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Table 1. Fungitoxicity of some insecticides (% mycelia) inhibition)

Concentration (%)

ule—

o

Plant Durmet Kanodane Cymbush Nuvacron Nuvan
pathogenic ——— - —_ - -
fung Conwrol 001 D05 03 0.2 0.0V 005 0.1 02 0.01 0.05 0.1 0.2 001 0405 0.1 02 001 005 0.1 0.2
F ooxvsporum O 433 5262 66.66 81.11 3555 37.85 4444 70 2222 36.66 S58.88 B0 14.44 3888 100 100 20 3924 5625 100
A. solani D 6566 85.88 8444100 2666 50 6089 7555 20 6444 7333 8777 0 4333 60 100 6.66 4333 6533 100
C. lunata 0 60 71797 833 9 37.77 5333 7055 8055 2777 5732 8.8 90.5 11.11 4444 9148 100 11.11 66.66 7518 100
Helmintho- 0 68.75 83.33 90 100 45 55.55 8062 8888 325 58.88 83.75 100 18.75 36.61 88.12 100 32.5 5555 100 100
sparium sp.
S. ralfvii 0O 70 8944 100 100 55.55 77.77 90 100 [3.33 55.55 81.38 100 0 48.31 100 100 37777 79.88 100 100
rolfsii, Curvalaria lunata and Alter- needs to be elaborated by detailed stud- 5. Singh, R, K. and Dwivedi, R. §., Pesti-
naria seolani. 90% inhibition was ies. However, the additional property cides, 1988, XXII, 20-23,

observed at 0.2% with respect to all
fungti against different insecticides.
As the dose was decreased, there was
decrease 1n inhibition. Except Durmet
and Kanodone, the rest of the insecti-
cides did not exhibit any sigm-
ficant inhibition at 0.01%. Durmet was
active even at 0.01% on all different
fungi.

The fungitoxic properties of pesticides
whose primary defined targets are the
insects may perhaps be due to their cu-
ticular penetration abilities, which may
extend to tungal mycelia. Precise mode
of fungitoxic action of such chemicals

can perhaps be used to advantage in
well-designed pest control strategies in
various crops beset with both insect and
fungal pests.
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On incorrect use of Student’s 7 test in bio-medical research

Student’s unpaired ¢ test is used to test
whether the means of the two groups are
statistically different or not. Student’s
unpaired ¢ test 1s written as ¢ test for
simplicity in this article. Various types
and aspects of t test like situations
where the test is applicable, assump-
tions made, calculation procedure, ad-
vantages and limitations have been
described in standard  statistical
books’-2.

While perusing bio-medical articles,
the author has come across various
types of errors in the application and
interpretation of ¢ tests. The situations
where t test is not ‘valid’ or if it is
‘valid’ it is with reduced power are de-
fined as errors in this article. The pur-
pose of this article is to tllustrate these
errors and to indicate correct statistical
procedure to be adopted and alternative
statistical tests to be used. It is hoped
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that this would enable research scien-
tists having 1nadequate statistical
knowledge to apply appropriate test
correctly and to 1identify situations
where expert statistician’s help is es-
sential.

Most of the examples presented in
this article are taken from published
bio-medical articles with application of
¢t tests, No attempt has been made to
obtain the raw (basic) data from the
authors. The statistical values for
appropriate procedures and alternatives
are calculated whenever possible,
otherwise only references are men-
tioned.

Definitions used in this study for
comparison of two means: Null
Hypothesis (NH): A statement concern-
ing the values of a population parame-
ter. Here the means of the two groups
are equal.

a (alpha): The significance level of a
test: The probability of rejecting the
null hypothesis when it is true (or the
probability of making a Type I error).

B (beta): The probability of correctly
rejecting the null hypothesis when 1t 1s
true (or the probability of making a
Type 11 error).

Confidence level (l-a). The prob-
ability that an estimate of a population
is within certain specified limits of the
true level.

Power of a test (1-3): The probability
of correctly rejecting the null hypothesis
when it 1s false.

Confidence interval of the difference:
The probability that an estimate of a
difference in two populations is within
certain specified limits.

One-tailed (sided) test: In hypothesis
testing, when the difference being tested
is directionally specified beforchand,
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i.e. (when X;<X,, but not X;>X,, is
being tested against the null hypothesis
X1=X3).

Two-tailed (sided) test: In hypothesis
testing, when the difference being tested

Table 1. Example: In the study of compari-
sons of GSH hormone levels in acutely ill
patients and controls, the investigator ap-
plied unpaired ¢ test for the following data

Table 2. Example: In the comparison of

hypothyroid and normal patients the investi-

gator compared heart rate (part of the study)
with ¢ test for the following data

> , _ : Number GSH units Heart rate (units)
for significance 1s not directionally
* : Grou (n) mean *+ SD  Range Gr Numb +
specified beforehand, i.e. when the test P _ © - P e Mean £ 5D —
takes no account of whether X;>X; or  patients 15  49%72  (1.3-30.0)  Hypothyroid 16 61.80 + 2.48
Xy < X5). ' NSit=1.1 S,P<0.051t=2.07
Type I and II error may be viewed as  Controls 10 2.8+1.7 (1.3-6.6) Normal 20 66.55 + 9.69

‘false positive’ and ‘false negative’ of a
diagnostic test.

P value: The P value 1s the probabil-
ity of committing a Type 1 error if the
actual sample value of the statistic is
used as the rejection value. It is the
smallest level of significance for which
we would reject the null hypothesis for
that sample. It is also interpreted as an
indicator of the weight of evidence
against the null hypothesis.

Here the investigator would have probably
detected statistical significance by non-
parametric test.

Here the investigator would have got no
significant difference (instead of significant
difference) by modified ¢ test.

cutoff ¢ value (i.e. 2.07 < 2.11), the dif-
ference was not significant. By the usual
t test, the difference was significant at
0.05 level but with the modified ¢ test
the difference turned out to be not sig-
nificant.

more accurate. Another method would
be to convert data ‘normal’ by suitable
transformation (logarithmic, square root
and inverse, etc.) and then apply ¢ test.
For the above example, the latter two
tests would have given more appropriate
result; perhaps even significant differ-
ence.

t test to non-normal data. The t test is
valid and powerful, if and only if, the
assumption of the normality is satisfied.
It 1s always better to check normality of
the data of small samples if the data
consist of percentage values, counts and
enzyme values. For heterogeneous data
where the largest value is more than
twice the smallest value and for non-
negative values where SD (standard
deviation) i1s greater than the mean, ¢
test is not powerful.

On considering the data of Table 1, it
can be seen that here SD (7.2) is greater
than the mean (4.9) suspecting non-
normality. However, 1t is rather difficult
to detect non-normality in small sam-

(Unpaired) t test to paired (related)
data. Unpaired ¢ test is not correct for
the related data as it requires the as-
sumption of independence between the
two groups to be valid.

In Table 3, the values were on the
same patients (i) before treatment, and
(i1) after treatment. The after-treatment
values were related to the before-
treatment values, resulting in the viola-
tion of the assumption of independence.
Hence the (unpaired) ¢ test was not valid.

¢ test to groups having unequal vari-
ances. The t test requires assumption of
equal variances (homoscedasticity) be-
tween two groups to be satisfied. This is
checked by F test. If the variances are
equal by F test then the usual ¢ test is
correct, otherwise modified ¢ test or

- nonparametric test should be applied.
This can be explained by the following
example:

In Table 2, calculated F value came
out to be 15.3, which led to the conclu-
ston that variances between the two
groups were not equal. Under such cir-

t test applied to more than two groups
(without correction). The t test is ap-
propriate in comparing means between
two groups only. In this category of

ples. A thumb rule to suspect non-
normality is to calculate 95% confi-
dence interval {mean + 2* SD). In Table
1, most of the values of the range are

cumstances, modified ¢ test would be
more appropriate. There are many types
of modified ¢ tests and one of the sim-
plest and powerful would be ‘Cochran’s

errors, ¢ test 1s applied many times by
comparing all possible pairs of means.
This procedure has got the major draw-
back of increased Type 1 error. This
means that if there are no real differ-

fess than zero, thus confirming non-'  modified ¢ test>’.

normality. Mild deviations from nor-
mality may be permitted for the ¢ test
analysis for larger samples (greater than
30). It is always advisable to check for
causes of the high SD. Only one or two /
outlier (inconsistent) values may in-
crease SD to a large extent. Under such
circumstances, it is always better to

ignore these observations in the analysis |
(after mentioning the reasons of it). If different A, B, C and D groups were

there are no outlier values signifying made. If for each comparison, Type I

high SD as the inherent variation, non- [(52/ n;)*tl(lable)+(x%/nz)*h(tablc)] error = 0.05 then the etfecttve P value
- . — ' el " R r : 1
parametric tests are more appropriate. e 2 = S was 6%0.05=0.30 or 30%, i.e. there

These tests do not depend on the as- VisfIm +53 1 m] was about 30% chance of at least one
sumption of normality. In this study, incorrect conclusion regarding the .(Ilf'
nonparametric test like ‘Mann-Whitney ference in the groups. The appropriate
U test’” with the median and range val- procedure here would be to test the
ues as the summary measures would be overall differcnce among all the groups

ences, the probability of at lcast one
difference being statistically significant
by chance at the 5% level can be
considerably greater than 5%. As the
total number of comparisons increases,
the Type I error increases proportton-
ately. This has been discussed 1n
Table 4.

[n Table 4, comparisons among six

The formula:

, (X1 —X7)

B \[[(S'E /}Il)-l-(.i‘% fﬁ‘z)] ‘

where s; and 5, are SDs of the 2 groups
with n, and n, obscrvations respec-
tively, and the cutoff value is given

For the above example table cutotf ¢
value (¢ = 0.05) came out to be 2.11. As

the calculated ¢ value was less than the
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Table 3. Example: In the comparison of pepsin output at before- and after-treatment
for the group X. Investigator applied ¢ test for the following data (part of the data)

Pepsin output (mean * SD)

L e .

Group n Before-treatment After-treatment Significance
X 17 1012.0 £ 375.5 863.08 2175 NS (t = 1.4)

Here the investigator would have probably detected significant reduction in pepsin output by
paired 7 test,

Table 4. Example: Comparison of biood glucose levels (mean + SD) in 4 different groups

Group A B C D
n=9 84.67 £ 5.29 105.78 £ 9.77 93.11 £3.62 88.44 1 8.05
Comparison Calculated Significance Modified LSD with

between ! value by t test multiple correction
A-B 5.71 P < 0.00] P < 0.001
B-C 3.65 P < 0.0l P < 0.01

C-D 1.59 NS NS

A-C 3.94 P < 0.0l NS

A-D 1.17 NS NS

B-D 4.1] P < 0.001 P < 0.001

More sensitive modified LSD detected only 3 out of 4 significant differences obtained by
usual ¢ test.

Table §. Example: Data are mean £ SD of the three variables for the two groups of patients
with heart disease

Serum total cholesterol Serum phospholipids Scrum uric acid

Variable (X) (Y) (Z)
Group 1 269.1 £60.4] ]1.92 +2.41 5.25+1.00
n=17 I NS | NS | NS
Group 2 235.8 £ 36.69 1255+ 1.74 488+ 091
n=15

Taken from The Design and Analysis of Clinical Experiments (ed. Fleiss, J. L.}, John Wiley
and Sons, New York, 1986, p. 69. Here multivariate T° test detected significant difference
between Group 1 and Group 2.

by ‘ANOVA (F) test’, If and only if F
test indicated the overall significant
difference among the groups, compari-
son between specific groups could be
made by different multiple comparison
tests. The simplest and versatile would
be ‘Modified LSD test’. ANOVA as-
sumes equality of variances (SD?
among all the groups. For the above
example, ANOVA test showed signifi-
cant difterences among the means of all
the groups (F=11.11, S, P<0.0]).
Then to compare means of specific
groups, ‘Modified LSD test’ was ap-
plied. Out of the four significant differ-
ences obtained by f test, only three were
found to be significant by the *‘Modified
LSD test’. Multiple comparison tests
protect against calling too many differ-

test. This is a rather complex situation
where statistician’s advice is recom-
mended. In brief, only limited number
of comparisons should be made to re-
strict Type I error.

Application of several t tests to many

multivariate test. This is a common
error committed by many investigators

the studies in bio-medical research
consist of comparison between more
than two variables of equal importance
and interest. For such studies, a multi-
variate test that compares variables si-
multaneously would have  many
advantages over a series of separate ¢
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ences significant than does the usual ¢

variables in a single study instead of

working in bio-medical field. Most of

el . —— SR S T _- S —

tests for each variable. The most impor-
tant advantage of the former is the pos-
sibility of the increased power. If the
variabies are not much related, the mul-
tivariate test has a chance of finding
significant differences among the treat-
ments even 1if none of the (univariate) ¢
tests are significant. The example dis-
cussed in Table 5 has been well illus-
trated 1n The Design and Analysis of
Clinical Experiments (ed. Fleiss, J. L.),
John Wiley and Sons, New York 1986,
p. 69.

Thus, in Table 5§ ¢ test showed no
significant differences for X, Y and Z
variables between two groups, but
‘Hotelling’s 7° test’ (multivariate) de-
tected differences (72 = 12.04, P < 0.05)
between two groups after considering
three variables as a set.

Errors in the computation of t test. In
this category of errors, there were few
cases where reported ¢ values differed
from the ¢ values computed from
the mean and SD. One of the most
common errors was to apply the formula

t= (5 ~X%)/ (s In+s3/m),  in-
stead of t = (x| — x;)ND, where

[(my — 1 )512 -i-L(nz — l?ﬁ |
(np +ny —-2)
¥ m+1/ny)],

D=

for markedly different sample sizes.

Number of t tests to repeated measure-
ment studies. Here number of ¢ tests are
applied at various time points between
two groups to study the effect of treat-
ment over a period of tune. This proce-
dure has: (1) successive observations in
a given study correlated, and (i1) Type |
error increased because of many t tests
in a single study, leading to major de-
fects. The appropriate statistical proce-
dure here would be to calculate suitable
summary measures like area under the
curve (AUC) and time to maximum ef-
fect (T €tc. for each subject and then
to compare mean AUC and mean T,
between the two groups by unpaired ¢
test®. This method is commonly used in
clinical pharmacology. Another better
alternative would be to reduce number
of t tests where AUC, T, parameters are
of little interest. ANOVA and multivanate
test could be other alternatives. By increas-
ing the level of significance from the con-
ventional 0.05 to G.01 or 0.001, one may
arrive at an appropriate conclusion.
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Errors in the interpretation of results.
This 1s one of the most important and
commonly found errors. This error oc-
curs because of the improper under-
standing of the statistical hypothesis
testing procedure and inadequate com-
munication between investigator and
statistician. In this testing procedure,
Null Hypothesis (NH) (mean of the first
group is equal to the mean of the second
group) s tested by calculating mean, SD
and ¢ statistic. If the calculated ¢ exceeds
the table ¢t value then the NH 1s rejected,
leading to the conclusion ‘there is sig-
nificant difference between the two
means’. This conclusion is expressed in
probability (P) value. The P value 1s
usually misunderstood as the % chances
that the results are wrong or the total of
Type I and II errors (expressed in prob-
ability). The P value is the probability
of obtaining the observed results if the
NH were true (assuming the assump-
tions required for the test to be true). Or
it represents the chance that the ditfer-
ence found in the data is the result of
random variation when there 1s no true
difference in the population from which
the samples have been drawn. For ex-
ample, a P value of 0.05 indicates one
chance in 20 that the trend shown in the
data is the result of random variation,
The ‘power’ of the test increases as the
number of observations increases.
Hence, the investigators obtain statisti-
cally significant difference only because
of large n and fail to obtain significant
difference only because of small n. The
statistical significance testing procedure
simply cannot prove NH of equality of
two (sample) means. Exact P values
together with ‘confidence interval of
difference’, should be considered for
meaningful conclusions. ‘Meta analysis’
is a newly-developed statistical tech-
nique in which several dissimilar studies
with small sample sizes are combined
together to draw valid conclusion.

One-tailed t test to get significant re-
sult, In this category of error, the inves-
tigator applies one-tailed ¢ test to
squeeze significance without enough
justification. As one-tailed table ¢ vaiue
is much less than the two-tatled table 1

value, the investigator usually gets
significant result for one-tailed ¢ test
and not for two-tailed ¢ test.

Errors in the design of experiment.
These errors are rather complex and
difficult to detect. One of the common
errors 1s adopting unifactorial (study of
one factor at a time and keeping other
factors constant) instead of multifacto-
rial design. Multifactorial designs in
bio-medical research are more economi-
cal in terms of cost, animals (subjects),
etc. and more informative than unifac-
torial design. The advantages of multi-
factorial design have been well
illustrated by Wallenstein et al.’> hence,
these will not be discussed here. . In
brief, multifactorial designs can measure
various separate effects and their inter-
actions with each other which unifacto-

rial designs cannot do. This is a rather

difficult procedure and expert bio-
statistician’s help should be taken at the
time of planning the experiment. No
sensitive or sophisticated statistical
method can compensate for a badly
planned experiment.

Student’s unpaired t test is frequently
recommended for comparing the means
between the two groups only. The test 1s
valid and powerful 1f data are ‘normally
distributed’, groups are independent and
with equal variances. For dependent
data, paired ¢ test is appropriate. If the
investigator suspects non-normality of
the data, non-parametric tests like
‘Mann-Whitney U test’ and "Wilcoxon
signed rank test’ are more appropriatz.
In case of large SD, it is always better to
detect outlier (inconsistent) valuies.
Presence of only one inconsistent value
can increase SD significantly to cistort
the conclusion. For more thaa two

groups, ‘modified ¢ test’, ‘Analysis
of variance’ (ANOVA), ‘Anolysis of
covariance’ (ANACOVA) and

‘multivariate test' are more eppropnate
tests. The limitation of ¢ tent s that it
merely tests equality of twn means but
fails to gauge the magmitude of dilfer-
ence between means of the two groups.
‘Confidence interval of the difference’
may help the investijator to oblan
mintmum and maximu n difference be-

tween the two groups, which is of tre-
mendous use in bio-medical research.
Hence ¢ test together with ‘95% confi-
dence interval of the difference’ is
usually recommended for greater in-
sights into the data. For borderline
significant differences like P = 0.04 and
P = 0.06, results should be viewed cau-
triously. It should be remembered that a
statistical conclusion about significance
does not always agree with clinical
significance in bio-medical field.

The overall implications of inappro-
priate use of ¢ test are substandard and
misleading research results, wastage of
time, money, efforts, etc. With the easy
access of statistical (computer) pack-
ages, there is a tendency among the
research workers to apply f test ‘blindly’
(without considering various aspects of
1t). This article is mainly intended for
bio-medical research workers with
‘Inadequate’ statistical knowledge but
desire to analyse data themselves. No
statistical package can prescribe the
most appropriate statistical test suitable

for analysis of the given data. This does

not mean that statistics is of overriding
importance in bio-medical research, but
it 1s an area where much improvement 1s
desirable and beneficial for increasing
the standard of research. Appropriate
statistics should be viewed as an inte-
gral part of good bio-medical research.
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