SPECIAL SECTION: OPTICS OF HETEROGENEOUS MEDIA

Life before mean free path
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A coherently amplifying medium containing dense
random weak scatterers can exhibit mirror-less
lasing beyond a threshold of optical pumping even
when the active medium has linear dimensions much
smaller than the estimated transport mean free path.
The threshold pump power decreases with decreas-
ing mean free path. This mirror-less lasing can be
understood in terms of the sub-mean free path scat-
terings which are normally statistically rare, but are
now made effective by the coherent amplification
that more than offsets their otherwise low probabil-
ity of occurrence.
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WAVE propagation through a spatially random scattering
medium holds many surprises of condensed matter
physics, of which the best known example 1s Anderson
localization' — weak as well as strong. The wave in
question may be a complex scalar (e.g. the quantum me-
chanical probability amplitude as in the case of elec-
trons moving in a disordered solid), or a real scalar (e.g.
the sound wave propagating in an elastically disordered
medium), or a real vector (e.g. the light wave propagat-
ing through a disordered dielectric, which 1s of interest
here). It may, however, even be a real tensor (e.g. the
gravitational wave scattering on a random background
metric, as perhaps in the early universe!). A closely re-
lated phenomenon here 1s that of the large statistical
fluctuations of the wave transmission/reflection coeffi-
cient — over an ensemble of macroscopically controlla-
bly identical but microscopically uncontrollably distinct
realizations of the spatial (quenched) randomness,
making the system non-self-averaging. The strong as
well as the weak localization, and the sample-to-sample
statistical fluctuations (or the reproducible noise) are all
diverse manifestations of the common phenomenon of
intermittency which is favoured by randomness. Here
intermittency refers to the occurrence of rare events that
are nevertheless intense enough to affect the statistics
drastically. For the wave motion in a random medium 1t
is due generally to the coherent multiple scattering, and
more specifically to the Coherent Back Scattering
(CBS)®, i.e. the partial wave-amplitudes counter-
propagating along the same return path acquire identical
phase-shifts (see Figure 1). The amplitude doubling re-
sulting from these time-reversed partial waves returned
in phase refocuses the scattered wave in a direction op-
posite to that of incidence. This sharp feature persists no
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matter how strong the disorder 1s so long as the medium
i1s time-reversal symmetric, e.g2. no external magnetic
field. (Caustics and Glory are the common examples of
intermittency known from optics.) The CBS refocussing,
in fact, defines a cone of finite opening angle which is
typically a few milli-radians for light, and increases with
disorder.

Now, the disordered medium referred to above has
been so far assumed to be passive, which is the only
kind of spatial randomness relevant to the case of elec-
trons (fermions). But, photons are bosons admitting the
possibility of coherent amplification by stimulated
emission beyond a threshold of optical pumping.
This has led to a novel development, namely that of
light propagation in a Random Amplifying Medium
(RAM)*'!'. Such a random amplifying medium is readily
realized as a colloidal suspension of dielectric micro-
spheres in the solution of a laser-active dye, optically
pumped by an appropriate pulsed laser. Thus, for ex-
ample®, the random scatterers could be micron-sized
spheres of rutile (T10,) dispersed in methanol giving a
high refractive index contrast. The dye solution could be
rhodamine 640 perchlorate in methanol with an emission
peak at ~ 617 nm. The pump could be a frequency-doubied
pulsed Nd:YAG laser operating at 1.064 ym. The main
point to note here is that the coherent amplification

Random
Medium

Figure 1. Coherent back-scattering. The path A (solid line} and 1ts
time reversed path A (dashed line) visit the same scatterers but in the
reversed sequence, giving tdentical phase shifts, for 8 = 0.
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maintains the condition for coherent back-scattering,
and, indeed, it enhances the various intermittency effects
noted above, e.g. the higher the amplification the nar-
rower the CBS cone angle; also greater is the tendency
to localization tnasmuch as the longer return paths now
contribute more effectively to CBS.

Mirror-less lasing in such a RAM has been reported
by several experimental groups4‘7’“. Fundamentally, 1t
may involve one of the two distinct mechanisms — the
Anderson localization that provides a virtual high-Q
cavity giving a resonant positive feedback’; or it may
result from diffusion, a non-resonant distributed feed-
back from the enhanced path lengths traversed by the
diffusing photon'®. Such a randomly folded optics in a
RAM subtends a high gain. We are concerned here with
this latter case. However, it raises an interesting ques-
tion, namely, what if the medium has linear dimensions
much smaller than the transport mean free path [*?7 Such
a sub-mean free path medium can hardly be expected to
subtend diffusively the prolonged path lengths, much
less localization; and hence no mirror-less lasing i1s to be
expected. But, there is now experimental evidence of
and theoretical support for mirror-less lasing in this case
too''. This can be physically understood in terms of the
statistically rare scattering events occurring before the
mean free path, which become effective because of the
high-gain RAM., A RAM with Dense Random Weak
Scattering (DRWS), indeed, provides an interesting ex-
ample of what is known in a game of chance as the St.
Petersburg paradox, where orders of magnitude lower
probability odds have orders of magnitude higher gains,
upping thereby the ante.

Mirror-less lasing in sub-mean free path RAM:
Experimental

Recent experimental results on lasing in a RAM 1n the
limit of sub-mean free path sample size suggest that a
novel mechanism is at work. The random amplifying
medium studied by us'' was an aqueous suspension of
polystyrene microspheres containing the rhodamine 590
dye. The RAM parameters were:

Dye concentration: 35 X 10°M-5x107°M (mole/
litre); polystyrene microspheres: 0.12 um diameter;
polystyrene microsphere concentration n,= 10 cm™
- 107 em™; pump (p) frequency-doubled Nd:YAG;
pump wavelength A,=532nm; pump  pulses
duration: 10 ns; pump repetition rate: 10 pps; energy
deposited per pulse (E): 50 pJ - 13 mJ; active medium
size = | mm; estimated transport mean free
path [* (am) = [(4.35 % 10"%)/n,)] (4.35 X 10" um -
4.35 %X 10° ym); gain narrowing was observed for
a,» 107 cm™. '
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Figure 2 shows a typical plot of gain narrowing en-
hancement by random scattering. The surprise, however,
1s that the effect persists even for the sample size L < [*,
the photon transport mean free path when the normal
diffusion can hardly be expected to dominate.

Thus, for n,= 1.24 X 10’ cm™, [* =350 cm, and for
ng=1.24 x 10" cm™, [*=35cm while L~0.1cm.
And for proper diffusion, we need to have the sample
size 26/* Thus there seems to be unexpected life
before the mean free path !

Mirror-less lasing in sub-mean free path RAM:
Theoretical

Consider a random amplifying medium characterized by
a scattering length [/, and a gain length /, in the absence
of scattering. (We assume the scatterers to be isotropic
so that [, = [*, the transport mean free path given by
ndo, = 1, where ng 1s the number density of the scatterer
of scattering cross-section o,.) For diffusive motion in a
RAM with uniformly excited medium, optical energy-
density p can be described by the diffusive—reactive

. equation:
P - pvp+—p, (1)
df T

g

where the diffuston constant D = (1/3)cl; and the gain
time r“lg = c/l,, with ¢ the speed of light in the averaged
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Figure 2. Emission spectrum from a RAM as lunction of the scat-
terer density at a fixed pump power. Gain narrowing for higher scat-
terer density is clearly seen even with the sample size less thana
transport mean free path (ref. 11).
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refractive index medium. Physically this diffusive de-
scription is valid over length scales L> /. (Formally,
eq. (1) is valid on all length scales in the limit [, — O,
¢ > oo, and [, = o, keeping D and r, constant.) This
diffusion-reaction cquation describes the threshold
condition for lasing in much the same way as the corre-
sponding equation for neutrons describes the criticality
of chain reaction in a nuclear reactor. The gain length [
decrcases with increasing optical pumping.

Equation (1) is, of course, not valid under the sub-
mean free path condition /> L = the linear dimension
of the active medium, as is the case in the experiment
discussed above for a RAM with dense random weak

scattcrers. For the DRWS, we have (-%‘T--IS)HS >1

(dense), 1/kl, = disorder parameter < 1 (weakly scatter-
ing) with 4 = 2:r/k = the wavelength of light and L </
(sub-mean free path). We will now work out the contri-
bution of the rare sub-mean free path scatterings to
lasing in a RAM. First, let us note that for an arc Iength
s traversed by a diffusing photon in a passive DRWS
medium, the mean number s of scatterings is s/i* = u.
Now, for a Poissonian distribution of the discrete scat-
tering events in a continuum, the probability for m
events in the arc length s will be Py(m) = e u™/m! Thus
there is a non-zero, albeit small, probability of undergo-
ing scattering even for u<« 1l (i.e. s<[*). Normally
these rare events are ignorable in any reckoning. For a
RAM, however, this statistical rarity may be offset by
the medium gain. As a rough estimate of this effect,
consider the probability of undergoing at least one scat-
tering back into the finite RAM of size L. It 1s ~(] —
exp(-L/l*)), in one-dimension. The associated gain fac-
tor is exp(L/l,). Now, for high enough gain (pumping),
i.e. for small enough /;, one can have the product (1 -
exp(-L/I*)) exp (L/l,) > 1. For sub-mean free path-sized
medium, L<[*, we get the threshold condition
(LI*)exp (L/L) = 1, which is indeed realizable. We ex-
pect this result to hold qualitatively even in higher di-
fNIENS1ONS,

An essentially exact analytic treatment of the lasing
threshold is possible for a model RAM in one-dimension
as outlined here. This treatment covers the localization
as well as the diffusion limit noted above. The Maxwell
wave equation for a time-harmonic electric field vec-
tor = ReE(x)exp(iwt) propagating in a RAM 1s:

—VE+V(V-E)- o E= E-’E-\E )
+ ( ) 2 Er(x) £"0 9 y ()
C CU y

with @ = circular frequency, and ¢y = the speed of light
in vacuum. Disorder in the medium is introduced here
phenomenologically through a dielectric constant
£(x) = €9 + £,{x), where £{x) 1s the spatially random part
of it modelling quenched disorder and fluctuating about
£0, the mean dielectric constant. It 1s now possible to
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simulate coherent amplification (gain) by adding a
negative imaginary part to the dielectric constant. Thus
we consider g9 = €' - igy”’, and take g5 (> 0) to be
constant. With this, £(x) = g5’ — igy” + £{x), where ~igy"
amplifics the wave while g£.(x) scatters it, both without
causing decoherence. We have assumed here local isot-
ropy of the dielectric tensor.

It is readily seen that, but for the second depolariza-
tton term on the left hand side of eq. (2), we have a
Helmholtz equation well-known 1n the electronic con-
text. Further simplification results by noting that
(V-E) = =(Vine(X))-E(x) + (1/7e(x))V-D(x), where D(x) =
displacement field. Assuming no free charges, we have
V-D(x) =0, and hence V-E = ~(Vine(x))-E(x). Now, for
a transverse electromagnetic mode propagating along an
optical fibre (for a 1-dimensional propagation) with the
dielectric constant varying randomly along the propaga-
tion direction, this quantity vanishes identically, and the
wave equation (eq. (2)) reduces to the Helmholtz equa-
tion:

°E 2 e
Ex_2+k (I+7.(x)+in,)E =0, (3)

. 2
with k% =25--gh, 7,(x)=-—and 7, =

Despite the formal similarity, eq. (3) differs from its
electronic counterpart in an important respect even in
the absence of the amplification factor (in,). The scatter-
Ing term kzm(x) = (e.w’/cy”) involves the eigenvalue w”
multiplicatively. Indeed, this term is responsible for the
famous 1/A" *“ Rayleigh scattering (in  dimensions in
the first Born approximation). Here 1t becomes small
and ineffective 1n the limit of low frequency/long wave-
length. This 1s not so for the electronic case. Thus, lo-
calization of light is suppressed in the low frequency
limit, while for the electron the low energy tail is easily
localized. In the high frequency limit, of course, the
oroblem is no different from the electronic case and we
have the geometrical~optical limit that again makes lo-
calization difficult. Indeed, localization for photons is
most demanding and requires a combination of strong
single-particle resonance scattertng (high dielectric
contrast for the scatterers) and a pseudo-gap providing a
Bragg reflection-resonance condition k-G = ¥2G-G. This
helps satisfy the Mott-Ioffe-Bragg condition for local-
ization. One-dimensionality is, however, an exception
and arbitrarily small disorder can cause exponential lo-
calization.

The Helmholtz equation will now be studied for su-
per-radiant reflection of an incident wave of unit ampli-
tude. This should reveal the synergetic enhancement ot
amplification due to the localization effect of the dielec-
tric disorder, as also due to the lengthening of the path
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due to diffusion. The imbedding equation for the ampli-
tude reflection coefficient R(L) is now'":

dR(L)

. ik . .
T 2ikR(L)+ 5 (I+n.(L)+in,)(A+ R(L))", (4)

with R(L) = (r(L))"?e™" and R(L = 0) = 0. Here r(L) is
the intensity reflection coefficient.
We take the disorder to be a gaussian white noise

(ﬂr(L» =0,

(M LYnL"y = no’6(L - L"). (5)

In the random phase approximation, where we assume
the joint probability density p(r, 8, L) to factorize and 6
to be uniformly distributed over 2x, the Fokker—Planck
equation for the marginal distribution p(r, L) is obtained
as:

2
PD - LR 4 (14 (<6 - Dr +572]

0l or?
X dp(_(j"’ D (=24 D)+ 4r1p(r. D). (6)
r
Here [= L/, the dimensionless sample length,

I, = 2no°k* = the localization length (&), and the gain
parameter D =4ryﬂ/7702k = [/l,, with the amplification
length [, = 1/2n,k = gain length [,. (In 3-D we can relate
the transport mean free path /,, the gain length /, and the
speed of light ¢ in the medium to the parameters 7¢°, &;"
and &£y’ characterizing scattering, amplification, and the
mean dielectric constant of the medium as:

[ = 4 [ = ] C. = C./Ef
RTINS 0!

(Dimensionality is important),

Equation (6) has been solved’ analytically in the as-
ymptotic limit [ — e, We are, however, interested here
in the sub-mean free path limit /< 1. Numerical solution
in this limit confirms  super-reflection  with
(r(D)) > 1 for sufficiently large gain. Such a treatment is
directly applicable to a single mode polarization main-
taining optical fibre doped with the rare-earth laser-
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active ion Er’*, pumped optically, and having some re-
fractive index randomness along its length. Recently,
a generalization of the above treatment of RAM to
the case of N-channels (modes) has been achieved
by Beenakker et al®. Their treatment is based on
the DMPK equation'® and contains a number of new
results.

Conclusions

Lasing observed in a sub-mean free path-sized random
amplifying medium can be understood in terms of the
statistically rare scatterings over length scales < I[*,
which become effective due to the high gain in the opti-
cally pumped medium beyond a threshold. It will be
Interesting to analyse what determines the emission
wavelength and 1ts line-width as also the effect of non-
linearity, e.g. saturation, which is particularly important
beyond the threshold for the onset of lasing.
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