SPECIAL SECTION: MODELLING IN BIOLOGY

Controlling chaos 1n biology

Sudeshna Sinha

The Institute of Mathematical Sciences, C.LT. Campus, Madras 600 113, India

— P
g’ p— g— W’

We describe various techniques to control the dynamics
of strongly nonlinear systems. These procedures are
remarkably successful in stabilizing regular dynamic
behaviours, as well as in directing chaotic trajectories
rapidly to a desired state. Further, we highlight some
interesting and potentially important applications to
biological systems.
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A variety of physical and biological systems are well
modelled by coupled nonlinear equations’. In most cases
such systems are capable of displaying several types of
dynamical behaviour: fixed points, limit cycles, bi-
stability, birhythmicity or chaos, for instance. Typically
the nature of the motion depends on the value of one
or more parameters. In real systems these may be
quantities such as electric fields, temperature, pressure
gradient, pH, molarity or kinetic rates. Generically the
nature of the dynamics is governed by these parameters,
and one can obtain a wide repertoire of dynamical
patterns by tuning them'’.

Now these parameters can change (as a result of
fluctuations in the environment, for instance) and this
can push the system to drastically different kinds of
dynamic behaviour. Thus it 13 of considerable interest
to develop mechanisms of self-regulation or cantrol in
systems intrinsically capable of very complicated
dynamics, so that it is guaranteed to maintain a fixed
activity (the ‘goal’) even when subject to environmental
perturbations.

The need for control mechanisms in order that a
system is guaranteed to maintain fixed activity even
when subject to environmental fluctuations has long
been discussed in biology®. Situations wherein this is
thought to play a role, include pupillary servomechanism’,
biological thermostats and regulation of cell reactions’.
Although the details of the control mechanism operating
in a given situation may be system-specific, from a
theoretical standpoint it is important to study the general
principles by which systems can be brought back to a
desired state by self-regulation. The concepts developed
rigorously through the study of model systems can then
provide a framework for understanding the more complex
mechanisms by which biophysical processes maintain a
steady state.

Adaptive control algorithm

An adaptive control algorithm was recently proposed by
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Huberman and Lumer* and developed and extended by
Sinha et al’®. It was demonstrated that the algorithm
was a powerful and robust tool for regulating multi-
dimensional, multiparameter, strongly nonlinear systems.
The procedure utilizes an error signal proportional to
the difference between the goal output and the actual
output of the system. The error signal drives the evolution
of the parameters which re-adjust so as to reduce the
error to zero.

A general N-dimensional dynamical system is described
by the evolution equation:

. dX
A= dt

=F(X;u; 1, (1)

where X=(X,X,,...X,) are the state variables and
=W, M, ...n,) are the parameters whose values
determine the nature of the dynamics. The prescription
for adpative control is through the additional dynamics:

H=eX~X), (2)

where X 18 the desired steady state value and ¢ indicates
the ‘stiffness of control’, For one-dimensional systems
there is no ambiguity in eq. (2), but in higher dimensional
cases X can in principle be any one of the dynamical
variables characterizing the system.

This technique is very effective in bringing the system
back to its original dynamical state after a sudden
perturbation in the system parameters changes its
dynamical behaviour drastically. For instance, when a
parameter is perturbed, driving the system from a fixed
point into the chaotic regime (say by changing the
parameter instantaneously by an amount ¢ —~a ‘shock’),
this control mechanism 1s capable of pulling the system
rapidly back to the initial state. See Figure 1 for an
example of the control dynamics in a complex (high
dimensional, multiparameter) nonlinear system of bio-
logical relevance.

The scheme 1s called ‘adaptive’ as in this procedure
the parameters (which determine the nature of the
dynamics) self-adjust or adapt themselves to yield the
desired dynamics. It is also sometimes called ‘dynamic
feedback control’ in the literature. Since this adaptive
principle is remarkably robust and efficient in generic
nonlinear systems, it 1s of considerable utility tn a large
variety of phenomena, ranging from biological unns to
control engineering.
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Huberman and Lumer® first studied adaptive control
for a (discrete time) one-dimensional map, the logistic
map, which is used as a prototype for chaos in a wide
range of phenomena. It was first proposed by May’ as
a model for population dynamics, hence its name. The
form of the map is given as:

X, =aX(l1-X), (3)

where the nonlinearity parameter a determines the
dynamical behaviour, which ranges from fixed points
to chaos. It was found that the adaptive control mecha-
nism, implemented through the equation:

a, =a —&X —X), (4)

was very successful in returning the system to any
desired fixed point, X, even when perturbed to chaotic
regimes quite far in parameter space. See Figure 2 for

an example.
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Figure 1. Dynamics of a complex nonlinear system modelling a
biochemical network (given by eq. (10)) after a sqdden perturbation
changes a parameter value by a factor of 20: (a) without control, and

(b) with adaptive control.
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Sinha et al’ generalized the adaptive algorithm as
follows:

H=eg(X—X), (5)

where ¢(X— X)) is some suitable function with the prop-
erty g(0) =0. The adaptive control was checked for both
discrete and continuous time dynamical systems, with
several degrees of freedom and with more than ope
controlling parameter. In all cases it was found to be
remarkably robust and efficient’.

Now we present an analytical argument which guar-
antees that the control scheme will work for sufficiently
small €. Say we have a one-dimensional system:

X = F(X; ) (6)

with one parameter . The desired state (or ‘goal’) is
X, which is a fixed point of the original system: i.e, X=0
at X=X,

The control dynamics leads to an augmented dynamical
system consisting of the original dynamics and the
additional control equation, which is coupled to the
original system by feedback. By construction the desired
state X 1s a fixed point of the control system, as
# =0, when g(X=X)=0. This formulation then assures
us that the control is directed towards the desired
dynamics.

Now, it can also be seen that the control process is
stable. Examining the eigenvalues of the Jacobian matrix:
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Figure 2. Dynamics of the controlled logistic map (given by egs. (3,
4)) after a sudden perturbation almost doubles the value of the
nonlinearity parameter a. It is clearly evident that the adaptive control
1s very successful in recovering the original desired state X =0.5.
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we obtain, in the limit ¢ = 0, the relevant eigenvalue
of J to be (0F/dX). Now |dF/dXI<1 at X, as the
desired state is a stable fixed point of the system. So
in the limit of low ¢, the evolution towards the goal
dynamical state, is completely stable®.

Recovery time, defined as the time required to reach
the desired state within finite precision, is crucially
dependent on the value of e. Numerical experiments
show that for small ¢ the recovery time is always
inversely proportional to the stiffness of control.

An argument to account for the universality of the
linear relationship between recovery time and stiffness
of control, observed in a wide class of systems, is as
follows: The key point is that when € is small compared to
the timescales in the original dynamical system, we can
use an adiabatic approximation, as # — 0. So eq. (1)
yields X(u) as a solution, plugging which into eq. (2)
gives # =¢&[X(u)— X ), from where it simply follows that
recovery time will be proportional to 1/g (ref. 6).
Beyond an optimal stiffness however, in many systems,

Recovery time

stiffness of control

Figure 3. Recovery time T versus stififness of control £ for discrete
multiparameter nonlinear systems: (@) a system of interest in population

dynamics’, given by:
X  g=aX(1+ XY’

(b) a two-dimensionu) discrete map of coupled oscillators which has
been used to model SQUIDS and convection in conducting fluids

{details 1n ref. 5).
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increasing the stiffness actually retards recovery. See
Figure 3 for examples of recovery time vs stiffness of
control, in multiparameter systems (from ref. 5).

This crucial dependence of recovery times on the
stiffness of control, inspired a scheme to enhance the
efficacy of the adaptive control algorithm® by tuning
¢ to some optimal value at each point of time. The
1dea s as follows: we would like to optimize progress
towards the goal by making frequent suitable changes
in the stiffness of control. The purpose is to achieve a
predetermined accuracy in minimum time. Ideally the
algorithm should ensure that the system tip-toes by
many small steps through treacherous parameter regimes
and in a few big strides speeds through smooth safe
terrains. In ref. 6 we suggest how this can be done
‘experimentally’. We monitor at each step how far we
can safely increase the value of ¢ for the next step.
The implementation involves a test which returns infor-
mation on the error incurred in taking higher £. If this
is within pre-assigned acceptable limits of accuracy we
increase the stiffness of control for the next adaptive
control step. The resulting gains in efficacy (versus the
algorithm with fixed &) can be factors of two, tens or
more! (See Figure 4.) |

Note that adaptive control is remarkably robust with
respect to variation in the form of the control function
(g in eq. (5)). In realistic systems, the functional form
of the control dynamics arises from the physio-chemical
or engineering design considerations specific to the
system. It is thus necessary to determine whether
recovery 18 sensitive to the specific choice of the

parameter at time n

0 1000 2000 3000

Time n

Figure 4. Evolution of paramcter @ of the logistic map (given by
eq. (3)) under control dynamics givea by (a) the ‘lixed & algorithm
(- ~ =), and (b) the ‘variable &' algorithm (—). Clearly the vartable
stiffness scheme (ref, 6) yields much faster recovery.
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control function. In ref. § several forms were tried,
like g =13, y72, siny, 1 =¢" and 1 -)), where
y=(X-=X). In all cases control remained effective and
rapid, with recovery times scaling as 1/e.

The sensitivity of adaptive control to background noise
(which is inevitably present in most real life situations)
was also investigated®. See Figure 5 for an example of
control in the presence of random additive background
noise. For small noise strengths, recovery times with
and without noise are virtually identical. So the adaptive
control method is clearly robust with respect to back-
eround fluctuations.

Now we will discuss two examples of adaptive control
of relevance to biology’.

Hopf bifurcation

Hopf bifurcations are believed to underlie the oscillations
observed, for instance in Cheyne-Stokes respiration,
some types of muscle tremor and hematological dis-
orders®. The Poincare oscillator given as:

r=ar—r

0=w (3)

shows a supercritical Hopf bifurcation (soft excitation)
as a is varied. The sign of a determines the dynamics:
when a <0 the system evolves to a fixed point (r=0),
and when a >0 the system evolves to a limit cycle of
radius r_=a'"? (ref. 9). The control dynamics is deter-
mined by the error signal, i.e. the difference between
the goal output and the actual output:

a= 8(?""' (?’)), (9)

where {(r) is the desired steady state value of r.

This system was analysed by Sinha er al’, and the
results indicated that the control scheme efficiently
brought back the system, both to the fixed point
(r=0), and to cycles of any radius. The recovery time was
inversely proportional to the stiffenss of controi e.

’

A biochemical network

Sinha er al.’ also studied the adaptive control mechanism
for a complex dynamical system which describes various
biochemical processes responsible for coherent behaviour
observed in spatio-temporal organization'’.

I _le

»*

X, = a X, — (X, X))

1‘{’3 = ﬂ4¢(xz, X}) _- qx; ' (10)

930

where

TX,(1 +X)(1 +X )’

1
L+(1+X) (1 +X,) (D

P(Xy X)) =

and a,, a,, a,, a,, L, T and n are parameters. Such equations
are typically thought to describe a variety of processes
occurring in living cells. The system gives rise to a

range of behavioural patterns.
In this complex multiparameter system adaptive control

can be implemented, say on parameter K, as:

K =—e(X, — (X)), (12)
where (X) is the desired state. This control is very
effective in returning the system back to its original
state when perturbations in some parameter give rise to
irregular dynamics (see Figure 1). The recovery time is
again proportional to &£™.

Note that in most generic higher dimensional systems,
one can use any variable X in the error indicator (for
instance, we use X, above). This ambiguity tn choice
can be removed though, by employing AND logic in
the control, i.e. by requiring that all variables reach
their steady state values: X*, t=1,2,...N. The equation

for control then becomes:

N
=gy (X,—X).

=

This control scheme works efficiently and is completely
general and robust as well’.

Controlling limit cycles

Many biological processes depend on the stabilization

time

Figure 5. Control dynamics of a nonlinear system in the presence
of background noise (strength of noise o=0.005%).
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of cyclic patterns (for example in glycolytic oscillations,
peristaltic waves, electrical activity of the cortex, cir-
cadian rhythms, population dynamics, etc.”®). Ref. 5
addresses this very relevant issue of controlling complex
periodic behaviour.

Now, the adaptive control algorithm can be extended
to control periodic behaviour, by suitably modifying the
error signal in the feedback loop. For discrete dynamical
systems, an effective error signal can be devised using
the logical OR structure’. That is:

k
p=e[] (X-X5), (14)

=1

where k is the order of the stable cycle being controlled,
and X° are the values of the different points in the
orbit. This implies that the desired state is either
X=X or X=X, or .., X=X . This method works very
well even for high order cycles. (See Figure 6 for
examples.)

Conclusion

From the study of systems of varying complexity it
appears that adaptive control can provide efficient regu-
lation of the steady state of nonlinear systems. The
procedure utilizes an error signal proportional to the
difference between the goal and the actval output of
the state variables.

Biological situations where control is believed to play
a crucial role include, for instance, the maintenance of
homeostasis® (that is the relative constancy of the internal
environment with respect to variables such as blood
pressure, pH, blood sugar, electrolytes and_osmolarity).
Clinical experiments on animals show, for example, that
following a quick mild haemorrhage (a sudden pertur-
bation 1n arterial pressure) the blood pressure is restored
to equilibrium values within a few seconds!'. The control
of fixed points, explored in detail in ref. 5, thus has
potential utility in such physiochemical contexts. Cycles
are also central to a variety of biophysical and bio-

oo A
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Fipure 6. Dynamics of controlling a limit ¢ycle in two systems: (@) a continuous
lime system, the Poincare oscillator, given by eq. (8): (&) g discrete time system,

the logistic map, given by eq. (3).
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chemical processes. Variations in these —for example,
the replacement of periodic by aperiodic behaviour, or
the emergence of new cycles —are often associated with
discase®. The adaptive control of cycles discussed above,
then has applicability in the regulation of biologically
significant oscillatory phenomena.

Using small perturbations to control chaos

Now we describe another class of recent control methods,
which cleverly exploit the extreme sensitivity of chaotic
systems to tiny perturbations (a characteristic, known
as the ‘butterfly effect’) to control trajectories using
small feedback'*'®. The research broadly fits into two
categories. First, one can select a desired behaviour
from the inifinite variety of behaviours naturally present
in chaotic systems, and then stabilize this behaviour by
applying only tiny changes to an accessible system
parameter. One can also switch between behaviours as
circumstances change, again using only tiny perturbations.
This means that chaotic systems can achieve great
flexibility in their ultimate performance. Second, one
can use the sensitivity of the chaotic system to direct
trajectories rapidly to the desired state.

One of the fundamental aspects of chaos 1s that many
different possible motions are simultaneously present in
the system. A\ particular manifestation of this is the fact
that there are typically an infinite number of unstable
periodic orbits that co-exist with the chaotic motion.
These orbits are not obvious in free runmng chaotic
systems, as vanishingly small perturbations will take the
orbit away from the periodic point exponentially fast.
But the existence of these periodic orbits embedded in
the chaos can be used for control.

The approach is as follows: first, we determine some
of the low period unstable orbits that are embedded in
the attractor. For each such orbit we determine the system
performance that would result if that periodic orbit were
actually followed by the system. (In laser, for instance,
the relevant measure of performance is 1ts output power
at a given wavelength.) Typically some of the periodic
orbits will yield improved performance compared to that
of the free running chaotic motion. Small time-dependent
controls are tailored in such a way as to stabilize one of
the periodic orbits that yield improved performance.

Loosely speaking, the controls are small kicks that
place the actual orbit back onto the desired unstable
periodic orbit. We apply these kicks whenever we sense
that the actual orbit has wandered slightly away from
the desired orbit. Because chaotic orbits are ergodic on
the attractor, they eventually wander close to the desired
periodic orbit and then because of this proximity can
be ‘captured” by a small control. Once captured, the
required control remains small—on the order of the
inherent system nolise.

982

Details of the technique'?; Stabilization of an unstable
periodic orbit in a suitably defined Poincare surface of
section can be achieved by slightly adjusting the control
parameter. In particular, suppose we wish to stabilize
an unstable period-1 orbit contained in the chaotic
attractor. As the control parameter is slightly varied the
fixed point will shift from X () to some X (x ). One
can define a vector g.

—_ aXr(/u) X.s'()“ !) — X-f(ﬂ)
g - a‘u ﬂ ’r ‘u :

(15)

Near the periodic point and for small values of the
control parameter one may write:

06X . ,=M-0X, (16)
where M is a 2x2 matrix and oX =X -X, where
X is the state of the system at the nth iteration. Let
A and A denote the stable and unstable eigenvalues of
the matrix M respectively, with 14 1>1 and 11 1<1.
Thus M-e =Ae and M-e =Ae where e and e, are
the stable and unstable eigenvectors of M (i.e. the stable
and unstable directions). Further, the contravariant
basis vectors are defined by f-e =/ e =1,
f-e =f -e =0 When the nth iteration X, 1s close to
X the value of the parameter is changed slightly such

that X . falls on the stable manifold of X. That is we
choose the control du so that

| f;-dxn+1=0 (17)
which yields the control formula'?:
A f-0X
a‘u- u v u n - (18)
A=D1 -8

The control is switched on only if du is less than the
prescribed maximal allowed perturbation ou__; otherwise
o1t is zero.

Biological applications

An experiment on an in vitro rabbit heart septum used
drug ouabain to induce arrhythmias in the autonomous
beating of the heart tissue'’. A discrete time embedding
was constructed using the time interval between the
heart beat as the system variable of interest. For this
induced arrhythmia, the presence of deterministic chaos
was confirmed by the observation of repeated approathes
of the system state to a period one orbit, with each
approach along the same stable direction, with the cor-
responding departures along the same unstable direction.
In this case however it was not possible to tind a
system parameter that would move the system state

. CURRENT SCIENCE, VOL. 73, NO. 11, 10 DECEMBER 1997
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point onto the stable manifold. But it was possible to
intervene directly in the system by injecting a premature
heart beat at an interval time to place the system state
point onto the stable manifold. The dynamics of the
system then naturally tended to carry it toward the
(unstable) period-one motion. However, because it was
possible only to shorten the interbeat interval and not
to lengthen it, the control was at best period three.
Further control experiments are studying an artificially
perfused canine heart undergoing ventricular fibrillation.

Another example of this control method is a recently
conducted experiment on the hippocampus of the tem-
poral lobe of the rat brain'®. When bathed in artificial
cercbrospinal fluid containing high levels of potassium,
the brain exhibits spontaneous bursts of synchronized
neuronal activity in a portion of the hippocampus. These
bursts can trigger seizure-like dischrages in a nearby
region. As in heart experiments, inter burst intervals are
plotted as embedding. Employing the same technique
as 1n heart experiment, control was achieved.

Other ways to alter chaotic dynamics

One body of research seeks to control a nonlinear
system, to follow a prescribed goal dynamics, without
feedback'’. If we denote the control dynamics by:

X =FX) + U@, (19)

where U(r) is an additive controlling term, then the
object 1s to choose U(r) so that | X(#)—g(t)| =0 as
t — oo, where g(r) is the goal dynamics. To accomplish
this a simple choice

U= % - Fg(0) )

1S made. Thus X(¢) =g(t) 1s clearly a solution of the
controlled equations. However in this method the con-
vergence to the goal dynamics 1S not clear, nor is 1its
dependence on the choice of function F and initial
condition X(0). The method potentially works for non-
linear systems in general, and has the advantage of not
requiring feedback. On the other hand, the applied
controls are typically large and the convergence to the
goal not assured.

Another body of research addresses the effects of
periodic'® and stochastic perturbations on chaotic sys-
tems'®. As one might expect, the effect of such pertur-
bations is difficult to predict in general, and these studies
are not ‘goal oriented” —in that a desired behaviour 1s
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not specified in advance and a generic technique for
achieving a certain goal is not developed. Nevertheless
dramatic changes in the dynamics of chaotic sys-
tems have been recorded using these methods: for
example periodic or nearly periodic behaviour can some-
times be produced from originally chaotic dynamical
systems.

In summary, these methods all serve as simple, pow-
erful and robust control tools for regulating strongly
nonlinear systems capable of exhibiting very complicated
behaviour. These concepts can then serve as a paradigm
for understanding the more complex regulatory mecha-
nisms widespread in Nature, and have utility in designing
clinically useful controls.
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