RESEARCH COMMUNICATIONS

effects of melatonin are prevented by SCN lesions, and
administration of melatonin alters metabolic activity and
inhibits cell firing in the SCN of the rat and the
Djungarian hamster™'"®*. In viiro, melatonin phase
shifts the circadian rhythm of electrical activity in the
rat SCN slices™ . Thus these results suggest that mela-
tonin induces phase shifts of circadian activity rhythms
in the field mouse M. booduga by acting on melatonin
receptors in the circadian oscillators.
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An artificial neural network (ANN) approach is
applied for the estimation of seismic hazard in a
region. The seismicity rhythm is recognized by means
of an ANN approach. The seismicity cycle may be
divided into four stages, viz. energy accumulation,
increasing release in energy, intense release and the
remnant release of seismic energy. The seismicity
data from the earthquake catalogue (1790-1990) for
the Arakan Yoma and Naga Thrust belt in NE India
have been used. Future seismicity for the region is
predicted up to the year 2040. The results show that
the intense energy release cycle will start somewhere
in the year 2030 and will continue up to 2040. The
successful operation of ANN and its application to
predict seismicity cycle in the selected region shows
that the approach may be applied to other areas also
for the seismic hazard evaluation.

THE seismic hazard in a region may be defined as the
probability of occurrence of earthquake given in units
of a certain level of vibrations expected in a particular
region within a certain period of time. The final result
of the seismic hazard analysis is the determination of
the probability of occurrence of natural phenomenon
(intensity, magnitude, accelerations, etc.). For such analy-
sis, statistical characteristics of seismic hazard are gen-
erally applied. The observations from the past (seismicity)
records are used to model the future activity. A variety
of statistical procedures may be applied at various stages
of the formulation and evaluation of proposed models
which, besides the stationary Poisson process, include:
Baysian methods facilitating the incorporation of diverse
elements of uncertainty and combining estimates by
different models; semi-Markov process applied to linear
zones; stochastic models and/or clustering for cyclic
fluctuation and other trends; models based on precursory
phenomena, which consider the probability distribution
for magnitude, location and time of occurrence of pre-
dicted earthquakes'. These methods may be appropriate
to reveal some statistical characteristics of seismic hazard,
but may not provide a direct quantitative evaluation. In
practice, an appropriate assessment usually needs further
comprehensive judgements based on experience.

New methods are, therefore, to be introduced to over-
come the limitations of conventional methods. Artificial
neural network (ANN) approach has recently been touted
as having enormous potential for a variety of problems
in various fields such as image and signal processing,
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civil, electrical and mechanical engineering. This is
primarily due to the fact that this approach does not
depend upon any assumptions about the distribution of
data, has the ability to handle data obtained at different
levels of precision, and has rapid data processing
capability. In the present context, this approach has been
applied to evaluate the seismic hazard. To testify the
significance of this approach, the Indo-Burma seismic
region has been selected to predict the seismicity cycle
for the region.

An artificial neural network may be considered to

comprise of a relatively large number of simple proc-

essing units (nodes) that work in parallel to evaluate
the seismicity fluctuation in the time series from historical
data’. These processing units are generally organized
into layers, each unit in a layer being connected to
every other unit in the following layer. This is known
as feedforward multi-layer®. : '

The architecture of a typical multi-layer ANN is shown
in Figure 1. It consists of an input layer, a hidden layer
and an output layer. The input layer is passive and
merely receives the data (e.g. historical seismicity cycles
data)*. Consequently, the units in the input layer equal
the number of variables to be used to predict the values

for the future seismicity cycle (e.g., the characteristics
values for various stages of seismicity cycle for a time
series). Unlike input layer, both hidden and output layers
actively process the data. The output layer produces the
neural network’s results. In the present context, the
result denotes the predicted values of siesmicity cycle
over a certain period of time. Thus, the number of units
in the output layer corresponds to the predicted char-
acteristic values for the number of stages of seismicity
cycles of interest. Hence, the number of units in the
input and the output layers are typically fixed by the
application designed®. Introducing hidden layer between
input and output layer increases the network’s ability
to model complex functions. Selection of appropriate
number of hidden layers and their units is critical for the
operation of the neural network. With too few hidden
units, the network may not be powerful enough for its
processing while with a large number of hidden units,
computation becomes expensive. The optimal number of
hidden units is often determined experimentally using a
trial and error method although some basic geometrical
arguments may be used to obtain an approximate indication.

The units in the neural network are an abstraction of
the biological concept of a neuron and weighted paths
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Figure 1. Overview of piediction of seismicity cycle with an artificial newal network.
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connecting these units®. Signals impinging on a unit’s
input are multiplied by the path’s weight and are summed
to derive the net input to that unit. The net input (NET)
is then transformed by an activation function (f) to
produce an output for the unit. The most common form
of the activation function is a Sigmoid function, defined

as,
fNET)=1/1—e T )]
and accordingly,
Qutput =f(NET), 2)

where NET is the sum of the weighted inputs to the
processing unit and may be expressed as
a
NET =2 xw, 3)
i=l
where x, is the magnitude of the ith input and w, is
the weight of the interconnected path.

The determination of the appropriate weights is referred
to as learning or training. Learning algorithms may be
categorized as supervised and unsupervised”. Generally
a backpropagation algorithm is applied which is a
supervised algorithm and has been widely used in neural
network applications. The algorithm iteratively minimizes
an error function over the network outputs and a set
of target outputs, taken from the training data set. The
process continues until the error value converges to a
minima. Conventionally, the error function is given as,

E=05Y (T,-0), 4)

i=1

where T; is the target output vector and O, is the network
output.

Thus, the magnitudes of the weights are determined
by an iterative training procedure in which the network
repeatedly tries to learn the correct output for each
training sample. The procedure involves modifying the
weights between units until the network is able to
characterize the training data.

Once the training is complete, the network has memo-
rized the knowledge contained in the data set in the
form of adjusted weights. In order to evaluate the
performance of the neural network approach, this know-
ledge in the form of weights is then used to process a
data sample whose target values are also known similar
to the training data. This data sample is known as
testing data. If the performance of the network on testing
Jata sets is found to be satisfactory, the network is
supposed to have a generalization capability over any
other set of similar data. Once tested successfully, the
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trained network may be used to process the unknown
data in order to predict the characteristic values for
those data sets.

The north-eastern part of the Indian plate and northern
part of the Burma plate extend between 20°N to 30°N
and 88°E to 100°E. The geological set up and seismo-
tectonics of this region is extremely complex*'®. The
region consists of four tectonic units, viz. eastern syntaxis
(zone I), the Arakan Yoma and Naga thrust fold belt
(zone II), the Shillong plateau (zone III), and the MCT
and MBT faults of the Himalayan Frontal arc (zone
IV). The seismic activity of this region is a consequence
of collision tectonics in the Himalayas and the subduction
tectonics below the Burmese plate and is associated
with a few major geological units. The fluctuation of
seismicity in most part of the Eastern Himalayas,
especially in the eastern side, is well known'!, but its
regularity may not be described by any mathematical
model.

The area selected for the present study lies between
20°N to 27.5°N and 93°E to 98°E and includes zone
I defined above (Figure 2). The nature of faulting is
different in different seismotectonic elements. However,
the overall seismicity of the region is assumed to be
dependent on the resistance offered by each element
(zone) and the stress generated as a consequence.

The seismicity of the area considered is plotted in
Figure 3, which shows a cyclic behaviour. It is generally
assumed that the seismicity cycle in an area consists
of four stages, viz. (i) energy accumulation stage, (ii)
increasing release of energy stage, (iii) intense release
of energy stage, and (iv) remnant release of energy
stage. From Figure 3, it can also be seen that the first
seismicity cycle ranges from 1790 to 1890 and the other
from 1890 to 1990. The year 1790 has been assumed
as the start of the first cycle based on the behaviour
of preceding cycle as the historical data may not be
reported in the past. The four stages have been marked
in Figure 3.

For seismic hazard analysis using ANN, a time interval
of 50 years was chosen as one input segment. A
characteristic value was assigned to each of the four
stages (as defined above) in this segment. This charac-
teristic value corresponds to the time taken by a particular
stage normalized by the total time interval of the segment,
i.e. 50 years. Thus, one complete cycle of the seismicity
contained two segments having four characteristic values
for each. If a particular stage did not appear in the
segment, it has been assigned a characteristic value 0.

These characteristic values for the region selected are
given in Table 1. Thus the input layer of ANN consists
of 8 units representing the characteristic values for two
segments. The number of units in the hidden layer was
determined by trial and error. The 4 units of the output
layer comprised of characteristic values of one segment
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Figure 2. Earthquake

occurrence in the Arakan Yoma-Naga Thrust Fold Belt. (For magnitudes
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Figure 3. Magnitude-time period plot and scismicity cycles stages of the Arakan Yoma-Naga Thrust Fold Belt,

for the next 50 years. For instance, from 1790 to 1890
(100 years), the characteristic values for the 8 input
units are 0.94, 0.00, 0.06, 0.00, 0.00, 0.00, 0.16, 0.84
respectively, while the values for the 4 output units are
0.74, 0.06, 0.20, 0.00, which correspond to the time
interval between 1890 and 1940 (50 years). In order to
generate training and testing, samples for a shift of §

CURRENT SCIENCE, VOL. 75, NO. I, 10 JULY 1998

years were taken for a 100-yecars moving window, The
characteristic values for the period 1790 to 1990 thus
generated with a shift of § years, are shown in Table
2. A total of 21 samples were generated. Of these, the
characteristic values for both input and output units
were available for 11 samples (e, 1790 10 1940) only.
First 6 samples were used for training the ANN and
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the remaining 5 samples were used for testing the ANN.
The network was trained in 50,000 iterations with a
learning and momentum rate of 0.1 and 0.1 respectively
with an acceptable error of 0.000642 (eq. (4)).

The weights obtained after training the network were
used to determine the characteristic values at the output
units for testing samples (Table 3). The testing samples
have been taken for the year 1820 to 1940. The observed
and computed values are also given in Tabie 3. It can
be seen that there is no significant difference between
the observed and the computed values. This shows that
the network has obtained the generalization capability
also and thus it can be used to process any other data

Table 1. Characteristic values for the sliding windows of the
seismicity ¢ycles for four stages of each cycle

Characteristic values
(Stages)

Time

period L 1 It v I 11 11 v

1790-1890 094 0.00 006 0.00 000 000 0.16 084
1795-1895 0.84 0.00 016 000 010 000 006 0.84
1300-1500 ¢.74 0.00 022 004 020 000 000 080
1805-1905 064 0.00 022 014 030 000 0.00 070
1810-15910 0.54 0.00 022 024 040 000 0.00 060
1815-1915 044 0.00 022 034 050 000 0.00 050
1820-1920 034 0.00 022 044 060 000 000 040
18251925 024 0.00 022 054 0.70 000 0.00 030
1830-1930 0.14 000 022 064 074 006 0.00 020
1835-1935 004 000 020 074 074 006 010 0.10
1840-1940 000 0.00 016 084 074 006 020 0.00
1845-1945  0.10 0.00 0.06 0.84 064 006 0.30 0.00
1850-1950 020 0.00 000 080 054 006 040 000
1855-1955 030 0.00 000 070 044 006 050 0.00
18601960 040 0.00 000 060 034 006 060 0.00
1865-1965 050 0.00 0.00 050 024 006 060 0.10
1870-1970 060 0.00 0.00 040 0.14 006 060 020
1875-1975 0.70 0.00 000 030 0.04 006 060 0.30
1880-1980 0.74 0.06 000 020 0.00 000 060 040
1885-1985 074 006 0.10 010 0.00 000 050 0.0
1890-1990 Q074 0.06 020 000 000 000 040 0.60

in this region.

The data generated from the historical seismicity in
the form of characteristic values for the four stages of
the seismicity cycles are used to compute future trends
in the seismicity cycles. The data from 1845 to 1990
have been used for computation of seismicity cycles up
to the year 2040. The computed characteristic values
from ANN along with the input and output time periods
are given in Table 4. These characteristic values for
the four stages were converted back to the years by
multiplying each value by 50 years.

It has been found that the characteristic value for
stage I (the energy accumulation) is increasing with
time. This indicates that the energy accumulation stage
of the seismicity cycle will take place up to the year
2025 so that there will be less number of earthquakes
of higher magnitude during this period. The stage II
(increasing seismic activity stage) is having almost uni-
form characteristic values indicating that this stage, will
be common to all the moving windows and will fall
in the middle of the time period, i.e. somewhere around
2025 to 2030 for 2-4 years. The next stage, which is
the intense release stage, will start from 2030 and will

Table 3. Testing of the data

Characteristic values

Time period (Stages)
Input Output I 1l i v
1820-1920 1920-1970 O 0.14 0.06 0.60 0.20
C 0.17 0.06 0.60 0.17
1825-1925 1925-1975 O 0.04 0.06 0.60 0.30
C 012 0.06 0.56 0.27
[830-1930 1930-1980¢ O 0.00 0.00 0.60 0.40
C 0.10 0.06 0.52 0.32
1835-1935. 1935-1985 O 0.00 0.00 0.50 0.50
C 0.10 0.06 0.50 0.33
1840~1940 1940-1990 O 0.00 0.00 0.40 0.60
C 0.12 0.06 0.49 0.34

Table 2. Training of artificial neural network 0, Observed; C, Computed.
Characteristic values
Time period (Stages) Table 4. Results of the Al analysis for eleven stages of the
characteristic values of seismicity cycles
Input Output 13 1 i v
Characteristic values
1790-1890  18%0-1940 O 074 006 020 000 Time period (Stages)
cC 073 006 021 0.00
1795-1895  1895-1945 O 064 006 030 000 Tnput OQutput { i 1 v
c 065 006 029 000 1845-1945  1945-1995 C 020 0.05 049 026
1800-1900 19001950 O  0.54 006 040 000 1850-1950  1950-2000 C 032 005 050  0.13
C 054 006 040 000 1855-1955  1955-2005 C 042 005 047 006
1805-1905  £905-1955 O 044  G06 050 000 1860-1960  1960-2010 € 052 005 042 0.0l
C 044 006 050 001 1865-1965 19652015 C 057  0.05 038 000
1870-1970 19702020 C 063 007 030 000
1810-1510  1910-1960 g 8'3‘; g'gg 8'(5’2 8'82 1875-1975  1975-2025 C 070 007 023  0.00
: : ' : 1880-1980 19802030 C 072 0.04 024 000
1815-1915  1915-1965 ©O 024 006 060  0.10 1885-1985 19852035 € 071 0.03 026  0.00
c 024 006 0.6l 0.08 1890-1990  1990-2040 C 070 002 028  0.00
0O, Observed; C, Computed. C, Computed.

58

CURRENT SCIENCE, VOL. 75, NO. 1, 10 JULY 1998



RESEARCH COMMUNICATIONS

continue up to 2040, showing that this period will
experience high magnitude occurrence. This aspect has
also been verified by the return period of the higher
magnitude earthquakes and their probability of occurrence
during this period'?. The stage IV, which is the remnant
energy release stage will start after 2040 as clear from
the computed characteristic values for this stage which
are O for this time period in the windows starting from
the 1970-2020 to 1990-2040.
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