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Self-organized criticality is the emergence of long-
ranged spatio-temporal correlations in non-equilibrium
steady states of slowly driven systems without fine
tuning of any control parameter. Sandpiles were
proposed as prototypical examples of self-organized
criticality. However, only some of the laboratory
experiments looking for the evidence of criticality in
sandpiles have reported a positive outcome. On the
other hand, a large number of theoretical models have
been constructed that do show the existence of such a
critical state. We discuss here some of the theoretical
models as well as some experiments.

THE concept of self-organized criticality (SOC) was
introduced by Bak, Tang and Wiesenfeld (BTW) in 1987
(ref. 1). It says that there 1s a certain class of systems in
nature whose members become critical under their own
dynamical evolutions. An external agency drives the
system by injecting some mass (in other examples, it
could be the slope, energy or even local voids) into it.
This starts a transport process within the system:
Whenever the mass at some local region becomes too
targe, it is distributed to the neighbourhood by using some
local relaxation rules. Globally, mass 1s transported by
many such successive local relaxation events. In the
language of sandpiles, these together constitute a burst of
activity called an avalanche. If we start with an initial
uncritical state, initially most of the avalanches are small,
but the range of sizes of avalanches grows with time.
After a long time, the system arrives at a critical state, in
which the avalanches extend over all length and time
scales. Customarily, critical states have measure zero In
the phase space. However, with self-organizing dynamics,
the system finds these states in polynomial times,
irrespective of the initial state”™,

BTW used the example of a sandpile to illustrate their
ideas about SOC. If a sandpile is formed on a horizontal
circular base with any arbitrary initial distribution ot sand
grains, a sandpile of fixed conical shape (steady state) 1S
formed by slowly adding sand grains one after another
(external drive). The surface of the sandpile in the steady
state, on the average, makes a constant angie known as the
angle of repose, with the horizontal plane. Addition of
each sand grain results in some activity on the surface of
the pile: an avalanche of sand mass follows, which
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propagates on the surface of the sandpile. Avalanches are
of many different sizes and BTW argued that they would
have a power law distribution in the steady state.

There are also some other naturally occurring pheno-
mena which are considered to be examples of SOC. Slow
creeping of tectonic plates against each other results in
intermittent burst of stress release during earthquakes.
The energy released 1s known to follow power law
distributions as described by the well-known Gutenberg—
Richter Law’. The phenomenon of earthquakes is being
studied using SOC models®. River networks have been
found to have fractal properties. Water flow causes
erosion in river beds, which in turn changes the flow
distribution 1n the network. It has been argued that the
evolution of river pattern s a self-organized dynamical
process’. Propagation of forest fires® and biological
evolution processes’ have also been suggested to be
examples of SOC.

Laboratory experiments on sandpiles, however, have
not always found evidence of criticality in sandpiles. In
the first experiment, the granular material was kept in a
semicircular drum which was slowly rotated about the
horizontal axis, thus slowly tilting the free surface of the
pile. Grains fell vertically downward and were allowed to
pass through the plates of a capacitor. Power spectrum
analysis of the time series for the tluctuating capacitance
however showed a broad peak, contrary to the expectation
of a power law decay, from the SOC theory'’.

In a second experiment, sand was slowly dropped on to
a horizontal circular disc, to form a conical pile in the
steady state. On further addition of sand, avalanches were
created on the surface of the pile, and the outflow
statistics was recorded. The size of the avalanche was
measured by the amount of sand mass that dropped out of
the system. It was observed that the avalanche size
distribution obeys a scaling behaviour for small piles. For
large piles, however, scaling did not work very well. It
was suggested that SOC behaviour is seen only for small
sizes, and very large systems would not show soc'.

Another experiment used a pile of rice between two
vertical glass plates separated by a small gap. Rice grains
were slowly dropped on to the pile. Due to the anisotropy
of grains, various packing configurations were observed.
In the steady state, avalanches of moving rice grams
refreshed the surface repeatedly. SOC bebaviour was
observed for grains of large aspect ratio, but not for the
less elongated grains'”.
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Theoretically, however, a large number of models have
been proposed and studied. Most of these models study
the system using cellular automata where discrete or
continuous variables are used for the heights of sand
columns. Among them, the Abelian Sandpile Model
(ASM) is the most popular"'’. Other models of SOC have
been studied but will not be discussed here. These include
the Zhang model which has modified rules for sandpile
evolution'!, a model for Abelian distributed processors
and other stochastic rule models’s, the Eulerian Walkers
model'® and the Takayasu aggregation model'’.

In the ASM, we associate a non-negative integer
variable % representing the height of the ‘sand column’
with every lattice site on a d-dimensional lattice (in
general on any connected graph). One often starts with an
arbitrary initial distribution of heights. Grains are added

one at a time at randomly selected sites O:h, — h, +1.

The sand column at any arbitrary site { becomes unstable
when h; exceeds a previously selected threshold value A,
for the stability. Without loss of generality, one usually
chooses h. =2d-1. An unstable sand column always
topples. In a toppling, the height is reduced as: h; = h;—
2d and all the 2d neighbouring sites {j} gain a unit sand
grain each: A; = h; + 1. This toppling may make some of
the neighbouring sites unstable. Consequently, these sites
will topple again, possibly making further neighbours
unstable. In this way a cascade of topplings propagates,
which finally terminates when all sites in the system
become stable (Figure 1). One waits until this avalanche
stops before adding the next grain. This is equivalent to
assuming that the rate of adding sand is much slower than
the natural rate of relaxation of the system. The wide
separation of the ‘time scale of drive’ and ‘time scale of
relaxation’ 1s common in many models of SOC. For
instance, i1n earthquakes, the drive is the slow tectonic
movement of continental plates, which occurs over a time
scale of centuries, while the actual stress relaxation occurs
in quakes, whose duration 1s only a few seconds. This
separation of time scales i1s usually considered to be a
defining characteristic of SOC. However, Dhar has argued
that the wide separation of time scales should not be
considered as a necessary condition for SOC in general®,
Finally, the system must have an outlet, through which the
grains go out of the system, which is absolutely necessary
to attain a steady state. Most popularly, the outlet is

EE

Figure 1.  Avalanche of the Abcelian Sandpile Model, generated on a

3 x 3 square lattice. A sand grain is dropped on a stable conliguration

at the central sie. The avuluﬁj,hu created has size s = 6, arca a = 6, hile-
-!)

time = 4 and the radius r=+72 .
f
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chosen as the (d-1)-dimensional surface of a d-

dimensional hypercubic system.

The beauty of the ASM is that the final stable height
configuration of the system is independent of the
sequence in which sand grains are added to the system to
reach this stable configuration'’. On a stable configuration
C, if two grains are added, first at i and then at j, the
resulting stable configuration G’ is exactly the same in
case the grains were added first at j and then at i. In other
sandpile models, where the stability of a sand column
depends on the local slope or the local Laplacian, the
dynamics 1s not Abelian, since toppling of one unstable
site may convert another unstable site to a stable site

(Figure 2). Many such rules have been studied in the

literature'®"'”.

An avalanche 1s a cascade of topplings of a number of
sites created on the addition of a sand grain. The strength
of an avalanche in general, is a measure of the effect of
the external perturbation created due to the addition of the
sand grain. Quantitatively, the strength of an avalanche is
estimated 1n four different ways: (i) size (s5): the total
number topplings in the avalanche, (ii) area (a): the
number of distinct sites which toppled, (iii) life-time (¢):
the duration of the avalanche, and (iv) radius (r): the
maximum distance of a toppled site from the origin. These
four different quantities are not independent and are
related to each other by scaling laws. Between any two
measures x,ye€{s,a,t,r} one can define a mutual
dependence as: {y) ~ x'. These exponents are related to
one another, e.g. ¥,= % %, For the ASM, it can be
proved that the avalanche clusters cannot have any holes.
It has been shown that ¥, =2 in two-dimensions. It has
also been proved that y,, = 5/4 (ref. 21). A better way to
estimate the 7, exponents is to average over the
intermediate values of the size, area and radius at every
intermediate time step during the growth of the avalanche.

Quite generally, the finite size scaling form for
the probability distribution function for any measure
x €{s, a, t, r} 1s taken to be:

27170] [3[3
1[1[0] [1]3
0jo[1] [0]0

Figure 2.

Example to show that a directed slope model is non-
Abclian, Two slopes are measured fromy any site (4, ) as h{{, j) -
hii,J+ 1) and h(i, j) < h(i + 1, + 1), I cither of them s greater than 1,
two grains are translerred from (4, f) and are given one cach to (i, j + 1)

and G+ 1,j+ 1) On dropping a gran on the initial  stable

conhiguration, we sce that finally two different height configuration
. 8 _ rent

result due 1o two different sequences of topplings™,
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P(x) = x ™ f (x/L™).

The exponent o, determines the variation of the cut-off of
the guantily x with the system size L. Alternatively,
sometimes it is helpful to consider the cumulative
probability distribution F (x) = [f‘ﬂ"P(x) dx which varies as
x'"* However, in the case of 7. = 1, the variation should
be in the form F(x)=C-log(x). Between any two
measures, scaling relations like ¥, = (7. -1)/(7, -1) exist.
Recently, the scaling assumptions for the avalanche sizes
have been questioned. It has been argued that there
actually exists a multifractal distribution instead™.

Numerical estimation for the exponents has yielded
scattered values. For example estimates of the exponent
T, range from 1.20 (ref. 18) to 1.27 (ref. 23) and 1.29
(ref. 24).

We will now look into the structure of avalanches in
more detail. A site { can topple more than once in the
same avalanche. The set of its neighbouring sites {/}, can
be divided into two subsets. Except at the origin O, where
a grain 18 added from the outside, for a toppling, the site ¢
must receive some grains from some of the neighbouring
sites {/,} to exceed the threshold 4. These sites must have
toppled before the site i. When the site i topples, it loses
2d grains to the neighbours, by giving back the grains it
has received from {/;}, and also donating grains to the
other neighbours {j;}. Some of these neighbours may
topple later, which returns grains to the site i and its
height A; is raised. The following possibilities may arise:
(1) some sites of {j,} may not topple at all; then the site i
will never re-topple and is a singly toppled site on the
surface of the avalanche. (i1) all sites in {j,} topple, but no
site 1n {j;} topples again; then i will be a singly toppled
site, surrounded by singly toppled sites. (1i1) all sites in
{j2} topple, and some sites of {j,;} re-topple; then i will
remain a singly toppled site, adjacent to the doubly
toppled sites. (iv) all sites in {j»} topple, and all sites of
{/1} re-topple; then the site i must be a doubly toppled
site. This implies that the set of at least doubly toppled
sites must be surrounded by the set of singly toppled sites.
Arguing 1n a similar way will reveal that sites which
toppled at least n times, must be a subset and also are
surrounded by the set of sites which toppled at least (n -1)
times. Finally, there will be a central region in the
avalanche, where all sites have toppled a maximum of m
times. The origin of the avalanche O where the sand grain
was dropped, must be a site in this maximum toppled
zone. Also, the origin must be at the boundary of this mth
zone, since otherwise it should have toppled (m+ 1)
times™>,

Using this idea, we see that the boundary sites on any
arbitrary system can topple at most once in any arbitrary
number of avalanches. Similar restrictions are true for
inner sites also. A (Zn+ 1) x (2n + 1) square lattice can
be divided into (n+ 1) subsets which are concentric
squares. Sites on the mth such square from the boundary
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can topple at most m times, whereas the central site
cannot topple more than n times in any avalanche.

Avalanches can also be decomposed in a different
way, using Waves of Toppling. Suppose, on a stable
configuration (& a sand grain is added at the site O The
site 1s toppled once, but is not allowed to topple for the
second time, till all other sites become stable. This is
called the first wave. It may happen that after the first
wave, the site O is stable: in that case the avalanche has
terminated. If the O is still unstable, it is toppled for the
second time and all other sites are allowed to become
stable again; this is called the second wave, and so on. It
was shown, that in a sample where all waves occur with
equal weights, the probability of occurrence of a wave of
arca a i1s D(a) ~ 1/a (ref. 26).

It is known that the stable height configurations in
ASM are of two types: Recurrent configurations appear
only 1n the steady state with uniform probabilities,
whereas Transient configurations occur in the steady state
with zero probabtility. Since long-range correlations
appear only in the steady states, it implies that the
recurrent configurations are correlated. This correlation is
manifested by the fact that certain clusters of connected
sites with some specific distributions of heights never
appear in any recurrent configuration. Such clusters are
called the forbidden sub-configurations. It is easy to show
that two zero heights at the neighbouring sites: (0-0) or,
an unt height with two zero heights at its two sides:
(0—-1-0) never occur 1n the steady state. There are also
many more forbidden sub-configurations of bigger sizes.

An L x L lattice is a graph, which has all the sites and
all the nearest neighbour edges (bonds). A Spanning tree
is a connected sub-graph having all sites but no loops.
Therefore, between any pair of sites there exists an unique
path through a sequence of bonds. There can be many
possible Spanning trees on a lattice. These trees have
interesting statistics in a sample where they are equally
likely. Suppose we randomly select such a tree and then
randomly select one of the unoccupied bonds and occupy
it, it forms a loop of length £ It has been shown that
these loops have the length distribution D(f)~ 3P,
Similarly, if a bond of a Spanning tree is randomly
selected and deleted, then it divides into two fragments.
The sizes of the two fragments generated follow a
probability distribution D{a) ~ a™'*'® (ref. 27). It was also
shown that every recurrent configuration ot the ASM on
an arbitrary lattice has a one-to-one correspondence to a
random Spanning tree graph on the same lattice.
Therefore, there are exactly the same number of distinct
Spanning trees as the number of recurrent ASM con-
figurations on any arbitrary lattice*'. Given a stable height
configuration, there exists an unique prescription to obtain
the equivalent Spanning tree, This is called the Burning
method®'. A fire front, initially at every site outside the
boundary, gradually penetrates (burns) into the system
using a deterministic rule. The paths of the fire front
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constitute the Spanning tree. A fully burnt system is
recurrent, otherwise it 1s transient (Figure 3).

Suppose, addition of a grain at the site O of a stable
recurrent configuration G, leads to another stable con-
figuration G, Is it possible to get back the configuration
G knowing O and the position of O? This is done by

—'_—'—l—l—-—-—-——-ﬁ—-——-—-_—l---_-—.;—--—_—__-l-—l-——l—-—q_—_-
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Inverse topp[fngzs. Since ¢’ is recurrent, a corresponding
Spanning tree ST(C") exists. Now, one grain at O is taken
out from G and the configuration G"=G"-90, is
obtained. This means on ST(CO"), one bond is deleted at O

and 1t 1s divided into two fragments. Therefore one cannot
burn the configuration G”completely since the resulting

-
8
! » ™ ™ » » ) " »

¥igure 3. a, An example of the height distribution in a recurrent configuration (& on a 24 x 24 square lattice. This conliguranion s obtained by
dropping a grain a some previous configuration (7 at the encircled site; b, The spanning tree representation of the configuration
(', ¢, A new configuration (U is obtained by taking out one grain at the encircled site from the configuration (2, A spanning tree cannot be
obtained for (7, The bonds of the spanning tree corresonding to the {orbidden sub-configuration in (¥ are shown by the thin finex.
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tree has a hole consisting of at least the sites of the
smaller fragment. This implies that C” has a forbidden
sub-configuration (F}) of equal size and G” is not
recurrent. On (F), one runs the inverse toppling process:
4 grains are added to each site i, and one grain each is
taken out from all 1its neighbours {j}. The cluster of f;
sites 1n F 1s called the first inverse avalanche. The lattice
1s burnt again. If it still has a forbidden sub-configuration
(F3), another inverse toppling process is executed, and is
called the second inverse avalanche. The size of the
avalanche is: s=fi+ L+ fi+ ..., and f] is related to the
maximum toppled zone of the avalanche. From the
statistics of random spanning trees’’ it is clear that f,
should have the same statistics of the two fragments of the
tree generated on deleting one bond. Therefore, the
maximum toppled zone also has a power law distribution
of the size, D(a) ~ a ' "®. .

Sandpile models with stochastic evolution rules have
also been studied. The simplest of these is a. two-state
sandpile model. A stable configuration of this system
consists of sites, either vacant or occupied by at most one
grain. If there are two or more grains at a site at the same
time we say there i1s a collision. In this case, all grains at
that site are moved. Each grain chooses a randomly
selected site from the neighbours and is moved to that
site. The avalanche size is the total number of collisions
in an avalanche. From the numerical simulations, the
distribution of avalanche sizes is found to follow a power
law, characterized by an exponent 7, = 1.27 (ref. 29). This
two-state model has a nontrivial dynamics even in one-
dimension’". Recently, it has been shown that instead of
moving all grains, 1f only two grains are moved randomly
leaving others at the site, the dynamics is Abelian®’.

Some other stochastic models also have nontrivial
critical behaviour in one dimension. To model the dyna-
mics of rice piles, Christensen et al.** studied the follow-
ing slope model. On a one-dimensional lattice of length L,
non-negative integer variable h; represents the height of
the sand column at the site i. The local slope z; = h; — h;,
1S defined, maintaining zero height on the right boundary.
Grains are added only at the left boundary i = 1. Addition
of one grain h;— h;,; implies an increase in the slope
zi— z; + 1. If at any site, the local slope exceeeds a
pre-assigned threshold value zf, one grain is transferred
from the column at i to the column at (i + 1). This
implies a change in the local slope as: z; — z;—2 and
Zizt = s+ 1. The thresholds of the instability z; are
dynamical variables and are randomly chosen between 1
and 2 in each toppling. Numerically, the avalanche sizes
are found to follow a power law distribution with an
exponent T, = 1.55 and the cutoff exponent was found to
be 0, = 2.25. This model is referred as the Oslo model.

Addition of one grain at a time, and allowing the
system to relax to its stable state, implies a zero rate of
driving of the system. What happens when the driving rate
1s finite? Corral and Paczuski studied the Oslo model in
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the situation of nonzero flow rate. Grains were added at a
rate r, i.e. at every (1/r) time updates, one grain is
dropped at the left boundary i=1. They observed a
dynamical transition separating intermitient and conti-
nuous flows™".

Many different versions of the sandpile model have
been studied. However the precise classification of
various,models in different universality classes in terms of
their critical exponents 1s not yet available and still
attracts much attention'®'”. Exact values of the critical
exponents of the most widely studied ASM are still not
known 1n two-dimensions. Some effort has also been
made towards the analytical calculation of avalanche size
exponents®*°. Numerical studies for these exponents are
tound to give scattered values. On the other hand, the
two-state sandpile model is believed to be better behaved
and there is good agreement of numerical values of its
exponents by different investigators. However, whether
the ASM and the two-state model belong to the same
universality class or not is still an unsettled question®’.

If a real sandpile is to be modelled in terms of any of
these sandpile models or their modifications, it must be a
slope model, rather than a height model. However, not
much work has been done to study the slope models of
sandpiles'>'®. Another old question is whether the con-
servation of the grain number in the toppling rules is a
necessary condition to obtain a critical state. It has been
shown already that too much non-conservation leads to
avalanches of characteristic sizes*®, However, if grains are
taken out of the system slowly, the system is found to be
critical 1n some situations. A non-conservative version of
the ASM with directional bias shows a mean field type
critical behaviour®. Therefore, the detailed role of the
conservation of the grain numbers during the topplings is
still an open question.
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