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Diphasic composites of piezoelectric and polymer
materials have outstanding properties from device
application point of view. These materials offer a
possibility of design and fabrication of the materials
with definite properties for specific application. Hence
these are called smart materials. In this paper we
present an outline of this field of research. The mixture
rules of dielectric properties of these composites with
0-3 or 3-0 connectivity are presented. The modified
equation takes into account the local field interactions.
Impedance and electromechanical coupling coefficients
of these composites with 2-2 connectivity for circular
and rectangular geometry can be estimated. The
piezoelectric constants of these materials exhibit
Debye-type relaxations. Cole-Cole plots can be drawn.
A stress field applied to this material can produce an
overall piezoelectricity. Piezoelectric constant of these
materials can be related to the elastic and dielectric
properties of the component phases.

— T B S ————

MATERIALS engineering in the past three decades appears
to have entered a new era, the age of carefully patterned
inhomogeneous solids designed to perform specific func-
tions. Instead of single phase materials, many investi-
gators now search for the best combination of materials
and ways to process them. An electromechanical
transducer requires a combination of properties such as
large piezoelectric coefficient, low density and high
mechanical flexibility. Large piezoelectric effects are
found in poled piezoelectric ceramics, but ceramics are
brittle and stiff, lacking the required flexibility, while
polymers with the desired mechanical properties are at
best very weak piezoelectrics. Thus for such an appli-
cation, a composite material combining the desirable
properties of two different phases might be vastly
superior. The main problem is to effect the combination
in such a manner as to exploit the desirable features
of the components and hence maximijze figure of merit.

During the past few years, materials scientists have
been experimenting with the composites of piezoelectric
polymer composite materials, hoping to improve on
some of the properties of the homogeneous materials'>,
There is capability of tailoring material propertics, such
as acoustic impedance and piezoelectric response. These
materials have been successfully used as advanced
transducers® including medical imaging transducers and
under-water transducers’. There is a possibility of using
these materials as transducers involving applications such
as automatic vehicle guidance, manufacturing assembly,
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nondestructive testing and vibration control®. In this
paper we present dielectric and piezoelectric properties
of polymer piezoelectric composite materials. Here we
present an outline of this developing and interesting
field. We also recapitulate the work done by our group.

Design of composite materials

Basic steps involved in the fabrication of tailor-made

~ piezoelectric polymer composites are shown in Figure

1. Component phases with the right properties are selected
and coupled in the best possible way to yield optimum
results. Porosity, density, grain size and required poling
procedures decide the properties of the individual phases.
Proper processing technology should be adopted to

establish the desired connectivity of one phase with the

other phase. Connectivity is important because it controls
the electrical flux pattern and mechanical properties of
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Figure 1. Flow chart of polymer piezo-eleciric composites.
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individval phases, and of composite, are related to
their properties through tensor coefficients and hence

symmetry considerations are of 1mportance.

Each phase in a composite may be self-connected in
zero, one, two or three dimensions. In biphasic com-
posites, there can be ten different connectivities as shown
in Figure 2. A 2-1 connectivity pattern has phase 1
connected in two directions and phase 2 is connected
in one direction. There are two vanations in this con-
nectivity. The chains of phase 2 can be either parallel
or perpendicular to the planes of phase 1. If the number
of component phases in a composite is increased, then
the number of ways in which different component phases
can be connected increases. For a n phase composite
this number is (n+3)Y/3! nl. Hence there can be 20
three-phase composites and so on. Different experimental
methods have been used to make biphasic ceramic
composites of different connectivity patterns. Extrusion,
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Figure 2. All the possible connectivities of a biphasic composite
(after ref. 59).

Table 1. PbTiO,-copolymer composite characteristics with 3-0
: connectivity'?

PbTiO, vol. fraction 0 0.1 0.2 03 0.4 1.0
Dielectric constant 19 250 346 450 535 2000
d,; (PC/N) 25 230 240 250 280 39.0
£33 (V-m/N) 0.15 0.1 008 006 0.06 0.02

tape-casting and replemine processes have been success-
fully used for the preparation of composites*°. |

Composite materials may show sum or product prop-
erties''. Sum properties are those in which X-Y effect
of the composite 1s determined by the X-Y effects of
the phases 1 and 2. For example, dielectric and elastic
properties of the composite are sum properties. Dielectric
properties of the composite is approximately given by:
e, P +e,(1-D), where ¢, £, are dielectric constants of
the two phases and ® is the volume fraction of the
phase 1. o

Product properties are less frequently encountered and
are more complicated. An X-Y effect in the composite
results from an X-Z effect in phase 1 and Z-Y effect
in the phase 2. Magnetoelectric composites are an
example of this type. The piezoelectric and piezomagnetic
biphasic composites, when electrically and magnetically
poled, show magnetoelectric effect. In strong magnetic
fields, piezomagnetic grains of the composite get de-
formed and this causes strain in the piezoelectric grains,

leading to the development of the electric fields".

Magnetoelec_tnc effect = ( Flectrical

Mechanical

_{ Electrical }{ Mechanical
- | Mechanical }{ Magnetic

These are ME,; and ME_ effects respectively. In this
paper we present some of the results of the dielectric,
elastic and piezoelectric properties of piezoelectric poly-.
mer bipahsic composites of different connectivities.

Several piezoelectric polymer composites have been
fabricated to 1mprove their piezoelectric properties. In
all these composites dielectric constant of piezoelectric
phase is lowered by the introduction of polymer phase
and in all cases the hydrostatic piezoelectric coefficient
d i1s enhanced. The hydrostatic piezoelectric voltage
coefficient and the d,g, product used as figure of merit
are considerably enhanced'?!.

Klicker er al.'® have fabricated 1-3 composites of
PZT rods embedded in an epoxy resin matrix. These
composites have better piezoelectric properties than solid
PZT. The hydrostatic coefficients d_and g, are a function
of the dimension of PZT rods and thickness of the
composite. The difference in the elastic compliance of

Magnetic ][Mechanical)

Table 2. Piezoelectric—copolymer composite characteristics®

Piezoelectric Polymer Connectivity Ky, d, g dg,

PZT Nil Nil 1600 50.0 4.0 200
PZT Silicone rubber 0-3 100 28.3 320 900
PZT Epoxy I-3 200 71.6 40.4 3138
PLT Polyurethane 1-3 83 176.2 239.0 42100
PZT Epoxy 3-2 290 3290 -128.0 42000
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PZT and epoxy resin has a favourable influence on the
piezoelectric properties by altering the stress pattern
inside the composites.

Rittenmayer et al.'’ have fabricated 3-3 composites
of PZT rods and PMMA composite with PZT powder
In an organic binder and firing the mixture to give a
ceramic skeleton. After cooling, these ceramics were
back filled with polymer. These ceramics have better
piezoelectric and mechanical properties compared to 1-3
composites of PZT rods and epoxy.

Robert Ting'® studied the hydroacoustic behaviour of
piezoelectric composites of 0-3 and 1-3 connectivity to
demonstrate potential of these materials for underwater
acoustic applications. Based on the multiple scattering
theory'” and effective medium theory, Ce-Wen Nan?
proposed to treat coupled electromechanical behaviour
In composite media. The explicit relations for deter-
mining effective behaviour of piezoelectric composites
are derived. Models for 1-3 tubular composite for
smart transducer applications are worked out by Zhang
et al*'*. |

Tables 1-4 present the characteristics of various
piezoelectric polymer composites available in the
literature'?-2',

Dielectric properties

When a minor phase 1s mixed in a major phase the
resultant dielectric constant of the mixture as a function
of volume fraction, dielectric constants and geometry
has been the subject of study of many workers®™,
Rayleigh?” and Maxwell*® used the approach suggested
by Clausius and Mosetti and considered a dilute dis-
persion of isotropic spheres in an isotropic continuum.

cifective medium approximation, also known as self-
consistent approximation, was developed by Bruggeman?®
and Landauer®. All these theories predict reasonably
accurate results for dilute concentrations below 0.2 vol-
ume fraction of one of the phases. For higher volume
fractions, almost all these equations do not agree with
the experimental results.

Yomezawa and Cohen®' gave exact relations for di-
electric constants of composite for very dilute concen-
trations of dispersion of particles in a continuous matrix.
A small volume fraction (®) of spherical particles of
dielectric constant (¢,) is dispersed in continuous matrix
of dielectric constant (¢,). Solving the Laplace equation
for the scalar potential in and around the dispersed
spheres and applying the principle of continuity, the
expression for the dielectric constant (¢) is obtained as:

(1)

Here { is the number of phases present in the composite,
# 18 a constant which depends on the geometry of the
dispersed particles and @. is volume fraction of the ith
phase, and ¢ is the dielectric constant of the composite.

For spheres embedded in a medium of dielectric
constant ¢, form factor u is equal to 2¢,. For biphasic
solid containing spheroidal minor phase, it has been
shown by Rayleigh?’ that

2e. +¢,-20(e, —-¢,)
26, +&,+D(e, ~¢,)

£ =

£, , (2)

where @ is the volume fraction of the second phase.

Table 3. Characteristics of PLZT SH-PVDF composites'?

1-3 Rod 1-3 Tubular
PLZT SH PVDF composite (20%) composite (20%)
Density (kg/m’) 7500 1800 2800 2300
Permitivity 1800 10 780 290000
Loss tangent 2 5 3 3
d,, (PC/N) 593 -30 480 > 6000
d, (PC/N) 45 9 > 100 > 5000
d g, (10" m*/N) 150 830 > 2000 > 6000
Table 4. Characteristics of PZT-silicone rubber composites'?
Porosity
0.53 0.61 0.64 0.68

Fill with Air S1 rubber Air Si rubber Alr Si rubber Air S1 rubber
e e e e
£/€, 440,00  440.00  250.00 26000 21000  220.00 180.00 200,00
tan 9 0.026 0.026 0.024 0.024 0.026 0.025 (0.026 0026
K. 0.16 0.17 0.14 0.15 - 0.12 £.0 0.12
K 0.57 0.57 0.57 0.56 0.40 0.51 0.49 {J.50

t

W
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Series and parallel models are well-known and are
described respectively by the following equations®

e=¢® +e,(1-D), (3a)

£.£,
£E= —— - .
(1-®D)e, + e,

Differential effective medium approximation (DEMA)
theory is also known as self-consistent approximation,
coherent potential approximation and Burggerman’s
theory®$¥*323 DEMA assumes a medium having per-
mitivity €, as a host, in which, grains of phase I (¢,)
and phase II (¢,) are embedded, so that they are well-
separated and occupy small volume fraction of the
medium. In the next step, grains of larger size than the
previous grains of phases 1 and II are embedded. The
process is repeated such that at each step, the new grain
sizes are larger than the previous ones and the relative
volume fractions of both the phases are adhered to. A
limiting process is defined such that the relative sizes
become infinite while the number of steps also becomes
infinity. The resultant material has effective properties
defined by DEMA?*. The above process can be thought
of as one of the continuous homogenization. At each
step, we are replacing an infinitesimal amount of host
material by the same amount of materials of phases I
and II. The new material is then homogenized and the
process is repeated until the whole matenal i1s replaced.
Thus the properties of host material are irrelevant. The
DEMA then predicts ¢ to satisfy the following equation

(3b)

D ~£,) |
(1-L)e+Leg,

B _(_1"(1’)(3_81)
0=2 [(1 “Lye+Le

where the coefficients L. are the depolarization factors
with L +L,+L,=1 (ref. 35).

For spherical particles L =L,=L, =1/3 and hence
the above equation simplifies to

: (4)

€ —¢&, £ —¢&,

D -~1) - =@ :
( ) 2e + ¢, 2e + ¢,

(5)

This is same as the equation given by Landauer™®.

In the differential effective medium theory, infinitesi-
mal grain of material of phase II is added to the material
of phase 1. The mixture is homogenized and the process
is repeated until required volume fraction of phase I1I
1s added to the phase 1. The general solution obtained
by Bruggerman’® for spheres of phase II is given below

o N3 |

£,—€ (¢,

(1—¢)=[ - J ?] : | (6)
278 L

970

~ Kerner’’ developed a formula for dielectric constant
of composite in terms of ratio of average electric fields
E, and E, at the materials of phase I and II along the
direction of applied field E, and it is

£§(1-P)+De, (E,/ E)

T -0+ D(E,/E) )

The average electric fields E, and E, around phase I
and I (refs 37, 38) are

5, E . (8)
2<~'-:1+.e,‘2 0

E=E, and E, =

Palctto et al.”” modified the equation for electric field
K., as

E = ik E
P 3-D),+De,

()

Substituting eq. (9) in eq. (7), the composite dielectric
constant can be computed as

. [A-9) £ A’ + Qe
T [+ -d)(A-1)]

[(1 —D)e, + (Da‘sz]

( ) [(1 -~ ®) + DB (10)
where
3e, e,
A= and B= 1.
e, +2¢, 2e, +¢,

It can be shown that the theoretical and experimental
values of dielectric constant calculated using the above
equations agree well for dilute concentrations. For larger
concentrations theoretical values are either large or small.

In the composite of piezoelectric spheres dispersed in
a continuous medium, where sphere gets polarized by
the applied electric field and can be represented as a
dipole, the dipole moment of this dipole locally modifies
the applied field in the surrounding medium. When only
a small volume fraction of spheres is present, the
influence of this dipole field on the neighbouring spheres
is negligible. However, at larger volume fractions it iIs
no longer valid to neglect the interactive effects of
dipoles. Since the models mentioned above do not
consider the interactive effects, there is a disagreement
between the experimental and theoretical values, par-
ticularly at large volume fractions. An expression is
developed for dielectric constant of 3--0 (or 0-3) biphasic
composite by taking into account these interactive etftects

of dipoles.
For a composite system, spheres of dielectric constant
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£, (say piezoelectric, phase II) distributed in a continuum
of ¢, (say polymer, phase I), each sphere of phase II
of radius acts, as a dipole of moment m. When an
external field E; is applied, the field inside each sphere
1s given by E, (the field inside the isolated sphere).
Each sphere then acts as a dipole of moment m positioned

at the centre of the sphere. The polarization P in the

sphere by definition™

£,— &,
P=(e,-¢)E, = 2%, +;— 3e,.E,, B (11)
and the dipole moment m is
4 £, —&
m= =t @dP=4nedd ——LF (12)
3 2¢, +€, °

where a 1s the radius of the sphere.
The apparent surface charge distribution on the sphere
is

3m |
o= cos@=Pcos0. (13)

Each sphere then interacts with outside dipoles*’. If the
system is assumed to be a distribution of dipoles, the
average electric field (E) due to each dipole is gwen
by multipole expansion as

(Ey=+ [EV=2%, (14)

where V is the volume. R i1s the radius of an arbitrary
sphere of phase I surrounding the dipoles of piezoelectric
phase II. If there are n identical dipoles in the sphere
of radius R (which contains a dielectric) of dielectric
constant ¢, the electric field is E , (ref. 40)

n2m 2m @
E — ] - 15
av 4I'[£ R? 4I'I£1a3 (15)

where n is the number of dipoles in the volume
(471/3) R® and (n/R®) = (®/a’), here ¢ is volume fraction
of phase Il and a is the average radius of the phase
II spheres.

Due to the interaction betwecn dipoles, the effective
dipole moment is increased by m. (refs 41, 42).

The increase in the dipole moment is

m.=m(®~1). (16)
From the expression for apparent surface charge density
in terms of modified dipole moment can be written
following the eq. (16) as

o =P cos0, (17)
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here P_ represents modified polarization.
From eq. (8) since
e,

E = — E
4 ¢ e,

and from eq. (11), we have

,— &,
o =3¢ O ;2_'-_28 E, cos@, (18)
and
- (e,—¢&,) 3¢, E
=(¢,—¢&)E = —z b1 (19)

&, +2¢,

Solution of Laplace equation can be found for the scalar
potential inside V, and outside V_, the spherical inclu-
sions in terms of Legendre polynomials*®. Using the
following boundary conditions the constants A, B, and
C, can be evaluated

V= E,,Z=—E_rcos as r tends to infinity.

V. =V

out

dV. dV
£, dr'“ = I:el ( d;“tJ+om] at r=a

V is finite at r=20.

at_ r=a

These boundary conditions are the same as those for
an isolated sphere except for the apparent charge density
o_. Using these boundary conditions, solving for internal
potentlal and electric field E. , the internal electric field
at the piezoelectric spheres can be obtained as

Einlcrnal = Elncul + Eml
1430 275 | p (20)
e, +2e, e,+2¢, |
Substituting eq. (20) in eq. (7), we get the following
“equation®',
£ =

e(1-D)+e,®[3e,/(e,+2e)][1+3P(e,—¢,)/ (e, + 2¢))]
(1-®)+P3Be)/(e,+26) [1+3D (e, — )/ (e, +2¢)]
(21)

This is the moditied equation for the diclectric constant
of a composite with the interactive effects taken into
consideration. In Figure 3 experimental values™™ for
PVDF-PLZT composites are compared with those in
the present model along with those of Kerner”. This
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figure shows that theoretical values computed from the
present model are in good agreement with experimental
values even up to 70% of piezoelectric pbase in the

composite®'.

Electromechanical properties

Models have been developed for electromechanical char-
acteristics of piczoelectric polymer composite materials
with 2-2 connectivity. The constitutive equations of
these composites are complicated and their analytical
solution is difficult. Earlier models assumed either stress
or strain components to be constant. Among earlier
models, the Vogit’s model assumes constant strain
whereas Reuss’s model assumes constant stress®®, More
refined models are series parallel model*’, Cubes model®
and Unsworth method™.

In our mode! the assumptions are:; (1) the samples
have complete stress-free boundary conditions at the
polymer piczoelectric interfaces, (i) the matenals are
lossless, (iii) the coordinate axis are pure mode propa-
gation directions, (iv) the electric potential and the
displacements are assumed to be independent degrees
of freedom, (v) the coordinates are pure mode propagation
directions, (vi) piezoelectric polymer composite material
has extended faces normal to the X, direction and poled
along this direction.

With these assumptions the equation for electrical
impedance of a 2-2 composite was developed and for
cylindrical geometry the electric impedance is given by”"

, = [ 1 ) [ ahy, (h, Ci— h,,C\) J (xa) )
i B+t || J.Ch-Cladfaa) | |
_h,, {J hyy—h,C), al(aa)}tan (a,a,) |

(35 +8) 1 C,,—Clallaa)laa,
where
C,= ra , a=a—‘; a3=%, (22)
(B33 +B33) a, 3

and for rectangular geometry'

" 1_____}731 i __h:n C;:i:hss 9:3

ﬂ;a +05 (CL+C)) C;3 ~ ZCS

972

r

X ¢
\

1 + ]
cos(aa,) cos(aa,)

J

- ’
Che )]
K2 h, (C/,+C)) | (tan{(a,a,))
jWCu l {9 CFZ [ cx3a3
i (C),+ C:z) Ci J
(23)

In Figure 4 we present a plot of Z as a function of
frequency for rectangular geometry. We find resonance
and anti-resonance peaks at a fundamental frequency
and a number of overtones. We show only two of them
in this figure. From these resonance peaks electrome-
chanical coupling coefficients can be obtained from the

following equations™

kp
1-&2

(1=05J (@U+EN-D 1+, (@ (1+5))

¥

(1+05J,(1+%
(24)

where A f=resonant frequency, f=band width, o* = Pois-
son’s ratio.
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Figure 3. Comparison of experimental and theoretical values of
diclectric constants for PLZT-PVDF composite. Experimental values
are after ref. 44,
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Planar coupling coefficient is!!

2 _ g2
2 __ J, _]f-:__

Ki= it | (25)

Here f, and f. are anti resonance and resonance frequen-
CIES.

k,=0.5(1-05HK?2, - (26)

d

3

=k (€33 S 2. (27)

11

Piezoelectric properties of composites

The basic reason for observation of piezoelectric etfect
in polymer piezoelectric composites (PPE) is due to
their heterogeneity. PPE composites often show piezo-
electric relaxations in addition to dielectric and elastic

relaxations. These composites can be fabricated with
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Figure 4. lmpedonce variation with frequency for a polymer prezo-
electric compusite,
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different connectivities- and the relaxation observed
depends on the type of connectivity. In this paper we
discuss the piezoelectric relaxation of 0-3 and 2-2
composites. Since the piezoelectricity is a result of
variation of electric polarization with strain, study of
dielectric and elastic properties can lead to the under-
standing of piezoelectricity,

The relaxation behaviour manifests itself in the fre-
quency and temperature dependence of the property.

. Dielectric relaxations can be studied even up to optical

frequencies. Hence dielectric relaxations due to dipoles,
molecules and electrons can be studied. But since fre-
quency of the sound waves is much smaller, only
relaxations due to molecular motions are observable in
piezoelectric relaxations. Since the piezoelectric proper-
ties respond and relax under the alternating strain fields
they, like dielectric and elastic properties, can be
represented as

e* = e'(w) + ie”’(w)
and

d* =d’(w) + ie”(w), (28)

where e* and d* are piezoelectric stress and strain
constants. These are defined as follows

ry. ,__1 (D) _e
_[E l’ 4= 4nC (SJE_S’ (29)

where e* and d* describe the dynamic response of
piezoelectric properties of the composite. d” and € are
real parts and d” and e” are imaginary parts of these
properties. The piezoelectric dispersion can be charac-
terized with the typical Debye type behaviour which is
characterized by>’

Q
|
&~
N
L |0
~—
>
{

d! d dﬁ' o d""" r (dﬁ' o d")a)r (30)
- + —— . — ‘
" 1+ (w7)* 1 + (wr)’
dh’
tanod = —, 31
ano=-7; (31)
if wr=1 then 2(tano)_ _=Ad/d_. (32)

Here d, and d are static and high frequency piezoelectric
constants and 7 is relaxation time.

Variation of imaginary part of piezoelectric constant
d” with real part d’ would be a semicircle™. These are
Cole-Cole diagrams. Temperature increase at a fixed
frequency has the same effect equivalent to frequency
increase at a fixed temperature. Hence the temperature
variation of d at fixed frequency is used to draw the
Figure 5. The relaxational behaviour in the piezoelectric
polymer composites may be due to (i) relaxation ot
piczoelectric phase and/or (ii) relaxation of noa-piezo-
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—

etectric phase. As a consequence, the whole system

exhibits the relaxation.
As discussed in the earlier sections the dielectric

constants of composite materials can be calculated using
various models. If both phases in the composite are
incompressible then the elastic constant of the composite

is given by’

- 3Ci+2C, =3¢ (C,- C)

=3 c,. (33)
3C, +2C, +2¢ (C, - C,)

Here C, and C, are elastic constants of the individual
phases and is the volume fraction of phase II.

Many theoretical investigations on binary systems like
polymer piezoelectric composites have been performed
in regard to piezoelectric constants*?2'$3-%5  Most of
them assumed characteristics of continuous medium
and/or that the volume fraction of one of the phases is
small. Recently one line of theoretical study of piezo-
electric composites is focused on the development of
micromechanics models. Schulgasser’® and Benveniste
and Dvorak’® have extended these models for 1-3 com-
posites. Dunn and Taya’’ have generalized this model
to 0-3 and 1-3 composites. All these models are valid
for smaller volume fractions and without considering
the interaction between the particles of different phases.
Nan™ has, however, proposed a model using multiple
scattering theory and effective medium theory, which
agrees well with experimental results up to 0.5 volume
fraction. In the following we present essence of the
model we have reported for calculation of piezoelectric
constants®’.

Average electric displacements in the composite and
the phase I and phase II, when an electric field E is
applied, are given by

D= D,+eE,
D, =D, +¢ E . |
D,=D,+¢E,. (34)

Here D), D, and D, are the displacements at zero
applied electric field. E, E, and E, are the electric fields
at composite, phase I and phase II respectively. To a
good approximation we can also write,

D=(1-®)D, +dD,, (35)

E=(1~®D)E, + DE. (36)

It D, =D,=D,=0, from eqs (34) and (35) we have
eE= (] ~D)e . E + D¢ E, . (37)

In an analogous way, for elastic fields we can write
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Figure 5. Cole—Cole plot of PZT-epoxy resin poled at 100 kV/cm
(data after ref. 44).

relations for stress (7'), strain (S) and compliance (C).
Here suffixes 1 and 2 refer to phases I and II respectively:

Ir=T,+C,

T,=T, +C,S, and T,=T, +C,S,,

and

I'=(1-®)T + @7,
S=(1-P)S, +DS,. (38)

When inclusions in the composite are piezoelectric, we
observe piezoelectricity as gross property of the com-
posite. In order to relate gross property to that of the
inclusions, the following assumptions are made®': (i)
The piezoelectric constants of the inclusions are one-
dimensional and relate the dielectric variables alone on
polar axis and elastic variables perpendicular to the
polar direction. (ii) The inclusions are spherical and
their dielectric and elastic properties are isotropic and
incompressible. (iii) The dielectric constants of constitu-
ents are independent of mechanical states and vice versa.
The piezoelectric direct effect coefficient e is a result
of the following three effects: (i) Strain § applied to a
composite produces S, strain in the piezoelectric inclu-
sions. (ii) The strain §, gives rise to displacement D,
to these inclusions. (iii) This D,, is observed as an
increase of macroscopic electric displacement D,

Theretore the piezoelectric constant e can be written
41

as
Lo 1LD_ (D) Dy (S,
4 S D,||4nS, 11 S

/

(D“J (SZ\ ‘ (39)
|l |é-
Dy (S
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Figure 6. Comparison of experimental and theorctical values of
piezoelectric 4 constant for PZT-PVDF composite. Experimental values
are after Furukawa et al. (ref 44).

From the egs (35) and (36) we have

E, (i (&, ~€)
E- o -2y (40)

If the displacement is completely due to piezoelectric
phase only, then only D/, exists, so that E=E =E,,
and we can show
D (¢, — €) .
5= (41)
02 (81_87)
Considering the analogous equations, we can have for
elastic constants,

5_1 (6-0
S @ (C,—C) | (42)

Finally the piezoelectric constant of composite using the
eqs (41) and (42) in the eq. (39) can be written as

(43)

In the above equation by using the equations for com-
posite’s dielectric constant € and elastic constant C, the
piezoelectric constant of the composite can be calculated.

The equations for other piezoelectric constants d, g
and h can also be obtatned from the following relations

d=e/C;, h=4ne/e;, g =4me/Ce . (44)

IFigures 6 and 7 present the variation of piczoelectric
constants as a function of volume fraction. These con-
stants are calculated by substituting Rayleigh’s ¢q. (2)
and eq. (22) for dielectric constant of compostte for
PZT-PVDI composite. The experimental data are taken
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F‘igure 7. Comparison of experimental and theoretical values of
piezoelectric g constant for PZT-PVDF composite (ref. 44).

from ref. 44. It can be seen that the piezoelectric d
coetficients calculated using eq. (25) for composite’s
dielectric constant in eq. (42) agree well with the
experimental values.

Conclusions

In summary, the mixture rules of dielectric properties
of these composites with 0-3 or 3-0 connectivity are
modified taking into account the local field interactions.
Theoretical values of dielectric constants of 3-0 and
0-3 polymer piezoelectric composites calculated using
the present model are in good agreement with the
experimental values even up to 70% of piezoelectric
phase 1n the composite. A model for estimation of
impedance and electromechanical coupling coefficients
of these composites with 2-2 connectivity for circular
and rectangular geometry is presented. The piezoelectric
constants of these materials exhibit Debye-type relaxa-
tions. Cole—Cole plots using real and imaginary com-
ponents of piezoelectric constants have been drawn. A
stress field applied to the piezoelectric polymer composite
material can produce an overall piczoelectricity. Piezo-
electric constant of these materials is related to the
elastic and dielectric properties of the component phases.
Using the modified equations piezoeletric properties of
the composite are estimated.
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