) = [R(1 + a.N()) "] N(),

where R is the intrinsic growth rate, and a and b are
constants defining the density-dependent feedback terms.

On scaling X =a.N, the dimensionless form of the equa-
tion becomes

X+ D =[RO+XDO)Y" X(0. (1D

This two-parameter equation (called Hassell model hence-
forth) has been used for all theoretical studies in this
work. Varying values of b describe intraspecific com-
petition for resources — with b=1 for pure ‘contest’, and
b =oo for pure ‘scramble’. For 0< b < 1, competition is
only through different degrees of contest. All intermediate
values of b, i.e. 1 <b <o signify varying combinations
of scramble and contest in population growth.

The return map® (X(r) versus X(¢+ 1) plot) of equation
(1), like most other realistic single population discrete
growth models***, has a single-hump growth function
with a “tail’ extending to infinity as shown in Figure
2. The gradient of the hump at the equilibrium point
(where f(X)=X) becomes progressively higher as &
increases for all b>1 (Figure 2a). The effect of in-
creasing R for a fixed b is also similar (Figure 2 b),
and both these parameters contribute towards increasing

Table 1. Estimates of & and R from the analysis of insect life

table data (from ref. 13)

Species b R
Moth: Zeiraphera diniana Gn. 0.1 1.3
Bug: Anthocoris confusus (Reuter) 0.5 1.6
Beete: Phytodecta olivacea (Forst) 0.3 1.7
Moth: Hyphantria cunea Drury 1.5 1.7
Scale: Parlgtoria oleae (Colvee) 0.7 2.2
Bug: Leptoterna dolobrata (L.) 2.1 2.2
Moth: Erannis defoliaria {Clerk) 0.4 3.0
Moth: Bupalus piniarius L. 0.5 3.1
Parasitodi fly: Cyzenis albicans (F) 0.5 32
Fly: Erioischia brassicae (L.) 1.0 3.3
Moth: Cadra cautella Walk. 0.3 33
Bug: Nezara viridula L. 0.7 4.3
Moth: Operophtera brumata (L.) 0.3 5.5
Bug: Nephotentix cincticeps Uhler 0.2 6.1
Moth: Erannis progemmaria {Hb.) 0.5 6.3
Moth: Anagasta kuchniella (Zell.) 0.5 8.6
Bug: Neophiluenus {inearus (L.) 0.4 9.2
Mosquito: Aedes aegypti (L) 1.9 10.6
Moth: Tyria jucvbueae L. 0.4 10.7
Moth; Erannis leucophaearia (Schiff) 0,2 112 .
Moth: Acleris variana Fern, 0.2 13.0
Bug: Succarusydne saccharivora (Ww)) 0.4 13.5
Parasitoid wasp: Bracon hebetor Say 0.9 54.0
Becle: Leptinotarsa decemlineata {Say) 3.4 75.0

-———-_--—-—I—-———-ﬂl—i—l——_-—-—__.___-—___“__
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the instability in the system. Figure 3 shows the stability
boundaries (solid lines) between different dynamical
regions (stable, damped oscillatory, periodic, chaos) for
variations of the density-dependent parameter b and the
population growth rate R for this model. The broken
line separates the stable limit cycle region from the
region with higher period oscillations. Thus at low b,
the system tends to be stable for a large range of growth
rates, whereas at higher values of b, it can exhibit a
range of dynamics from stability to chaos through period
doubling bifurcations.

[n a study”, the abundance of twenty-four different
insect populations in the field was considered (see Table
1), and the life table was constructed to evaluate the
population parameters b and R. Similar study was done
on three laboratory populations of insects also. The pairs
of b and R values for each population were plotted
with a circle on the stability graph of the model (Figure
3) where filled circles and open circles represented field
and laboratory populations respectively. As can be seen,
most field populations tend to have » and R values

clustering in the region of stable dynamics. These results
generated the following views:

— Some of the types of dynamical behaviour that are
possible in theory, in fact, rarely occur in real,
single-species populations:
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Figure 2. Return maps showing the one-hump natete of the Hussell
model for (@) R=20 and &=2, 3, 4, §, 6, (&) b=4 and R=10, 20,
30, 40.
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-~ High order limit cycles and chaos appear to be a
relatively rare phenomenon in naturally occurring
single-species populations;

-~ Evolutionary considerations suggest that extreme fluc-
tuations are unlikely because the population would
need to be very abundant or agile to persist.

The laboratory populations, on the other hand, showed
unstable dynamics and were viewed to be the result of
internal dynamics as is expected from their tendency to
scramble for resources in close confinement and for the
general absence of density-independent mortalities.

Population dynamics under migration

In reality, population in an area does not live in isolation
but interacts through different spatiotemporal connectivi-
ties with other population patches (metapopulation). One
of the ecological processes that contributes tn a major
way in determining population size, persistence and even
its genetic composition is migration. Immigration can
increase the size or aid in forming ‘refuge’ or ‘founder’
populations, whereas emigration can lead to population
extinction or loss of diversity, Some related processes
that act in a similar manner are recruitment, harvesting,
vaccination, etc. These play significant roles in deter-
mining the spatiotemporal dynamics of the metapopula-
tion. Considerable amount of work has been done to
elucidate the effect of density-dependent migration
between two subpopulations with simple discrete models
of single populations'’**. Here we study the effect of
density-independent migration on the dynamics of the
Hassell model. We consider the case where the model
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Figure 3. Subility boundarics in the R-b parameter space of the
Hassell model”. The solid lines scparate the regions of different
dynamics and the broken line separates the stable limit cycle region
from higher periodic region. The closed circles correspond to data
from Table 1 and the open circles for laboratory population data.
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population undergoes a fixed amount of migration (L)
at every generation after growth has taken place. The
model equation (1) then takes the form

X+ 1D)=[RA+XOY 1 X(H+ L, (2)

where L >0 at immigration, and L <0 at emigration.
The eftect of + L on the return maps (Figure 2a & b)
1s to elevate the hump above the X-axis, and that of
— L is to push it down, thereby shortening the ‘tail’ of
the hump. In the following sections, we show the effects
of a small amount of constant immigration and emigration
(X L) on the dynamics of population growth in the
Hassell model.

All our results on the long-term dynamics of the
Hassell model are shown through bifurcation diagrams®
where the population size (X) for a large number of
generations is plotted for variation of the parameter of
interest (e.g., R, b, or L) after discarding initial 1000
generations. In these diagrams, a population at equilib-
rium is shown as one point representing its stable size.
When the population size repeats every second genera-
tion, it is represented by two points and is called a P-2
oscillation. Similarly for higher period oscillations such
as, P-4, P-8, etc., population size repeats every 4th and
8th generations. When the size varies irregularly without
repeating itself, it is quasiperiodic or chaotic. At chaos
the population attains many sizes at different generations
and the regions in the bifurcation diagram get filled up
with many points. Thus these diagrams give a clear
1dea of the dynamics exhibited by the model for a range
of parameter values.

\

Effect of small migration on the dynamics of
the model with increasing growth rate

It 1s known that population dynamics in this model
becomes increasingly complex as the growth rate R is
increased for 6> 1. Figures 4 and S show bifurcation
diagrams for two cases (b=4 & 6) where the population
undergoes a small amount (L =0.05) of immigration and
emigration during growth with varying intrinsic growth
rates (0<R<70). The dynamics of free growth for
b=4 (Figure 4 b) changes from stable to P-2 and P-4
as R increases. The changes in the dynamics towards
suppression of higher order oscillations under small
immigration (Figure 4 a), and towards more complex
dynamics under emigration (Figure 4 ¢) are clear. Similar
results are observed for the case of b=6 (Figure 5).
In this case, during free growth (Figure S b) the popu-
lation goes through a range of dynamics from equilibrium
to oscillatory to chaos complete with periodic windows®"
as R increases. But there is complete suppression of
chaos under immigration (Figure 5a) and early onset
of higher order oscillations and chaos under emigration

CURRENT SCIENCE, VOL. 73, NO. 11, 10 DECEMBER 1997



SPECIAL SECTION: MODELLING IN BIOLOGY

(Figure S c¢). In addition to the above, the population
1S also unable to balance even such small amount of
fixed emigration at every generation and goes extinct
(Figure 5 ¢) at a much lower growth rate compared to
the case with b =4 (Figure 4 ¢). The major results from
this study are: |

— A small amount of constant immigration increases
stability and emigration enhances instability in
dynamics at all growth rates.

~ Ability to balance small emigration reduces consid-
erably at higher growth rates for higher b.

Effect of migration on the dynamics of the
model with increasing b

Higher b indicates increased amount of scrambling in
intraspecific competition and 1t also induces instability
iIn the system. Figures 6 and 7 are the bifurcation
diagrams showing the effect of increasing & in the
dynamics of free growth and for populations undergoing
migration at a low (R=10, in Figure 6) and a high
(R=50, in Figure 7) growth rate. Figure 6 shows that
slower-growing organisms (R =10) exhibit only equili-
brium and P-2 dynamics at free growth (Figure 6 b) in
the range of b studied here. A relatively high rate of
immigration and emigration (L =0.3) induces stability
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Figure 4. Dynamics of the model population (5 =4) with increasing
growth rate during (a) immigration L=10.05, (b) free growth, and (c)
emugration L= 0.05.
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(Figures 6 a & ¢), but extinction occurs under emigration.
For a faster-growing population (R =50) exhibiting the
full range of period doubling dynamics and chaos (Figure
7 b), a much smaller immigration rate (L=0.02) com-
pletely suppresses chaos (Figure 7 a). But in contrast
to Figure 6 ¢, in this case emigration enhances unstable
dynamics (Figure 7 ¢} and extinction occurs at a lower
b. The main results from this study are:

- There 1s complete suppression of chaos under small
amount of constant immigration for a large range
of b.

~ The dynamic response to emigration for increasing b
is growth rate dependent —stable at lower R, but
induce early instability at higher R.

~ There are two modes of population extinction under
emigration — (a) preceded by large amplitude chaotic
oscillations, and (b) while exhibiting stable dynamics.

Effect of increasing migration on the dynamics
of the model with different b

To show the etfect of increasing amounts of migration
on the dynamics of populations having different b, we
choose a population (R=20) which shows stable and
P-2 dynamics for 2 < b <5 during free growth. The three
bifurcation diagrams for b=2, 3 and 4 in Figure 84
exhibit the growth dynamics of such a population un-
dergoing increasing levels of emigration. As is observed
earlier, Figure 8 a also shows that populations with
higher » can balance less emigration and extinction
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Figure 5. Dynamics of the modet population (&= 6) with increasing
growth rate during (@) nunigration L =0.05, (&) free growth, and (¢)
cmigration £ =0.05.
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occurs at lower L as b is increased (for b =2 extinction
occurs by L=4.2). The other interesting fact that is
seen in the plots in Figure 8 a is that for =3 and 4
the dynamic complexity first increases and then decreases
with increasing emigration, and extinction occurs during
the stable dynamic mode. IFor b=4, a freely-growing
population shows P-2 oscillation 1n its size. As emuigration
rate increases, its long-term dynamics goes through
period-doubling oscillations (P-4, P-8, etc.) to chaos.
But this trend is reversed as migration rate is increased
further, and there is reversal from chaos to stability
through period-halving bifurcations.

The bifurcation diagrams in Figures 8 b and ¢ exhibit
the growth dynamics of the population (R=20) at a
hicher b (b=135) undergoing increasing levels of emigra-
tion and immigration respectively. Figure 8 b shows an
unusual survival-extinction behaviour of the population
with increasing emigration. Here the model population
survives for small and high emigration rates but shows
extinction for intermediate range of emigration rates.
Other than this, the population follows all the other
features such as, increase and decrease of dynamic
complexity, and extinction at lower emigration rate as
seen In Figure 8 a. Figure 8 ¢ shows the dynamics of
population growth under immigration and it follows the
ceneral trend of increasing stability by suppression of
oscillation as tmmirration rate increases. These results
have the following important implications:

~ Increasing b shows increased dynamic complexity as
emigration increases up to a certain range, but then
show period reversal and suppress instability to finally
exhibit stable dynamics before extinction.

~ For higher b or R there is an intermediate range of
emigration rate at which the population go extinct,

O
2 b 15

Figure 6. Dynamics of a slow-growing {R=10) model population
with increasing b during (a) immigration L =0.3, (b) free growth, and
(c) emigration L=0.3
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though it can survive at lower and higher emigration.
~ Immigration induces stability.

Implications of the results

The two main arguments that are forwarded against the
relevance of chaos in ecological systems have been
based on: a) field data of a large number of Insect
populations, when fitted in a realistic discrete growth
model, have population parameters corresponding to
stable dynamics, and b) chaos increases the risk of
extinction because of the violent oscillations associated
with it. We have shown, through the study on the
specific model used for fitting the insect data sets, that
both these points can be argued against.
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Figure 7. Dynamics of a fast-growing (R = 50) model populatio.i with
increasing b during (a) immigration L=10.02, (b) free growth, and {c)
emigration L= (.02,
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First, when dispersal, a common ecological process
in nature, is considered in this model. It shows sup-
pression of higher order oscillations and chaos even in
populations having intrinsic growth rate which predict
irregular (chaotic) growth dynamics. Thus the observed
stable dynamics in natural insect populations does not
necessarily mean that the population parameters have to
be in the stable region in the model. They can have R
or b in the unstable region, but could show stable
dynamics by suppressing chaos due to migration. This
justifies one of the reservations mentioned by the authors
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of the study'® that their model ‘does not take explicit
account of migration and dispersal, and may give a
misleading account of some natural populations’. The
fact that single populations in the laboratory did show
unstable dynamics under controlled conditions implies
the existence of nonlinear interactions which contribute
to complex dynamics in these systems. Here, in this
realistic model for insect populations, we have shown
that immigration always suppresses unstable dynamics,
and even high emigration induces reversal to stability
for populations having varied population parameters.
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Figure X.
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Dynwmies ol the model population (R =20) with increasing migiation

(L) lor {(«) during emigration for b=2, 3, 4, (&) during emigration for b =35, and

(¢) during immigration for b= 5.
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Thus the field population data'® need not argue against
chaos in natural ecological systems.

Secondly, the evolutionary argument against chaos
stems from the beliet that chaotic oscillations 1nvolve
large amplitude fluctuations in size (‘boom and bust’),
coupled with very low minimum value which increases
the risk of extinction of population under small envi-
ronmental perturbations. The point to remember in this
regard is that 1t is not chaos which makes the population
vulnerable, but the violent oscillations and low mnimum
size that are the culpnts. This 1s clearly seen in Figure
8a and b. As long as the amplitude of fluctuations in
population size remains small and the minimum size is
not too low, populations can survive and exhibit chaotic
dynamics under both low and high rate of emigration.
On the other hand, large amplitude fluctuations with
very small mintmum lead to extinction under small
emigration rate as shown in Figure 8 b. There have been
studies'®“"~" which have correlated large coefficient of
variation 1n size and small population size with high
risk of extinction. Thus there seems to be no reason
tor chaotic dynamics per se to be selected against during
evolution and the erratic fluctuations observed in time
series data (of the kind shown 1n Figure 1) can as well
exhibit intrinsic chaotic dynamics.

Some of the results of this model have been shown
to occur in other simpler single population models*™®™*
indicating its generality in ecology. Therefore, the fluc-
tuations 1n population size observed in nature can
represent 1nherent chaotic dynamics, and the ‘stable
dynamics’ found in field populations may be a case of
suppression of chaos due to simple ecological processes.
This, of course, does not imply that there is no role
of ‘environmental noise’. It is possible to get similar
fluctuations in data (as in Figure 1) when ‘noise’ 1s
superimposed on stable or limit cycle dynamics. In fact
the variability observed in nature most likely is a
combination of environmental stochasticity and from the
nonlinear interactions inherent in ecological systems'*”>.
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