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After a short discussion on the extraction of pair
potentials from measurements of liquid structure, with
the example of liquid Na near its freezing point, some
examples of liquid metals under a wide range of
thermodynamic conditions are considered. In particu-
lar, expanded fluid Cs and liquid H and D are referred
to.

The nuclear structure factor S(k&) is then considered
in relation to its electronic correlation functions in
liguid metals under conditions where a sharp separa-
tion can be made into core and valence electrons.
Results on the valence electron-ion correlation function
for liquid Mg and liquid Bi are reviewed and possi-
bilities for seeing valence-valence electron pair corre-
lations are mentioned.

Electrical resistivity theory is then treated in terms
of a force-force correlation function, and the weak
electron—-ion interaction is found to be a limiting case,
leading to the Bhatia-Krishnan-Ziman formula. How-
ever, for expanded Cs, one-body potential theory needs
transcending and in doing so an inter-relationship
between electrical resistivity and magnetic susceptibi-
lity is exposed. Some directions for future work are
finally suggested.

Background and a little history

WueN Baskaran invited me to write an article for the
special section, dedicated to the life and work of
Krishnan, my mind went back to the special section in
Canadian Journal of Physics'. The issue was dedicated
to the memory of A. B. Bhatia, and my credentials for
contributing to the present issue lie in the fact that
Krishnan was the mentor of Avadh Bhatia. In the book,
Liquid Metals: Concepts and Theory® are recorded two
papers co-authored by Krishnan and Bhatia®®; the first
in Nature and the second in Proc. R. Soc. (London).
In the first of these were the seeds and more of what
is nowadays usually referred to as the Ziman theory of
the electrical resistivity of liquid metals. Ziman himself
was not aware of the existence of the Nature article
while creating his theory®. This is made clear by a late
insertion in his MS of thanks to D. Shoonberg for
drawing his attention to this reference. As to the second
article, it seems fair to say that the very influential
paper by Bhatia and Thornton® was motivated by the
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1948 paper by Krishnan and Bhatia referenced above.
Indeed, in the Bhatia-Thornton article the first two
references are to the Krishnan—Bhatia studies of 1945
and 1948.

Thus, Krishnan was already well aware of the central
importance of the liquid structure factor S(k), essentially
the Fourier transform of the radial distribution function
g(r), while developing the theory of liquid metals, and
especially while considering its electronic transport pro-
perties. This awareness has led me to focus in this
article on the theory of forces, structure and electronic
correfation functions in liquid metals.

Extraction of forces from liquid structure
factor S(k)

Classical mechanical theories of liquid structure aim to
calculate S(k), or its r space counterpart g{r), from a
given force law. Initially, theories were developed by
Born and Green’, Percus and Yevick®, followed by
the diagrammatic approaches used by several workers,
leading to the so-called hypernetted chain (HNC) theory
(see, for instance, the references in the article by Rush-
brooke®). .

Subsequently, Johnson and March'® proposed to reverse
the above approaches, and instead of attempting to
calculate g(r) from a force law, they invoked experimental
diffraction data for S(k) to extract a pair potential for
liquid Na near its freezing point.

Force equation for bulk homogeneous liquids

Though the electrons in liquid metals under normal
conditions are almost completely degenerate, the nuclei
can be treated classicaily. The pair correlation function
g(r) of the nuclei, in terms of the potential of mean
force U via the Boltzmann form, can be written as:

g(r) =exp(- U(n)/k;T), _ 8y

where k, denotes Boltzmann’s constant.

The equation for the total force — dU(r,,)/dr, — acting
on atom 1 can be separated (i) into a direct part, arising
from the assumed pair potential, ¢ (r,), between atoms
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at separation r,,, and (ii) a part due 1o rest of the atoms.
If a third atom is considered at position ¥, clearly there
is a need to introduce into the classical statistical
mechanical theory a threc-atom correlation function,
8,(r,, T, 1), that measures the probability of finding the
three atoms sirnujtaneously at r,, v, and r,.

This lcads then, rather naturally, to write the so-called
force eguation (a mmember of the usual statistical
mechanical hierarchy'') as:

- oU(r,,)

2

ar, dr, Py dar,

*a¢(rlz) dg(r ) g, (., r)
o [0
(2)

The last term has the form shown in eq. (2), since it
has been asserted that there definitely are atoms at r,
and r,, and hence the three-body correlation function,
gy must be divided by g(r,) to account for this. The
number derisity, p,, of the ions is present for essentially
dimensional reasons.

It is in eq. (2) that Johnson and March'® proposed
to invert a ‘measured’ g(r) in a liquid metal, like Na,
to find a pair potential ¢(r). But they needed to ‘decouple’
g, in terms of g(r), leading thereby to the Born—Green
theory already mentioned above. Currently, computer
simulation’? is being used to bypass the need for such
‘uncontrolled” decoupling. This has thus led to the
extraction of the so-called ‘diffraction’ potential for
liquid Na near its freezing point as shown in Figure 1.
The upper curve at large r is the pair potential obtained
by Perrot and March'* from density functional theory
in the local density approximation. By including polari-
zation interaction, Blazej and March'* have shown that
this theory curve will be pulled downwards towards the
diffraction potential at sufficiently large r. It is remarkable
that all the major features of the ‘diffraction’ potential
studied by Reatto and co-workers'? have been reproduced
by the electron theory calculation of Perrot and March”
as well, though quantitative differences remain,

Liquid metals under a wide range of
thermodynamic states

Following this study of liquid mctal Na near freezing,
in this section, we shall select a few topical examples
of liquid metals under a wide range of thermodynamic
conditions. We shall find il useful to begin with the
expanded heavy alkalis, and in particular with Cs.

Expanded fluid Cs

It has been known for a long time that near freezing
condilions, the so-called necarly-free clectron model is
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uscful in describing the alkali metals, exception being
Li. Having no p clectrons in its core, this latter metal
scalters conduction band electrons strongly and therefore
behaves very differently from, Na, K, etc. But the
pioncering work of Hensel ef al. (see, reference by
Winter et al.'®), wherein neutron studies of the liquid
structurc factor S(k), especially on Cs taken up the
liquid—vapour coexistence curve towards the critical
point, can leave no room to doubt that as the liquid
density is reduced towards the critical density, the co-
ordination number decreases rapidly while the
near-neighbour distance remains remarkably constant.
March'® has shown that the results of Winter er al.”
for the mass density d could be usefully represented in
terms of the coordination number ¢ by the linear relation

d=ac+b, 3)

with a =230, and b=—80, both in kgm™, This formula,
admittedly by extrapolation to the critical density, yields
approximately a coordination number of 2 for fluid Cs,
and this has led to the proposal that in this fluid the
critical point and the metal-insulator transition coincide,
with the fluid undergoing a ‘Peierls-type’ distortion, as
¢ reduces to 2 at the critical peoint. This invoking of
chain structures at or near the critical density is inte-
restingly related chemically to the low density forms of
Rb and Cs, which on deposition on semiconductor
surfaces form zig-zag chains. Freeman and March'” have
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Figure 1. Pair potentals for liquid metal Na near its fieezing point,
in units of A7 =k, T ). Diffraction potential obtiined by nvertng quid
structure factor Sth) (see Reatto') is shown in lower cuive at lacge
r. Blection theory potentad cafeulued by Pertot and Narch'™ s shown
in upper curve at lage v The work of Blaacg and Ma ChiM on polatization
interaction fowers electron theary cirve i sulbicwengly lurge r
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proposed some connection with the above critical point
deductions, though these workers stress that the near-
neighbour distance on the semiconducting substrates is
fixed by the substrate geometry. It seems hard to escape
the conclusion that chemical bonding plays a significant
role in the heavy alkali fluids as the density is lowered
towards the critical density.

Prompted by the above studies, density functional
calculations have been made by March and Rubio'* now,
however, on long-range ordered assemblies of K atoms,
with varying coordination numbers. The cohesive energy
of these lattices, E(c, r,) say, where r, is the near-neigh-
bour separation, can be interpreted on the basis of
quantum-chemical model'’, wherein only potential energy
curves for the singlet ground state and the lowest triplet
excited state of the K, dimer in free space are invoked.
This work on K has subsequently been extended to treat
a variety of elements, from Bi to H, in low coordination
configurations®”. This prompts us to take H as a further
example of liquid metals under extreme thermodynamic
conditions.

However, before turning to H and D under extreme
conditions of temperature and pressure, let us briefly
consider forces and structure as discussed above. Fol-
lowing the structure factor measurements of Hensel et al.
on expanded Cs (see ref. 15), Ascough and March®
inverted a particular S(k) to extract a force law using
the proposal of Johnson and March' discussed above,
and their result is shown in Figure 2, where it is
compared with the theoretical result obtained sub-
sequently by Arai and Yokoyama®. There is thus a
quantitative agreement between the ‘diffraction’ potential
and theory, as in Figure 1, for Na near its freezing
point.

Liquid H and D

Significant progress in the ongoing search for metallic
hydrogen has been made by Weir et al.”®, using shock
wave techniques. They found liquid metallic H as well
as D at high temperatures for pressures in excess of
1.4 Mbar. Their experimental study on electrical con-
ductivity showed results comparable with values available
for expanded liquid Rb (see also the brief comments
below).

Weir et al. interpreted the results of their experiments
in terms of the presence of H, molecules within the
liquid metallic phase, thus paralleling earlier results on
(now solid) 1,, though of course in quite a different
range of thermodynamic states (see, for example, Siringo
et al™). These findings of Weir et al. have subsequently
been challenged by a number of research groups. How-
ever, as March and Tosi®® have stressed, none of these
challenges is sufficiently convincing to overturn the
original interpretation of Weir er al.®.

1248

However, it is relevant in the present context to
mention the path-intcgral Monte Carlo (QMC) investi-
gation by Magro et al* of isochoric heating of dense
hydrogen. Following their results, March and Tosi?” have
modeled some aspects of their results and, in particular,
the manner in which the electronic kinetic energy varies
with density: (i) in an atomic-like high temperature H
fluid, and (ii) in the low-T molecular assembly. In
regime (ii), the kinetic energy of localization, owing to
containing a H, molecule in a spheroidal box with
infinite potential walls, was shown to have the basic
fingerprints of the variation of the electronic kinetic
energy with density of the plasma. As known from
earlier studies, the infinite barrier imposed overestimates
the localization behaviour, but March and Tosi*’
demonstrated that by softening the barrier (but now in
the atomic fluid region) the results of Magro et al’®
were reflected more quantitatively. March and Tosi®
drew attention to the considerable interest of the above
work on metallic hydrogen in its application to astro-
physics. The discussion of the study by QMC of Magro
et al. leads to the study of electronic correlation functions
in liquid metals.
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Figure 2. Pair polentials for expanded liquid metal Cs for atomic
density of 0.00416 A= and temperature T= 1923 K. Dashed line shows
diffraction potential obtained by Ascough and March® by inversion
of measured liquid structure factor S(k) (sce e.g. Winter et al').
Continuous line is due to Arai and Yokoyama®’. After March and
Rubie'¥.
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Electronic correlation functions: Experiment
and theory

Following theoretical works of Chihara®™, and Watabe
and Hasegawa® in Japan, and March and Tosi® in
Europe (actually the earliest study of which the present
author is aware is that of Cowan and Kirkwood®', who
used the forerunner of modern density functional theory;
the Thomas-Fermi method), Egelstaff et al.** proposed
a possible approach for extracting electronic correlation
functions from 3 diffraction experiments: X-ray, neutron
and electron studies. Unfortunately, progress in imple-
menting their proposal has been slow, for reasons sum-
marized, for instance, by Tamaki®.

The idea behind their approach is: a liquid metal, like
Na, is a two-component system under conditions near
freezing, consisting of Na* ions and electrons. Thus,
just as for molten NaCl, three partial structure factors
are required to define the structure of the liguid metal
as well, The first, already discussed at some length
above, is the nuclear—nuclear structure factor S(k), best
determined by neutrons (see, for example, the fairly
recent study on liquid K near freezing by Johnson
et al**). Then assuming that the core electrons are
attached to their own nuclei, two ‘electronic’ correlation
functions are obtained, namely the valence-valence (vv)
electron correlation function §_ (k), and the valence—ion
correlation function S (k). :

Though results for S, (k) have been obtained from
experimental studies on this, substantial difficulties arise
which have not yet been resolved. Therefore, a break-
through came with the study of de Wijs et al”®, who
used computer simulation to calculate S (k) for liquid
Mg and liquid Bi. It will be useful to introduce their
work by considering the X-ray scattering from a simple
liquid metal such as Na or Mg in this two-component
theory of valence electrons and ions.

X-ray scattering from simple s—p liquid metals

As set out by Egelstaff er al.*, the X-ray intensity 7 (k),
with k = (472/4) sin (0/2), where § measures the scattering
angle and A is the X-ray wavelength, can be expressed
in terms of the total electron density, p(r), as:

Lky=V" [dr dv {p () p(r") explik(r~1))
=F{p@p M. : 4)

Here V is the volume of the sample while F is used
to indicate the Fourier transform with respect to
r—r.

It is now of the essence of the approach to make the
core—valence electron separation:
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pN=pr)+p[n), (5)
and inserting this into eq. (4) yields
LUy =F({p (D) p(r' ) +2F({p (D p (X))
+F((p M) p (")) (6)

But the core electron density is attached to its own
nucleus, and therefore has the same ‘structure’ as the
nuclei. The (rigid) core scattering factor f(k) is next
introduced, with the property

lim f()=2,=Z~¢ o
k>0

with Z the number of core electrons (e.g. 10 in liquid
Mg). This is evidently related to atomic number Z and
valence, z, as set out in eq. (7). Clearly the eq. (6) can
be rewritten in terms of S(k) and S (k) as:

L(kY = f2(k) S(ky + 2£,(k) S, (k) + F p (1) p (X"))).
8)

Let us turn now to relate this equation to theoretical
models as well as to the computer studies of de Wijs
et al®.

Weak electron—ion interaction and modelling of
S (k)
¥l

March and Tosi* in their book, (see also Rasoit’)
present a model of S (k} in terms of the nuclear structure
factor S(k) in the case when the electron—ion interaction
is weak (an appropriate assumption for one of the two
metals, namely Mg, considered by de Wijs et al*).
This weak electron—~ion interaction model yields for the
ratio S,,(k)/S(k) the resuit

®

5.0 2(k) LI
Sty @dae/kd) |e( )

Here the ratio has been normalized so that the perfect
screening condition (see the Appendix for a generalization
to alloys) S, (0) =2"25(0), with z the valence (2 for Mg),
is cbeyed.

Elsewhere, March and Tosi™ have evaluated this model
with the simplest possible forms for each of its ingre-
dients; namely (i) the bare electron—ion interaction k),
and (ii) the dielectric function £(k). In their work, while
the former is taken from the Ashcroft empty core modef
(Ashcroft®), the latter uses the Thomas-Fermi model.
Returning to the Ashcroft madel of (i), it is given in
r space by:
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ol

—2€
v(r)= . r>R,

=0  r<R, (10)

the resulting Fourier transform yields:

—4mzel
v{k)= Tz
For Mg, where the computer data of de Wijs et a
was available for comparison, March and Tosi™* took
the core radius R, as 1.39a, while the electron-sphere
radius r, is 2.66a,, with a, being the Bohr radius i HYme’.
Further, they inserted in eq. (9) the Thomas-Fermi
dielectric constant corresponding to the screened
Coulomb potential, (¢'/r) exp (— k), with kj, the usual
Thomas-Fermi screening length. This in turn is related
to the Fermi wave number, k., by & =4k /ma, which
is equivalent to k. =2.95(a /)" A-'. March and Tosi®*®
thereby obtained in their modelling for the ratio of the
valence-ion partial structure factor S, (k) to the nuclear
structure factor S(k), the following result:

Su®)
S(k)

In Figure 3, taken from the work of March and Tosi®,
this result of eq. (12) is plotted using values of R, and
k. appropriate to liquid Mg, namely Rc=0.735A and
k=181 A" As stressed by March and Tosi, it is to
be noted from the computer data of de Wijs et al®
that the innermost node of S,(k) occurs near 2.1 A,
which is close to that given by the model result of
eq. (12). They also pointed out that the deepest value
of the ratio plotted is about —0.13 from the model to

cos(kR). (11)

LJS

=7"2(1 + (k/k)*) " cos(kR). , (12)
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Figure 3. Ratio of electron (e)-ion (i) partial structure factor to S(k)
for liquid Mg, After March and Tosi®%
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be compared with about -0.08 at k_, =2.5 A" from the
computer data. For a simple model, such as this, the
agreement is quite satisfactory. March and Tosi’® high-
lighted the point that the innermost node of both computer
data and the model eq. (12) lies inside the k value
corresponding to the principal peak of the nuclear struc-
ture factor S(k). The deep negative region in § (k) found
by de Wijs et al.*® is then in (anti)phase with the main
peak in S(k).

However, the Bi data of de Wijs et al.’® is an example
of strong electron—ion interaction and therefore the simple
model above is not appropriate (for example, liquid Bi
on freezing takes on semi-metallic character). Neverthe-
less, March and Tosi®* have again computed the ratio
S, (k)/S(k) from the computer results of de Wijs et al.*.
The screening requirement, at k=0, now becomes, with
valence 5, S,,(0)/5(0) =5 = 2.24 for the Bi** ionic state.
The data shown in Figure 4 fall again, as for Mg, on
a reasonably smooth curve. But the important difference
from Mg (see March and Tosi*®) is that the first node
in S, (k) lies now at higher k than the principal maximum
in S(k). Hence S ,(k), for Bi, shows a positive peak in
phase with the main peak in S(k) at k=2 A",

Significance for electron—electron correlations of
nodes in S (k)

It is quite clear from the above discussion that the
precise nodal structure of S,(k) is essential for quanti-
tative work. For Bi, as March and Tosi point out, there
are (at least) two nodes, at k, with i=1 and 2, as is
clear from Figure 4. But on the basis of eq. (8) for
the X-ray intensity /(k), it is clear that at k_; this nodal

s, Jav's(a)

] 1 1 1 |

a (A1)

Figure 4. Same as in Figure 3, but now for liquid mctal Bi near
freezing, constructed from computer simulation of de Wijs er al?%:
see March and Tosi®.
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behaviour ‘exposes’ the valence~valence electron den-
sity correlations, provided the accuracy of the X-ray
measurement can separate J (k) from f (k) S(k,).

~ Quantum chemical calculations can be used for esti-
mating f (k) to high accuracy, whereas, as already men-
tioned, S(k) is directly accessible from neutron diffraction
experiments. March and Tosi’® refer to theoretical models
of §, (k) but the interested reader should consult their
paper for details (see also Magro er al* for plots of
the electron—electron pair correlation function in liquid
H plasma).

Electrical resistivity of expanded fluid metals:
Force-force correlation function

Because of the crucial contribution of Krishnan to
understanding of the electrical conductivity of liquid
metals near their freezing points, it is therefore appro-
priate in this penultimate section to briefly review an
approach to this property via a force—force correlation
function (Rousseau er al.*’). Their formula was initially
criticized by a number of groups. But, provided one
works with a completely degenerate electron assembly
(see Leung and March*' for T#0), these criticisms have
been laid to rest by the demonstration*? that this formula
is a generalization of the impurity resistivity of a metal
first correctly treated in a strong-scattering framework®,
Apart from constants, which we have omitted here, the
heart of the Huang formula is the sum § defined in
terms of phase shifts #(k.):

S=% @+ 1)sin? n=2siny, sinn, | cos(y,_, —n),

1=0 13)
which is readily shown to be equal to
5= Isin*(y,_,-n). (14)

iI=1

Following the approach of the writer*?, a result arrived
at by Gerjuoy*, which was rediscovered by Gaspari
and Gyorffy*, can now be used in eq. (14).

This then enables, for the case under discussion of
the scattering of plane waves from a spherical potential
V(r) of finite range, the sum § to be rewritten solely
in terms of radial wave functions R(r) generated by
V(r), and the force —0V(r)/dr. The result is*%

S= Ezj dr, PR _ ,(r)a (r) R(r)

{ut ]

av (2)

X!U dry AR _(r)——* R(r,).

(15)
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At this point, connection must be established with
the formula of Rousseau et al’’; see also McCaskill
and March**. This has as its nub the force—force
correlation function, F, again with unimportant multi-
plying factors suppressed:

av(r) 3V
or, or,

F=|drdr, lo(r, )P, (16)

where o(r,, r,) denotes the energy derivative of the Dirac
density matrix for potential V evaluated on the Fermi
energy EFr:(h‘zkzF/2m). Analysing ¢ into partial waves
for the central field case, with angular momentum com-
ponents denoted by a(rl, r,), the integrand, f, in eq.
(16), can be expressed in terms of this o, plus the force
-dV/dr. Using this in the final step such that

ofr,r)=<R(r)R(r), (7
it is a straightforward matter to show that the formula®
rewritten in the form eq. {15), has precisely the same

~ shape as the Rousseau et al*’ formula. They are both

force-force correlation functions of the type eq. (16).

Relation to Bhatia~Krishnan-Ziman theory

The theory of Bhatia, Krishnan and Ziman (see e.g.
Ziman®)) is a weak scattering theory. The idea underlying
this theory is to represent the total potential energy V(r)
scattering the plane waves representing the conduction
electrons by a sum of screened potentials v(r) at the
ionic sites R, where a ‘snapshot’ has been taken of the
ions at a particular instant with:

V=Y v(r-R). 18)

Because the force—force correlation function F in eq.
(16) already contains the potential energy V to second-
order explicitly, this quantity F can be evaluated to
second-order in V by replacing the energy derivative of
the density matrix by its free electron (plane wave)
value. Incorporating back all the numerical factors, the
result for weak scattering with a sharp Fermi surface
of 2k, can be obtained for the electrical resistivity R

as’

. S T P Py e
THeulp, (k) v

(19}

which is the formula of the Bhatia~Krishnan—Zinan
theory. Here v, is the Fermi velocity, p, is the jonic
number density, and since S(k), as emphasized above,
is accessible to experiment, the only quantity needed to
find R is the Fourier transform of the localized atowmic-like
screened potential energy (k). Ziman was able to bring
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the result eq. (19) to full fruition using pseudopotential
theory for constructing ©(4A).

The force-force correlation treatment has also been
used to treat the extreme strong scattering limit, exem-
plified by the liquid rare earth metals, but we shall not
go into details here.

Inter-relation between magnetic susceptibility
and electrical resistiviry in low density Cs

To conclude this section on electrical resistivity, let us
first note that the force-force correlation formula eg.
(16} is a one-body potential theory. In the face of strong
electron—electron correlations, this must be expected to
break down and this has been made clear in the cal-
culations of Ascough and March® on expanded Rb.

Such strong electron-electron correlations are, in fact
fingerprinted in the magnetic susceptibility of expanded
liquid metal Cs along the liquid-vapour coexistence
curve (see, for example, Warren®). This has led the
writer to report a treatment in which electrical resistivity
is inter-related to magnetic susceptibility, and this is
demonstrated in Figure S5, taken from March™. For the
underlying theory, the work of Chapman and March™'
could be consulied, who utilize what is essentially heavy
Fermion phenomenology at elevated temperatures. Their
work, together with the subsequent study of the writer
(March™) can leave no doubt that, in fluid Cs, as the
critical point is approached both electron—electron and
electron—ion interactions become strong, and it is in the
interplay between them that the final solution of this
problem will be found.

Riufl ecm)
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figure 5. Marked correlution between experimental values of clecirical
esistivity R and reciprocal magnetic susceptibility 1/y measured relative
0 its Curie limit (Warren™) {7y, (afier March®).
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Summary and future directions

For at least three liquid metals, Na and Be near their
freezing points, and in expanded fluid Cs, force laws
are now available which seem 10 be of high quality,
though inevitably they are density-dependent and can
only be invoked to discuss ionic rearrangements at
constant volume. The Na potential has been brought
into contact with density functional theory in the local
density approximation'**?, and a similar density func-
tional potential is available™** for K and Be, though,
in contrast to Na, these potentials have not yet been
tested against diffraction potentials. For liquid Be, this
has something to do with its toxicity. For expanded
fluid Cs, the potential of Ascough and March?' was
obtained again by inverting the measured S(k) for a low
density fluid state. The time seems ripe to extend this
approach to other liquid metals occurring in a wide
range of thermodynamic states,

This extraction of a force law has been followed by
a discussion of local coordination in (i) the heavy alkalis
Rb and Cs, and (i1) liquid H and D; for the latter, both
shock wave and computer experiments are now available,
The electron pair correlation function has been examined
by Magro et al®, and this has prompted a more general
discussion of electronic correlation functions in liquid
metals, with particular reference to Mg and Bi. Possible
experiments which use computer calculations of the
valence-ion correlation function g (r), or its correspond-
ing partial structure factor S (k) have been proposed by
March and Tosi®, which may allow a window to the
experimental observation of some parts of the valence—
valence structure factor S, (k).

Finally, because of the pioneering work of Bhatia and
Krishnan® on electrical resistivity, some attention has
been given to the force—force correlation treatment of
electrical resistivity, which contains the Bhatia-
Krishnan-Ziman theory as a limiting case. The inspiration
given by the work of Krishnan to the development of
a full understanding of structure and transport in liquid
metals needs no further emphasis.

In discussing future directions, it would not be possible
to avoid the conclusion that the static structure studies
emphasized here need complementing by more work on
the dynamical structure factor Sk, w), which has the
physical significance that it represents the probability
that a neutron incident on the liquid metal will transfer
momentum f k and energy #w to the liquid. Pioneering
work on liquid Rb of this kind was that of Copley and
Rowe™. This collective mode behaviour can be modeled
somewhat as Feynman did for liquid He IV, and this
medel has been recently utilized™ to discuss the ratio
of bulk to shear viscosity. In turn, this leads to a
relation between surface tension and shear viscosity,
as re-emphasized recently especially by Egry®. And
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since clectrical conductivity and thermal conductivity
are linked by the Wicdemann-Franz law, it is very
much in the spirit of the present article to study why
deviations™ exist in liquid metals from this so-called
‘law’.

Appendix

Perfect metailic screening and electronic
correlation functions in simple liquid metal
alloys in the long wavelength limit

In the main texi, screening conditions were used to
relate nuclear—nuclear and valence electron—ion correla-
tion functions to the valence of the liquid metal in
question™®. In the context of this article, it seemed
appropriate to give in this appendix the generalization
of these conditions by Bhatia ef al.>’ to the case of a
binary liquid metal alloy (e.g. Na-K).

The argument of Bhatia er al”’ can be summarized
as follows. Suppose that ions of types A and B have
valences of z and Z respectively. Six distinct correlation
functions, S, Sy S, and cross-correlation functions
S, a» S.p» and S, are required to characterize the structure
of the mixture of A, B and valence electrons v. Let us
set out the condition of perfect screening (compare the
non-degenerate case of Debye-Hiickel theory with the
totally degenerate electron assembly considered here).

The idea is then to view the surrounding charge
density first from an A ion, then from a B ion, etc.
For the case of the A ifon, the positive charges ze arc
distributed at a distance r from the jon chosen as origin,
with charge density zep,g,,(r), ions with charge Ze
with density Zep,g,,(r) and valence electrons with
charge density —p.g..(r), pa Py, and p, being the
number densities of the three species. The total charge
density when viewed from an ion A must clearly integrate
to —ze for perfcct screening, since long-range electric
fields cannot exist in a conducting medium. Thus one
can write

~ze=2p, [ (80u() — DT+ Zepy [ (g, = D dr

—ep, fen-1dr, (A1)
where unity has been subtracted from each of the g’s
for convergence at infinity, This can be achieved trivially,
as shown, since
eptlep,=ep,. (A2)

Similar cquations to (Al) follow by silling next on a
B ion and then on a valence electron,

Next, one defines partial structure factors in the long
wavelength limit k, which tends to zero, by
CURRENT SCIENCE, YOL. 75, NO. I |, 10 DECEMBER 1998

$,=0,+(pp)" [ (g~ dr (A3)
Then the screening equations referred to above, of which
eq. (Al) is an explicit example, can be shown to take
the form (Bhatia et al.¥):

172
SW=ZE & SAA+2ZZM SAB+ZZ & SBB’
(A9
2 172
P Py
S,.=|— 28, +48,. |— , AS
vA 2, AA AB Pa (A5)
and
, (/2 , 2
B A
SVB pv ZSBB +z ;; SABJ (A6)

Using experimental data of McAllister and Turner™,
Bhatia et al™ have plotted S, etc. as functions of
concentration for the lignid Na-K system (z=Z=1).
The interested reader should refer to their Figure 1 and
to a subsequent review by Tamaki®. More recent work
by March and Tosi** has also utilized these screening
relations in connection with studies on Li-H plasma.
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K. S. Krishnan and early experimental
evidences for the Jahn-Teller theorem

G. Baskaran

Institute of Mathematical Sciences, Chennai 600 113, India

Jahn-Teller theorem, proposed in 1937, predicts a
distortional instability for a molecule that has
symmetry based electronic degeneracy. In 1939, Krish-
nan emphasized the importance of this theorem for the
arrangement of water molecules around the transition
metal or rare earth ions in aqueous solutions and
hydrated saltes, in a short and interesting paper
published in Nature by pointing out at least four
existing experimental results in support of the theorem.
This paper of Krishnan has remained essentially
unknown to the practitioners of Jahn-Teller effect,
even though it pointed to the best experimental results
that were available, in the thirties and forties, in
support of Jahn-Teller theorem. Some of the modern
day experiments are also in conformity with some
specific suggestions of Krishnan.

Jaun-TELLER effect' is a beautiful and simple quantum
phenomenon that occurs in molecules, transition metal
complexes as well as solids containing transition metal

1254

or rare earth ions. It states roughly that ‘a localized
electronic system that has a symmetry-based orbital
degeneracy, will tend to lift the degeneracy by a distortion
that results in the reduction of the symmetry on which
the degeneracy is based’. In isolated systems such as
a molecule or a transition metal complex it is a dynamical
or quasi static phenomenon. They are called dynamic
and static Jahn-Teller effects’. When it occurs co-
operatively in crystals it is a spontaneous symmetry
breaking phenomenon and a crystal structure change.
This is called a co-operative Jahn-Teller effect.

Even before Jahn-Teller theorem appeared, Krishnan
and collaborators’® performed a series of pioneering mag-
neto crystalline anisotropy study of families of para-

_magnetic salts containing transition metal and rare earth

ions lending good support to various new quantum mecha-
nical ideas including those of Bethe, Kramers and Van
Vieck on crystal field splitting and magneto crystalline
anisotropy. In the biographical Memoirs of the Royal
Society of London, K. Lonsdale and H. I. Bhaba' wrote:
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