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Table 2. Effect of different concentrations of sodium bicarbonate on
in vive germination of G. densiflorum. Each set consists of 25
encapsulated PLBs and had 10 replicates

Regeneration
percentage + SE

Concentration of
bavastin (mg ™)

Concentration of
sodium bicarbonate {(Img l"[)

il A ksl il

0 4 6.00 + 0.30

5 4 [12.00 + 1.08
10 4 20.4%*% + 1.69
15 4 24.2%*% + | 28
20 4 28.40** = 1.04
25 4 22.6* £ 0.60
30 4 20.20** £ 0.74
40 4 18.6%*%* + 0.78

Germination percentage followed by asterisks in each treatment
within the same column is significantly different from control

(artificial seeds without NaHCQ;), using Student’s f test at *5%
level: **1 % level and ***0.1% level. | '

supplementation of the encapsulating matrix with suit-
able food preservative and fungicide. It was interesting
to note that besides preventing desiccation, the food
preservative sodium bicarbonate alone was effective in
checking contamination. However, in the long run, pres-
ence of a fungicide appears to be crucial to resist con-
tamination. Development of the protocol for artificial
seed production in G. densiflorum suggests that the
lengthy and empirical process of hardening could be
avoided for transplantation of in vitro-grown plantlets
from laboratory condition to natural conditions (Table
2). Moreover, the development of the protocol for the
endangered orchid G. densiflorum may be an useful
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addition to the in vivo germination and regeneration of
plantlets for storage and transplantation of precious and
costly hybrid orchids as well as for conservation of en-
dangered germplasms. The judicious and intelligent
coupling of artificial seed technology with that of micro-
computer in achieving automated encapsulation and regen-
eration of plantlets would tremendously increase the
efficiency of encapsulation and production of homogeneous
and high quality artificial seeds, and will thus revolutionize
the current concept of commercial micropropagation
method by the beginning of twenty-first century.
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problems. Although, analytical solutions to any problem
are much more accurate, but scientists frequently have
to resort to numerical techniques to solve for realistic
models since analytical solutions for such models re-
quire gigantic human efforts and are time consuming.
Even for numerical methods, algebraic formulas have to
be obtained before any numerical techntque 1s used.
Symbolic manipulations of such complicated mathe-
matical expressions are considered to be a daunting task
by many practising scicatists. With the advent of sym-
bolic computation packages, also known as Computer
Algebra Systems (CAS), the burden on practistng cngi-
neers and scientists have become easter in handiing
large algebraic formulations.

Following is an account of a couple ot problems in
geophysics, which are quite time consuming if solved
manually. For this purpose, we have used a populars
symbolic computation program, Maple V, developed at
the University of Waterloo, Canada, This s one of the
{irst gat{cmpts ol demonstrating the ability of such aloe-
braic manipulation programs as an aid to solve complex
real-world problems, The resulting enormous Liite sav-
ing can be utilized an comprehension ot the results.
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Hopefully. many of the unsolved scicntific and engincer-
ing problems, which werc not earlicr attempted because
of their huge nature, would be easicr to solve now by
utilizing the potential of the symbolic computational
packages.

The concept of computer algebra systems (CAS) is not
new. In fact. Newton' laid its foundation in Arithmatica
Universalis where he systematically discussed the meth-
ods of manipulating universal mathematical expressions
(i.e. formulas containing symbolic indeterminates), and
algorithms for solving equations build around these ex-
Pressions. Bul it came :nw practice only in 1953, when
Kahrimanian® and Nolan® published their theses, sepa-
rately, on Analytical Differentiation on a Digital Com-
puter. After the development of LISP, several CAS were
written in it. In late 60s and 70s, multipurpose algebraic
packages were written for personal computers. In 1980,
Geddes and Gonnet® developed Maple at the University
of Waterloo, Canada, which was one of the most effi-
cient programs developed for symbolic, numeric and
craphical manipulations. The latest version is Maple V
which has come a long way from its predecessors.

Maple V has already been used in solwng real-world
problems. Pratibha® and Corless et al.® demonstrated
how, through efficient programming, Maple V can
handle very large algebraic expressions by emulating a
human mathematician. Pratibha and Jeffrey’ studied the
behaviour of electrorheological fluids by replacing the
numerical solution by a more accurate series approxi-
mation. A large number of terms (upto order of 50) in
the series expansion were handled and all the algebraic
manipulations were carried out on a computer with the
help of Maple V.

Systems like Maple V can be utilized in several areas
of mathematics, for example differential and integral
calculus, matrix manipulations, analysis of complex
variables, calculations of eigen functions, roots of poly-
nomials, solution of linear equations, etc. the list and the
possibility of its applications in sciences and engineer-
ing are endless.

Earthscientists have now begun to realize that simple
assumptions about earth’s structure are not sufficient to
interpret the data observed during the geophysical sur-
veys. One has to resort to complicated earth models to
explain the anomalies. Large complicated mathematical
expressions result due to the model complexity. Some-
times it becomes very difficult to handle such large ex-
pressions manually and therefore one leaves the problem
out of frustration.

Anticlines and synclines are some of the important
gcophysical models used in gravity data interpretation.
These two models assume significance in the context of
scdimentary basins and are important from the point of
view of petroleum exploration. The variation in the
value of the acceleration due to gravity, termed as grav-
ity anomaly, is observed on the earth’s surface, and in-
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terpreted to infer about the rock-types present bencath
the surface and their structure (shape, extent ete.). The
gravity anomaly observed at the surface largely depends
on the structure and the variation in the density of the
rocks present underneath. In sedimentary basins, it is
oftcn necessary to assume a continuous change in the
density contrast as the depth changes. Analytical formu-
lac can be readily derived for uniform density contrast.
The problem is much more complex when one has to try
for nonuniform density contrast, even for simple struc-
tures such as anticlines and synclines. Rao and Raju®
provide an example of such a problem. They carricd out
gravity inversion of anticlinal and synclinal structures
with nonuniform density contrast. In particular, they
considered a hyperbolic increase of density with depth,
represented as:

Apg ﬁ2
(z+ )"

where Ap(z) is the density contrast at depth z, Apy 1s the
density contrast at the earth’s surface, and B is a con-
stant with units of length. An anticlinal structure (Figure
1 a) with depths to the top, Z; and bottom, Z,, and with
an angle of inclination, a, would produce a gravity
anomaly at the surface, which is to be evaluated by
considering a cross-sectional area du.dz in the body of
the anticline and integrating its gravity effect between
proper limits as given by Rao and Raju’:

Ap(z) =~

Ag(x)=2yAp,f*

Z,  (z-Z)eoya)

dudz.

J j (z +ﬁ-3?'((uz—_;)2 +2%)

=7Z, u=~(z—4,cot(a)

Similar integration results for the gravity effect of a
synclinal structure (Figure 2 a) are:

Ag(x) = 2yAp, B’

Z, —(z—Zy)cot(a)
dudz.

-[ j (z+ﬁ) ((uz-x) +2°)

=2, u=(z—Z;)cot(a)

Analytical evaluation of these integrals and their de-
rivatives with respect to the unknown parameters £, £,
and a are required before an optimization scheme can be
implemented to match the anomaly with the computed
values. The evaluation of the integrals and the deriva-
tives are quite time consuming and highly error prone, if
evaluated manually. A more detailed discussion on the
accuracy of these derivatives is submitted elsewhere’.
Rao and Raju® have manually derived analytical ex-
pressions for the anomaly. The formulac derived have
already been given by Rao and Raju®. The derivation of
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Figure 1, Gravity anomaly, computed using Maple V, over a symmetric

anticlinal structure. Model parameters are chosen from Rao and Raju”.

these expressions must have taken a good deal of therr
time. We have derived these expressions with the help
of Maple V. The derivation was achieved in a very short
time (of the order of 100 s) using a small computer pro-
gram. Apart from symbolic manipulations, Maple V has
enormous numeric capabilities as well. The values of
gravity anomaly for anticlinal model given in Rao and
Raju® with parameters (Z,=1km, Z;=S5km, and
a = 45°) have been computed using the expressions ob-
tained by our program. The values of py and /3 are as-
sumed to be 2.5 g/cm3 and 2.5 km, respectively. The
gravity anomaly thus obtained is shown in Figure 1b.
The parameters chosen for the synclinal modcl are
Zy=1km, Z,=6km, and a = 60°, and the anomaly 1s
shown in Figure 2 b.

The evaluation of the derivatives of the anomaly with
respect to their parameters are also required in order to
apply any inversion scheme. This evaluation can either
be carried out numerically or analytically; the analytical
expressions undoubtedly being more accurate than their
numerical counterparts. Rao and Raju” have given some
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Figure 2. Gravity anomaly, computed using Maple V, over a sym-
metric synclinal structure. Model parameters are chosen from Rao
and Raju®.

formulae for these derivatives which are not correct be-
cause the size of the problem makes these untractable
manually, and therefore errorprone. Correct form of
these derivatives have been casily derived with Maple V
(ref. 9). Expression for one of the derivatives,
(dAg/oZ,), for the anticlinal model (Figure 1a) is pro-
vided here for demonstration, which 1s:

oA Z, cota 2, COotar
1‘5':2?@0432 ""‘*“%—“7"‘—-""‘""“—*3‘4'
0Z, (Z,+P)R;, (Z,+ B)R;

Al Z, 1 I cole
gt e + ——— +
G |RS Z,+p Ry

B [Z, l +cmola]+

E; Rll Z+p Rf’
..E.L.E?__EJ_EL_”! -E-LL-QL_;_
261 L& & 2G, | £y &

T4‘7]6+T5'7}7+T3‘7]3“ t)‘Tw}=
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Where.
4 = cotr - x. B = Z;cotct + x,

. 2 . 2 2

G, =4+ 2A3coux + fircosec’a

- \ . 2

(G~ = B+ 2Bpcota + Brosec’a,

l;
H, = 2Pcoscc a + 2Acota,

,
2cosecTa + 2Bcota,

ey
e
P J
H

R, =(Z7 +x)' R, =(Z} + F)V?,
R =2Z,+Fcota,

QI — Zl + A0l R” = Z] — XCOta,

S, =7Z- - Ficota, F\.=x+(Z,-Z)cota,
F-=x-(Z- - Z))ow,

and
E, =A~+P°, E,=A"+Q/
E.=B°+R;,. E,=B*+S},

Eq}:'—ACOtEfl - Picota, Eio=A-0Qcota,
EFi, =~ Bcot’a — S cota,

Ts = In(£;3) + In(Eys),

E” = B - R“COt{I,
Ts = In(Ey3) + In(E ),

T. = tan" ' (P,/A) - tan" (Q/A),
To = tan” (Ry,/B) — tan"'(S,/B),

T;c =(G,cota—AEs)/ G{,
I, =(0, cota-—BEﬁ)/G%,
Tis = (2G, cot’ a — H,E,¢) 1 2GL,
T =(2G, cot’ a—-H,E,;) 1 2G;,

with

513 — (Zz + ﬁ)f(zl + ﬁ)&
E\s = 2Acota + 2fcot’a

E\s=Ry/R;, E\s=Ri/Ry,
E,; = 2Bcota + ZBcctza.

The handling of such large expressions through Maple
V demonstrates that its use may not be limited to prob-
lems in earth sciences alone. All branches of sciences
and engineering can utilize its potential equality.
Another example to establish Maple V as a powerful
tool for scientific problems is chosen from earthquake

seismology. A double couple source function is the most

generalized static model of an earthquake source. Sev-
eral years ago, one of us, Kamal'?, calculated the strong
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ground motion on a homogeneous earth for a vertical
line double couple earthquake source, situated at depth.
We have rederived the results with the help of Maple V.

In the following section is a brief statement of the
problem, which is that a homogeneous, isotropic per-
fectly elastic medium occupies the region — © < x < oo,
z 2 0. The xy plane 1s chosen as the surface of the me-
dium. The positive z direction is along increasing depth.
The elastic field 1s generated by a line source equivalent
to a shear dislocation buried in the half space at depth A
extending parallel to y-axis from —o to @, so that the
problem is two-dimensional. The compressional wave
velocity and shear wave velocity in half space are & and
B, respectively. The density of the medium is p. The
system is causal, i.e. till time t = 0, the medium ts at rest
everywhere. The general form of the potentials (¢ and
¥) in frequency-wavenumber domain, which satisfies the
wave equations are:

¢H=a!€(rmr—fu+zp] +ﬂ'2€“ [ — jkx — Z‘(h

w- — blefiwr—fk.t-i-z"’_,..) + bzeﬂwr—lkx—ﬂ'ﬁ}, 7 < h

¢+ — lqe',’:lﬂ‘l-ﬂ!'--.I'f'.’..‘l'.’+.::‘l"‘,‘,}1I z> h

1p+ — Bgﬂmf-ikﬂ“f«"x)’ z> h.

and - and + superscripts refer to the quantifies above
and below the fictitious boundary at z = A respectively.

In order to find the formal solution to the problem,
one has to solve a system of six linear equations to de-
termine a,, a3, by, by, A and B. This is obtained by ap-
plying six boundary conditions. The surface of the
medium is stress free, the tangential stresses (7,,) as well
as the normal stresses (7,,) should vanish at the bound-
ary. The source is introduced through stress discontinu-
ity at z = h, but the displacement components u and w
are continuous at z = A.

r;z|z=0 = Or r;z =0= O

4

+ - —_ {17} . _ i
T ™ rzzlz=h =—Fe", 1, F.e™.

r;zlz=h =

+ - — + - —
U —u Iz:h—' OI w —w .|Z=h —0.

This results in six linear equations of moderate skze,
because the earth model is simple enough. This was
done manually by Kamal'?, which took him a few days
to solve for the unknowns a;, @, by, &, A and B and
equally good time to check the results for thesr Corrent-
ness. We programmed these equations in Muple V in
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terms of ay, as, by, by, A and B by using the definitions
of 7.,, T,., u and w. Then a one-line command in Maple
V would solve the system of equations to give compli-
cated expressions for the constants a;, as, by, 2, A and
B. The entire exercise took only 55 s on a computer and
there was no need to check it for accuracy. The solution

obtained 1s given as:

—v ,h . -v . h e
‘Zl:e 2 i{(ﬂFx—F;." blz"'e 2 FI+-{—-E,‘
2p0° (v, 2pw Vs
| ~2ik(242 - 4 ) (Fov, +ikF)
iy, = S . -
0w F
L.
F+€F*”h(vaz —ikF,)
2F v,
1 2fk(2k2 wi ) (?-_vﬁh(ﬁévp — ikFy)
bz = 5 — _
[e10) .
F,e”" (v, F, +ikF,)
2F v,
where

2
2
F = 4k2vpv_¢ ——(21(2 -%3—) , and
2
| 2
F, =4kv v, +(2k2 —%2—] .

Expressions for A and B are not provided here because
they are only useful when one is interested in the ex-

pressions at depth. For the surface seismograms (z = 0),

above results will provide the potentials ¢ and y for a
single line force. One can easily extend this to a solution
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for a double couple also, which is a more realistic earth-
quake source. The above treatment with the use of Ma-
ple V is very easy to handle and makes the life of a
seismologist much easier.

Thus, Computer Algebra Systems, such as Maple V,
are very useful in solving complicated scientific prob-
lems, if utilized properly. We have demonstrated its use
in a couple of geophysical problems. However, these
problems are otherwise also solvable, but involve a
larger time and human effort.

Our first effort in applying the symbolic manipula-
tions to geophysics should encourage scientists to ex-
plore other possibilities in this field as well. Scientists
and engineers in other fields should also be encouraged
to solve mathematical problems involving complex
models. If the problems can be solved analytically
(using the computer algebra systems), the results will be
more accurate than their numerical counterparts and will
provide fresh insight into the solutions.
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