OFINION

Reuse in software engineering

Rajendra K. Bera

Onc of the fcatures of software engineer-
ing that strikes anvbody who has migrated
to it from some other branch of knowledge
IS its continuing state of unceranty - not
knowing where it stands and how it
wishes to recach s goals. Considering
that software cnginecring s al least 45
years old. this statc-of-affairs 1s perplex-
ing. The uncertaintics manifest in many
ways. one of them is the currcnt cmphasis
on reuse because it seems that every
software cnyincer has a strong tcndency
to reinvent the wheel time and again.

Barmng software engincering. the author
is not awarc of any other branch of
knowledge where rcuse is such an issue.
Indeed, our ability to invent is so meagre
that cur natural tendency 1s to reuse and
reuse and reuse whatever hittle we
know. It 13 an cffon-saving mcans of
extending our infcllectual rcach. We do
it instinctrvely.,

Thus in physics, we aticmipt to solve
a problem by first invoking the laws ol
nature as we know them today. In mathe-
malics, we¢ {irst try to figure out the
known datatypcs. theorems and Ilemmas
that we can use belore proceeding lurther.
In medicine we go through a standard
diagnostic process belore commencing
treatmcent, tn our culinary tastes we all
love grandma’s recipes. in social inter-
actuons w¢ [ollow customs, and so on.

So it comcs as a surprisc that enforcing
rcuse in a soltwarc industry scems (o
require champtons from schior manage-
ment. Conscquently. quality software is
a rarity, not a rule. Al this indicates that
software engincering has yet to mature
to a state where 1t can comfortably com-
municale with ils scientific, cngincering,
and applications domains,

The world is mathematical

Mathematicians (lhe oldest practitioners
of wvirtual rcality) have crcaled a wholc
world of abstractions and powerlul means
of dealing with them without miring them-
selves 1n alphabct soups. And physicists
have never ceased to wonder why nature
is so fantastically mathematical. The con-
ceptual rclationship betwecn the abstrac-
lions created by the mathematicians
(without their cver intecnding 10 explain

622

nmurc) and the nawral world is very
deep indced. And the physicists have
qutic eagerly exploitced this by turning
large parts of pure mathcmatics into ap-
plied mathematics!

Mathcmaticvans and physicists do not
introduce buzz words., nor do the prac-
tioners of other mature branches of knowl-
cdge (imagine peoplc practising law or
medicine with cver-changing buzzwords).
When they introduce a new word or
phrasc or bnng in new semantics, they
do it after careful thought and consultation
to prevent not only present, but also,
future confusion, Such professionalism is

lacking in software engineering. All bran-

ches of knowledge (not the arts) which

aspire to reach greater levcls of matunty
cventually turn (or will tum) to mathe-
matics (hence the current emphasis on
mathecmatical modelling) to express them-
selves, or, in the lcast, adopt the rnigorous
discipline which mathecmaticians follow.

However, concepts and abstraction
lcvels taken for granted by mathemati-
cians and physicists appear novel (often
inriguing) to software engincers. Mathe-
maticians and physicists have taken struc-
lured knowledge to heights unmatched
by any other branch of knowledge, and
this knowledge is freely available. So, it
1s indced surprising that software engi-
necrs have made very little cffort to
bencfit from them. Instead, they havce
gone on a sprec 10 rediscover long known
concepts, have a particular fondness for
alphabet soups, and constantly produce
terminologies, which even their inventors
do not fully understand or which contra-
dict accepted usage of the terms.

Software s intercsling because it
cncodes the know-how (or algorithms) of
doing things that intcrest us. And 1t 1s
donc in mathcmatical terms! Yet, most
programmers arc oblivious ol the fact
that programming 1s a mathematical
aclvity. and worse, many are afraid of
vicwing 1t in that light

Symbolic systems are the key

The most interesting part of programming
1s. first, the selcction of algonithms, then,
their literal translation in a given pro-
cramming language. A programming lan-

guage can do this only if it follows the
rules and semantics of mathematics.
Unfortunately, a!l currently used program-
ming languages have self-inflicted con-
straints —non¢e of them match the
symbolic and semantic richness that
mathematicians take for granted the world
over as a common hceritage. 1t Is said
that thc theory of relativity would not
have progressed without the notations of
tensor mathematics nor quantum mecha-
nics without the notations of complex
variable theory. More closer to home, we
would have been af sea in our daily lives
tf we werec to keep accounts in Roman
numerals and not 12 Arabic. We encode
our intellectual activitics in symbolic sys-
tems, and the devising of these symbolic
systems is one of the outstanding achieve-
ments of the human mind.

Computer scientists are, of course, well
awar¢ of this fact, indeed more, that
symbols representing instructions are no
different in kind from symbols repre-
senting numbers (recall the notion of
Godel-numbering). Yet they have failed
to produce a powerful enough program-
ming language and push compiler tcch-
nology to the levels needed to support
it. The technology for doing it has been
available since the I1ntroduction of the
first digital computer. Today 1solated
packages exist that do algebra, for ex-
amplc. Macsyma, but constructs that do
symbol manipulation should have really
been a part and parcel of a programming
language by now. In its absence. even
mathematicians have to go through mental
and coding gymnastics to solve a problem
on a computer. How much nicer 1t would
have been 1t they could have used the
symbology that is universally understood
by their colleagucs. Their symbolic system
is so powerfu] that they move scamiessly
from problem statement to problem
solution, unlike a programming language
which handles only implementauon but
not requirements, analysis, or design
aspects of software development. Without
appropriate symbology. thcorem proving
would have been impossible, and likewise
without appropriatec symbology. program
proving will remain a dream. What solt-
warc cnginccring desperately needs s a
programming language that will naturally

CURRENT SCIENCE, VOL. 76, NQ. 5, 10 MARCH 1999

induce mathematical modelers to do their
own programming using their own sym-
bolic systems. That is the rcal key w0
software productivity.

Domain experts are crucial

To succeed in any complex software pro-
ject, the first and forcmost task should
be the identification of the domain ex-
perts, and then the superstar programmers.
Success rates will be high because they
will seek to reduce the complexity level
of the project by being knowledgeable,
experienced, and above ail, by working
at conceptual levels. By training and ex-
perience, thcy will bring into play a
wealth of organizing principles, and there-
fore a very high level of reusability in
their work. They will be a much smaller
team thcreby tremendously reducing the
interpersonnel overhcads that otherwise
occur with larger teams.

Unfortunately, the absence of domain
experts and superstar programmets is all
too common In software projects and
hence the perennial problems of missed
schedules. unpredictable quality, and un-
controllable costs,

Why reuse is lacking in
software?

As already noted, in most human aclivities
and spheres of knowledge reuse i1s prac-
tised routinely in the form of traditon,
custom. concepts, theorems, lemmas,
recipes, and so on. Even home grown
software engineers in the scientilic com-

munity just go about their business of

creating math and other librarics without
using the word reuse. That i1s because
traditionally libraries have been an epil-
ome of reusability in propagating knowl-
edge since the past few thousand years.

On the other hand. people who pro-
fessionally call thcmsclves as sottware
engineers have developed a style of [unc-

tioning which is often vicewed by others .

as unscientific and unstructured; 1s some-
times jliogical, often makes them wary
of mathematics; and often makes them
reluctant to consult domain experts.
These are among the primary reasons
why reusability in software engineering
is 50 poor. Software is being developed
without a firm tradition of professional

excellence, and rarely by the domain
experts themselves.

But what i1s truly needed to set things
right 1s that domain ¢xperts come down
from their ivory towers, learn the art of
programming, and develop software in
their domains of knowledge. The practice
of reuse, above all, requires people with
experience and great sensitivity to pattern
matching at abstract (conceptual) levels,
people who can spot often-needed pat-
terns. It requires insight, not common
sensc. The most elegant and optimal form
of reuse is at the level of basic concepts.
It therefore comes from the mind, not
from programming fashions. However, the
dominant mindset in software enginecring,
at present, is to focus on code reuse,
which 1s really the lowest and least
inleresting form of reuse because they
are tightly bound to a programming
language and implementation details, But
cven in code reuse there are disincentives!
Programmer productivity is too often
measured by the number of lines of code
he/she produces thereby discouraging
code reuse, specially if reuse means trans-
ferring from dircct coding activities to
thinking activities.

Reuse is a means of economizing on
intellectual effort, timec. expense. life-
cycle cosls. code size. and test requirc-
ments, as well as o improve on clanty.
and quality. Serious rcusability requires
deep knowledge of the domain and across
domains. Consequently. all complex pro-
jects (even small projects can be complex,
for example, a safety-<critical code scg-
ment) require domain experts for con-
sultation and, if possible, {or software
development (analysis, design, coding,
testing).

The scientific community has generally
followed this principle. 1t develops its
software through its own scientists. The
so-called software crisis as a phenomenon
is neither faced by them nor created by
them. The codes Lhey developed decades
ago (when programming languages were
primitive, and without software toois) for
weather forecasting, nuclear weapons
design, engineering structural design, drug
design using quantum chemistry, math
libraries, graphics libraries, etc. are still
used with great confidence. Even the
WEB was designed by a physicist!

While many scientists do their own
coding, business managers rarely do so

CURRENT SCIENCE, VOL. 76, NO. §, 10 MARCH 1999

OPINION

(they would have if they had good training
in maths). The engincers usually fall
inbetween. Sometimes they do, sometimes
they don’t, depending on how much they
liked thcir math courses. The software
crisis exists because business and, to a
lesser extent. engineering software is
being developed by people who are not
domain experts.

Conclusions

Until computer scientists provide a pow-
ertul enough programming language that
will match the richness of the symbolic
syslems used by mathematicians, and till
domain experts learn the art of computer
programming and actively partictpate In
softwarc development, software engineer-
ing will remain in a state of hmbo.

At the same ttme, programmer training
also needs an overhaul. The overwhelming
cmphasis has been on tecaching program-
ming language syntax, creating and
memorizing jargon {and alphabet soups),
learning (o usc (unstable)} tools. and.
generally, the mechanics of doing tairly
mundane things. Not much, and some-
times no. attention 1s paid to teaching
about algorithms. approaches to problem
solving, etc. They lcarn nothing about
what makes a programming language
great, how concepts finally get translated
into elegant code, how o frame intelhigent
test cases. They leam very little of
memory and cache management, limita-
tions of finitc statc machines, and the
performance and accuracy sensitivities of
algorithms to them. And they learn prac-
tically nothing of great softwarc designs
and designers. software architecture and
its relationship to maths, nor arc they
exposcd to an anthology ol great codces
written by the masters. In short, the sol(-
ware engineering community has tailed
to sct up an cnvironment whereby people
can be nurlured into a protessional culture
through osmosis, mentoring, critical
appreciation, discipline, etc. Indeed, some
might say. such a culture is yet to take
roots.

—_ — i — =
[—— i mm M = - marEm A - - 8 Sweeegm gt s mmm - — o sy emle— R -ERA - -

Rajendra K. Bera is in the Systems Group
al IBM Global Services India Pvt Lid,
Bangalore 560017, India.

L3

