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Mathematics at the turn of the millennium?*

Phillip A. Griffiths

This century has been a golden age for mathematics, especially for so-called ‘pure’ mathematics.
where the questions we study are internal to the field. Many important, long-standing problems
have been resolved, both by gaining a richer and deeper understanding of the structure of the
subfields of mathematics, and by exploring the interactions between subfields. Now, at the turn of
the century, the interactivity between subfields is expanding toward interactivity between mathe-
matics and the other sciences. These interactions have led both to great insights within the sci-
ences, and to the broadening and deepening of mathematics itself.

The world of mathematics

In discussing our subject, we mathematicians face a di-
lemma. The most effective way to explain mathematics
to general readers is to use metaphors, which entails a
loss of precision and carries the risk of misunderstand-
ing. On the other hand, advanced mathematical terms
are 1ncomprehensible to most people — including other
scientists. As my colleague David Mumford, president
of the International Mathematics Union, has said, ‘I am
accustomed, as a professional mathematician, to living
in a sort of vacuum, surrounded by people
who ... declare with an odd sort of pride that they are
mathematically illiterate’.

Within the mathematical community, however, the use
of a precise language is a distinct advantage. Because of
its abstract nature and universality, mathematics knows
neither linguistic nor political boundaries. It is one rea-
son that mathematics has always carried a distinctly in-
ternational flavour. A mathematician in Japan can
usually read the paper of a colleague in Germany with-
out translation.

The number of highly active research mathematical
scientists worldwide is small — probably well under
10,000 ~ so that a given subfield may be populated by a
small number of highly specialized individuals. By ne-
cessity, these colleagues know one another other well,
regardless of country of residence, and collaborate over
long distances. During the present century, a growing
number of papers have been co-authored by mathemati-
cians from different nations (the number rose by about
50% between 1981 and 1993). And so mathematicians
are well adapted to the current trend toward a world of
vanishing borders,
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But what 1s it that these mathematicians do? In gen-
eral, mathematics can be described as the search for
structures and patterns that bring order and simplicity to
our universe. [t may be said that the object or beginning
point of a mathematical study is not as important as the
patterns and coherence that emerge. These patterns and
coherence often add to the power of mathematics by
bringing clarity to a completely different object or proc-
ess — to another branch of mathematics, another science,
or to society at large.

When mathematicians speak of their work, two words
carry great importance. Mathematics is a field where a
‘problem’ is not a bad thing. In fact, a good problem is
what mathematicians yearn for; it signifies interesting
work. The second word is ‘proof’, which strongly sug-
gests the rigour of the discipline. Arthur Eddington once
said, ‘Proof is an idol before which the mathematician
tortures himself’. A mathematical proof is a formal and
logical line of reasoning that begins with a set of axioms
and moves through logical steps to a conclusion. A
proof, once given, is permanent; some have existed
since the time of the Greeks. A proof confirms truth for

~ the mathematician the way experiment or observation

does for the natural scientist.

The 20th century has been a fertile time for the reso-
lution of long-standing problems, and for a wealth of
accomplishments that would require at least an encyclo-
pedia to describe. Let us look at just two of the more
interesting achievements — proofs to problems that were
over 300 years old. Both occurred towards the end of
the century and could have succeeded only because of
the mathematics that preceded them.

Fermat's Last Theorem

The first is the solution of Fermat’s Last Theorem by
Andrew Wiles, which made news around the giobe in
1993. This example is interesting because of Fermat, an
eccentric jurist and amateur mathematician who pub-
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lished no papers; because of Wiles, who toiled on the
problemn alone for seven years; and because of the
problem itself, whose solution depended on fundamental
advances in number theory by many mathematicians
over a period of 350 years, especially during the last
half-century.

The theorem was written in 1637, when Pierre de
Fermat was studying an ancient Greek text on number
theory called Arithmetica, by Diofantus. Interest in
number theory had waned since the time of the ancient
Greeks, but Fermat loved numbers. He came across the
famous Pythagorean equation most of us learn in school:
x* +y* = 7. Even today, countless school children learn
to say, ‘The square of the hypotenuse equals the sum of
the squares of the other two sides’.

Of particular interest are solutions to the Pythagorean

equation in whole numbers, such as the beautiful 3-4-5

right triangle. When Fermat saw this, he noted that for
any exponent greater than two, the equation could not
have solutions in whole numbers, He also wrote, in
Latin, that he had discovered his own wonderful proof,
but that the margin was too small to contain it. No such
proof has ever been found. Fermat made many such
marginal questions (some regarded as taunts to his fel-
low mathematicians), and over the centuries they were
all answered except this one, Fermat’s Last Theorem.

Andrew Wiles first came across Fermat at age 10, in a
ibrary in Cambridge, England, where he grew up. He
vowed that some day he would prove it. By the time he
was a young mathematician, however, he had learned
that pursuing Fermat by itself was not advisable, and
decided to work instead in a complex area of algebraic
number theory known as Iwasawa theory. But he never
forgot about Fermat.

In 1986, he learned of a breakthrough: a colleague
named Ken Ribet at the University of California at Ber-
keley had hinked Fermat’s Last Theorem to another un-
solved problem, the Taniyama-Shimura conjecture, a
surprising and britliant formulation in algebraic geome-
try posed in 1955. To summarize a very complex se-
quence of reasoning, this linkage showed that proving
the Taniyama-Shimura conjecture would essentially
prove Fermat's Last Theorem as well. It constructed a
logical bridge between the intricate worlds of elliptical
curves and modular {orms, a kind of dictiopary that al-
Jows questions and insights 1o be translated between the
two worlds. It also meant that Wiles’” carlier work in
algebraic number theory would be helpful, and that he
would probably genecrate some interesting problems -
whether or not he found a proof.

He did find a proof ~ after a scries of baffling obsta-
cles and sudden insights. Even after he had presented his
results, a small but crucial error was found during the
referecing process, which lead to a further year's work.,
Again, there seemed to be no solution — and again, there
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was one. Wiles called this last insight ‘the most impor-
tant moment of my working life, It was so indescribably
beautiful, it was so simple and elegant and I just stared
in disbelief for twenty minutes’.

Did Fermat really complete his own proof in the 17th
century? Undoubtedly, some will continue to look for
evidence that he did, but it is highly unlikely. Wiles”
work made use of whofe subfields of 19th and 20th
century mathematics that did not exist in Fermat’s time.
Beneath Fermat’s equation now lies an enormous and
elaborate formal structure — the kind of structure that

‘mathematicians strive for. The solution to Fermat arises

from the implications of understanding that structure.

[‘Perhaps | can best describe my experience of doing ,L
mathematics in terms of a journey through a dark un-
explored mansion. You enter the first room of the
mansion and it is completely dark. You stumble around
| bumping into the furniture, but gradually you learn
where each piece of furniture is. Finally, after six
months or so, you find the light switch, you turn it on,
and suddenly it is all iluminated. You can see exactly
where you were. Then you move into the next room
and spend another six months in the dark. So each of
these breakthroughs, while sometimes they are mo- |
mentary, sometimes over a period of a day or two, they

are the culmination of — and could not exist without —

the many months of stumbling around in the dark that

proceed them.’ |

—— ey

—

Andrew Wiles, who proved

| Fermat's Last Theorem in 1993,
e |

Kepler’'s sphere packing conjecture

The second problem is Kepler's sphere packing conjec-
ture. Like the Fermat problem, sphere packing could
only have bcen solved in the way that it was in the last
few decades. Even so, it took Thomas Hales, professor
of mathematics at the University of Michigan, ten years
to do so. Like Fermat, sphere packing sounds simpie,
but 11 defeatcd mathematicians for nearly four centuries.
Morcover, both problems had subtle difficultics that ted
countless mathematicians to belicve they had found
solutions that turned out to be false.

The question was posed in the latter half of the 16th
century, when Walter Raleigh asked the English mathe-
matician Thomas Harriot for a quick way to estinuite the
number of cannon balls that could be stacked on the
deck ol a ship. In turn, Harriot wrote to Johannes
Kepler, the German astronomer, who was already inter.
ested in stacking: how could splicres be arranged to
minimize the gaps among them? Kepler could find no
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system more efficient than the way sailors naturally
stack cannon balls, or grocers stack oranges: face-
centered cubic packing. Kepler declared that by this
technique ‘the packing will be the tightest possible, so
that in no other arrangement could more pellets be
stuffed into the same container’. This assertion became
known as the Kepler conjecture, but it was not proved.

Major progress was made in the 19th century, when
the legendary German mathematician Karl Friedrich
Gauss proved that the orange-pile arrangement was the
most efficient among all ‘lattice packings’, but this did
not rule out the possibility of a more efficient non-lattice
arrangement. By the end of the 19th century the Kepler
conjecture was deemed sufficiently important for an-
other famous mathematician, David Hilbert, to include
in his list of 23 great ‘turn-of-the-century’ problems.

The problem is difficult because of the immense num-
ber of possibilities that must be eliminated. By the mid-
20th century, mathematicians had discovered how to
reduce it to a finite problem, but this problem was too
complex to compute. A major advance came in 1933
when the Hungarian mathematician Laszlo Fejes Téth
reduced the problem to an immense calculation involv-
ing many specific cases and suggested how it might be
solved by computer. |

Even for Hales, with modern computers, the challeng
was immense. His equation has 150 variables, each of
which must be changed to describe every conceivable
stacking arrangement. The proof, explained in a 250-
page argument which contains 3 gigabytes of computer
files, relies extensively on methods from the theory of
global optimization, linear programming, and interval
arithmetic. Hales acknowledged that for a proof so long
and complex, it would be some time before anyone
could confirm all its details.

It is worth noting, however, that his exercise was far
from frivolous. The topic of sphere packing belongs to a
crucial part of the mathematics that lies behind the
error-detecting and error-correcting codes that are
widely used to store information on compact disks and
to compress information for transmission around the
world. In today’s information society, it is difficult to
think of a more significant application. And let’s not
forget the grocers around the world, who can now trust
that they do 'stack oranges in the most efficient way
possible.

The four-colour problem

As an addendum to sphere-packing, a related problem 1s
worth mentioning — the so-called four-colour problem of
map-making. This is the assertion that only four colours
are needed to colour any map so that no neighbouring
countries have the same colour. This problem is similar
to sphere packing: it is an elementary problem which
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probably seemed straightforward when first proposed by
the English mathematician Francis Guthrie in 1852. It js
also similar in that the existing proof reduces it to a
finite problem which then required heavy amounts of
computing capability.

The proof, accomplished in 1976 by Walfgang Haken
and Kenneth Appel, involved showing that if you can
test a list of x maps, then the test is true for all maps,
Although the number of conceivable maps is infinite,
Haken and Appel showed that the colourability of all of
them depends only on the colourability of a large but
finite set of fundamental maps. This was the first sig-
nificant problem to succumb to the raw power of the
computer. At the same time, 1t has caused some people
to suggest that ‘brute-force’ computer proofs lack the
clarity of traditional proof: that 1s, they prove that the
conjecture is true, but do not explain why, We may ex-
pect a good deal of further debate on this point.

The dual nature of mathematics

The three proofs I have just mentioned could be de-
scribed as intellectual exercises of great precision, ab-
straction, and, some would say, beauty. Indeed, the
mathematician G. H. Hardy once said that the practice
of mathematics can only be justified as an art form. In
fact, there is a parallel with the arts here: Mathemati-
cians, like artists, place great value on the aesthetic
quality of their work.

But I want to suggest that mathematics has a dual
nature, and that this is part of the reason for its vitality.
In addition to its intellectual and aesthetic gualities,
mathematics is tremendously useful in the real world.
Earlier this century, the physicist Eugene Wigner spoke
famously of ‘the unreasonable effectiveness of mathe-
matics’. To mention just a few classical examples of this
effectiveness, the modern computer was made possible
by Liebnitz® binary number code; Einstein formulated
his Theory of Relativity with the help of Riemannian
geomelry; and the edifices of quantum mechamcs, crys-
tallography, and communications technology all rest
firmly on the platform of group theory. Nowadays, one
would add effectiveness in drug design, economics, fi-
nance, telecommunications, and many other fields.

Mathematicians have always carried their discoveries
into adjacent fields where they have produced new in-
sights and whole new subfields. Francis Bacon, at the
dawn of the Enlightenment in 1605, prefigured this
principle of integrative science with an apt image: "Na
perfect discovery can be made upon a flat or a level
neither is it possible to discover the more remote ot
deeper parts of any science, if you stand but upon the leve!
of the same science and ascend not to a higher science’.

Repeatedly in the 20th century, mathematics has as-
cended to that higher place. For example, the develop:
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ment of X-ray tomography (the CAT and MRI
scanning technologies) was built upon integral geome-
try; the generation of codes for secure transmission of
data depends on the arithmetic of prime numbers; and
the design of large, efficient networks in telecommuni-
cations wuses infinite-dimensional representations of
groups.

Thus, mathematics is both an independent discipline
valued for precision and intrinsic beauty, and it is a
rich source of tools for application in the ‘real’ world.
And the two parts of this duality are intimately con-
nected. As we shall see in the following section, it is the
strengthening of these connections during the 20th cen-
tury that had allowed the field to steadily gain effective-
ness — both within mathematics and with the world
beyond.

Trends of the 20th century

A principal reason mathematics is healthy today is the
breakdown of barriers within the field. At first glance,
the full span of mathematics — an enormous body of
concepts, conjectures, hypotheses, and theorems
amassed over more than 2000 years — seems to defy the
possibility of unity. Gone are the days when a single
giant — an Euler or a Gauss — could command its en-
tirety. With the rapid development of subfields after
World War II, mathematics became so specialized that
practitioners had difficulty communicating with anyone
outside their own speciality. And today these specialists
are commonly scattered between Bonn, Princeton,
Berkeley, and Tokyo.

But this trend toward fragmentation is complemented
by the growing tendency to address interesting problems
in an overarching manner. Subfields, once viewed as
quite disjoint, are now seen as part of a whole, as new
connections emerge between them. For example, alge-
braic geometry, the field I am most familiar with, 1s a
ficld that combines algebra, geometry, topology and
analysis. As we near the end of this century, synergies in
this strongly interconnected area have played a major
role in some of the crowning achievements of pure
mathematics. One, of course, 1s the solution of Fermat’s
Last Theorem, which was mentioned earlier. Another 1s
the solution of the Mordell Conjecture, which states that
a polynomial cquation with rational coefficients of de-
gree 4 or more can have at most a finite number of ra-
tional solutions (the Fermat equation has no such
solutions). A third is solution of the Weil conjectures,
which are the analogs for finite fields of the Riemann
hypothesis (discussed later). All these accomplishments
reflect the ability of mathemalticians simultancously to
draw on multiple subfields and to perceive their subject
as a whole.
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Solitons

One of the most remarkable achievements of mathemat-
ics of the latter half of the 20th century is the theory of
solitons, which illustrates the underlying unity of the
field. These can be described as nonlinear waves that
exhibit extremely unexpected and interesting behaviour.

First, a bit of background. Traditionally, we talk about
two different kinds of waves. The first are linear waves,
which are familiar in everyday life, such as light waves
or sound waves. Linear waves have several characteris-
tics: One, they move uniformly through space without
changing. That is, they have a constant velocity, no
matter what their shape; C-sharp travels at the same
speed as E-flat. And they have a constant amplitude; a
C-sharp remains C-sharp if you hear it a block away.
The second characteristic is the property of superposi-
tton: if you play multiple notes on the piano simultane-
ously, you always hear the sum of all the notes at once,
which brings us harmony. Even a very complicated
sound can be resolved into its constituent harmonics.

The second kind of waves is nonlinear waves, which
are less familiar and quite different. A simple example
can be seen as an ocean wave approaches the shore. The
amplitude, wavelength, and velocity, which are constant
in linear waves, all can be seen to change. The distance
between the wave tops decreases, the height increases as
the waves ‘feel’ the bottom, and the velocity changes;
the upper part overtakes the bottom part and falls over it
as the wave breaks. In an even more intricate event, two
waves may come together, interact in a complicated,
nonlinear way, and give rise to three outgoing waves
instead of two.

Now we come to solitons. The story begins in 1834,
when a Scottish engineer named John Scott Russell was
trying to determine the most etficient design for canal
boats. One day, he observed that waves 1n a shallow
canal sometimes behave 1n very peculiar fashion. Some
waves would travel at a constant velocity without
changing shape, but those with large amplitude went
faster than those with small amplitude. A large wave
might overtake a smaller one, resulting in a complex
interaction, whercupon the large wave would emerge
travelling faster than the smaller one. After this nonlin-
ear interaction, they would again act like lincar waves.

In the middle of the 20th century, a group of mathe-
maticians were studying a nonhincar wave equation. Be-
cause it described nonlinear waves, they expected that
its solution would devclop singularitics, or breaks, at
some point. They wrote a computer program 0o numert-
cally solve the equation and found that the wave did not
break as cxpected. This led them to look at the
Korteweg—de Vrics equation, which was written down a
century ago to describe the behaviour of waves in shal-
low water. It was found that the phenomena observed by
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Lord Russell were provable mathematically for the
Korteweg~de Vries cquation; in other words, the solu-
tion to that equation exhibited soliton behaviour. These
are extremely unusual equations, because solitons are In
somc ways like linear waves and in other ways like non-

linear waves.
This discovery provoked a rush of activity which ex-

hibited in the most beautiful way the unity of mathemat-
ics. It involved developments in computation, and In
mathematical analysis, which is the traditional way to
study differential equations. It also turns out that one
can understand the solutions to these differential equa-
tions through certain very elegant constructions in alge-
braic geometry. Additionally, the solutions are
intimately related to representation theory, 1n that these
equations turn out to have an infinite number of hidden

symmetries.

Finally, they relate back to problems in elementary
geometry. For example, an interesting problem is to find
the surface of a cone with a fixed volume but Icast area
among all surfaces with a given boundary. It is not at all
evident that this has anything to do with a shallow water
wave, but in fact it does. The differential equations that
describe the solution turn out to have soliton behaviour
in the same way as the equations describing shallow
water waves. So we have started with two mathematical
problems — one in mathematical physics and one in dif-
ferential geometry — and found that in each of them, the
same rich, underlying structure leads to extremely rare
and interesting soliton behaviour.

Mathematics and the other sciences

Beyond the breakdown of internal barriers, mathematics
has become much more interactive with other sciences
and with business, finance, security, management, deci-
sion-making, and the modelling of complex systems.
And some of these disciplines, in turn, are challenging
mathematicians with interesting new types of problems
which then lead to new applications.

Mathematics and theoretical physics. Mathematics has
been linked with theoretical physics for centuries, and
the linkage has grown stronger over the last two dec-
ades. For example, algebraic geometry has become an
essential tool for theoretical physicists in their search
for a unified field theory — more precisely, for a theory
that unifies gravity with the three fundamental forces of
physics: the strong nuclear force, the weak nuclear force
and electromagnetism.

One interesting candidate for a new unifying theory is
string theory, which is pursued at my own institution.
The name comes from the proposal that the most ele-
mentary building blocks of matter are tiny, vibrating
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loops or segments that are string-like in shape and vi-
brate in many different modes, like violin strings. The
effort to understand this extremely complex theory has
led a group of theoretical physicists deep into mathemat-
ics, where they have made a series of spectacular pre-
dictions about mathematics; these predictions are
beginning to be verified. The results have stimulated a
flurry of work that continues to add to the plausibility of
the theory; it has also spawned a new branch of four-
dimensional mathematics called quantum geometry
which, in turn, is opening new insights to physics.

Another indication of the close relationship between
mathematics and physics was seen in the 1998 awards of
Fields Medals, the highest honour in mathematics. Of
the four medallists, three of them worked in areas with a
strong physics influence, and a special award was given
for work in quantum computing, whose roots are in
quantum mechanics.

Mathematics and the life sciences. One of the fastest-
growing new partnerships 1s the collaboration between
mathematics and biology. The partnership began in the
field of ecology in the 1920s, when the Italian mathe-
matician Vito Volterra developed the first models of
predator-prey relationships. He found that the waxing
and waning of predator and prey populations of fish
could best be described mathematically. After World
War II, the modelling methods developed for popula-
tions were extended to epidemiology, which resembles
population biology in being the study of diseases In
large populations of people.

Most recently, the insights of molecular genetics have
inspired scientists to adapt these same methods to infec-
tious diseases, where the objects of study are not popu-
lations of organisms or people, but populations of cells.
In a cellular system, the predator is a population of
viruses, for example, and the prey 1s a population of
human cells. These two populations rise and fall in a
complex Darwinian struggle for survival that lends itseif
to mathematical description. In the last decade, the abil-
ity to use mathematical models that describe infectious
agents as predators and host cells as prey has redefined
many aspects of immunology, genetics, epidemiology,
neurology and drug design. The reason this partnership
is successful is that mathematical models offer the first
tools of sufficient power to describe the immensity of
numbers and relationships found in biological systems.

For example, mathematical biologists have been able
to make quantitative predictions about how viruses and
other microbes grow in their hosts, how they change the
genetic structure of hosts, and how they interact with the
host's immune system. Some of the most surprising re-
sults have emerged in the study of the AIDS epidemic,
reversing our understanding of HIV viruses in infected
patients. The prevailing view had been that HIV viruses
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l1e dormant for a period of 10 or so years before begin-
ning to infect host cells and cause disease. Mathematical
modelling has shown that the HIV viruses that cause the
most diseases are not dormant; they grow steadily and
rapidly, with a half-life of only about 2 days.

Why, then does it take an average of 10 years for in-
fection to begin? Again, mathematical modelling has
shown that disease progression may be caused by viral
evolution. The immune system is capable of suppressing
the virus for a long time, but eventually new forms of
viruses mutate and become abundant and overwhelm the
immune defence. This happens because viruses, like
other infectious agents, can reproduce faster than their
hosts, and the reproduction of their genetic material is
less accurate. Virtually every HIV infection is seen as an
evolutionary process in which the virus population con-
stantly changes and new virus mutants continuously
emerge. Natural selection favours variants able to es-
cape the immune response, or to infect more kinds of
cells in the human body, or to reproduce faster. The
models show that all evolutionary changes are those that
increase virus abundance in the patient and thereby ac-
celerate disease.

These same mathematical models have brought an un-
derstanding of why anti-HIV drugs should be given in
combination, and given as early as possible during in-
fection. They are most effective in combination because
viruses seldom produce multiple mutations at once. And
they should be given early before viral evolution can
progress very far. .

A major threat to human health in the next century
will be microbial resistance to drug therapy, an area to
which mathematical models can contribute. Models can
point to clear guidelines for collection and analysis of
data, which can make drugs more effective. Good mod-
els of the complex interactions between infectious
agents and the immunc system can eventually create a
new discipline of quantitative immunology.

There are many more new partnerships between
mathematics and the other sciences; much of the most
innovative and productive work 1s being done at the
fronticrs between fields and disciplines. An excellent
example i1s the study of fluid dynamics, where mathemat-
ics interacts with fields such as meteorology, anatomy
and geology. Describing the complex movement of
fluids ~ hurricanes, blood flow thorough the heart, oil in
porous ground — was virtually impossible belore the
discovery that a purely mathematical construct called
the Navier-Stokes equations can do just that, and today
these equations are applied to fluid theory in various
disciplines. Another example is control theory, a branch of
the theory of dynamical systems. In just one application,
much of the testing of high-performance atrcraft can now
be done by computer simulations, greatly reducing the
expense and danger of wind tunnels and test flights.
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It 1s important to emphasize that while modelling and
simulation are modern and important topics, we are still
not very good at addressing the uncertainties that are
present 1n these complex simulations. Learning to grap-
ple with uncertainty is high on the list of priorities for
mathematicians, who must develop fundamentally new
approaches if they are to understand how uncertainties
arise in models and how they propagate through sys-
tems. Our models will only be as accurate as our ability
to smooth out their uncertainties.

Research challenges for the 21st century

Despite the tremendous achievements of the 20th cen-
tury, dozens of outstanding mathematical problems
await solution. Most mathematicians probably agree that
the following three examples are among the most chal-
lenging and interesting.

The Riemann Hypothesis

The first 1s the Riemann Hypothesis, which has tanta-
[1zed mathematicians for 150 years. It has to do with the
concept of prime numbers, which are the basic building
blocks of arithmetic. A prime number, as many people
remember from high school, is a positive whole number
greater than 1 that cannot be divided by any other posi-
tive number except by itself and 1. The primes begin
with 2, 3, 5, 7, 11 and 13, and rise from there toward
infinity. As long ago as the third century BC, Euclid
suggested that no one could ever find the ‘largest’ prime
number; in other words, they are infinite in number, And
the known primes are growing ever larger: in 1992, a
French team found a prime with 227,832 digits.

For someone studying prime numbers by penctl and
paper, they appear at first to occur randomly. But in the
19th century, the German mathematician Bernhard Rie-
mann extended Euclid's observation to assert that
primes are not only infinite in number, but that they
should occur in a very subtle and precise pattern. Prov-
ing — or disproving ~ this is perhaps the deepest existing
problem in pure mathematics.

The Poincaré Conjecture

We return to Henrt Poincaré, who sugeested a problem
that is baffling both because 1t is so {undamental and
because 1t seems so simple. In Poincard’s days, a cen-
tury ago, it was even regarded as trivial, as was the
whole licld of topology —a fiecld which he essentially
tnvented. But today topology 1s a vital and significant
subfield of mathematics.

In rough terms, topology ts concerned with the tun-
damental propertics of structures and spaves. A sphere,



GENERAL ARTICLES

for example, can be stretched, compressed or warped In
any number of ways (in a topologist's eyes) and sull
remain a sphere, as long as it is not torn or punctured. A
topologist sees a donut and a coffee cup as identical,
because either one of them can be massaged into the
same basic shape as the other — a ring with a hole 1n it,
or torus. Of special interest to topologists are manifolds,
which mean ‘having multiple features or forms’. A soc-
cer ball, for example, is a two-dimensional manifold, or
two-sphere; we can mantpulate it any way we want as
long as we do not rip it, and it will still be a soccer ball.
Topologists seek to identify all possible manifolds,
including the shape of the universe — which 1s the sub-
ject of the Poincaré Conjecture. This is relatively easy in
two dimensions, and was done by the end of the 19th
century. The test of whether a manifold 1s really a two-
sphere 1s also straightforward. Imagine placing a rubber
band on the surface of a soccer ball. If the rubber band
can be shrunk to a point without leaving the surface, and
if this can be done anywhere on the surface, the ball is a
two-sphere, and we say it is simply connected.

In 1904, Poincaré conjectured that what is true for two

dimensions 1is also true for three —that any simply-
connected, three-dimensional manifold (such as the uni-
verse) has to be a three-sphere. This sounds intuitively
obvious, but nobody has ever shown that there are not
some false three-spheres, so the conjecture still has not
been proven. Surprisingly, proofs are known for the
equivalent of Poincaré conjecture for all dimensions
strictly greater than 3, but not yet for 3.

Does P = NP?

A third major problem is related to the philosophical
question of what is knowable and what is unknowable.
In 1931, the Austrian-born logician Kurt Godel estab-
lished that complete certainty could not be found in
arithmetic — assuming that arithmetic is founded on cer-
tain ‘self-evident’ properties, or axioms, of whole num-
bers. And 1n the theory of computing, Alan Turing set
down rules in the 1930s to decide what is computable
and what 1s not. A more refined question is to ask what
1s computable in polynomial time, or P time.

A familiar example of P/NP concerns the travelling
salesman who neceds to visit n number of cities. When n
Is a small number, one can write a computer program to
compute the best route in a reasonable amount of com-
puter time, or polynomial time. As n becomes larger,
computer time may increase exponentially, until the
problem becomes computationally intractable, or NP.
Most numerical codes today are designed on the as-
sumption that factoring them is NP, a computationally
intractable problem. This assumption has enormous
implications for safe use of the Internet, where large
numbers are used as security codes.
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In fact there are some very interesting current devel-
opments on the ‘P vs NP’ question which may be related
to the Godel incompleteness theorem mentioned above.
It seems possible that certain mathematical statements
that eventually include lower bounds on computation,
such as ‘P does not equal NP’, cannot be proved within
the framework of Peano arithmetic, or set theory. (Peano
arithmetic is the standard, or most natural, version of
artthmetic.)

This thesis is not yet proved, but its resolution appears
feasible in the foreseeable future. What is known is that,
first, all techniques used so far to prove lower bounds on
computational models reside in a specific low fragment
of Peano arithmetic; and second, proved techniques in
these fragments cannot separate P from NP — unless the
integer factorization has much faster algorithms than we
currently know or suspect. In other words, whether a
problem i1s P or NP will depend on whether or not we
can factor integers much faster than we have thought
possible.

Theoretical computer science

The field we are discussing, theoretical computer sci-
ence, 1s one of the most important and active areas of
scientific study today. It was actually founded half a
century ago, before computers existed, when Alan
Turning and his contemporaries set out to mathemati-
cally define the concept of ‘computation’ and to study
1ts power and limits. These questions led to the practical
construction by von Neumann of the first computer,
followed by the computer revolution we are witnessing
today.

The practical use of computers, and the unexpected
depth of the concept of ‘computation’, has significantly
expanded theoretical computer science, or TCS. In the
last quarter century TCS has grown into a rich and
beautiful field, making connections to other sciences
and attracting first-rate young scientists. Here are just a
few aspects of this evolution:

First, the focus of the field has changed from the notion
of ‘computation’ to the much more elusive concept of
‘efficient computation’. The fundamental notion of NP-
completeness was formulated, its near-universal impact
was gradually understood, and long-term goals, such as
resolving the P vs NP question, were established. The
theory of algorithms and a variety of computational
models were developed. Randomness became a key tool
and resource, revolutionizing the theory of algorithms.
Significantly, the emergence of the complexity-based
notion of one-way function, together with the use of
randomness, led to the development of modern crypto-
graphy. What many people at first thought were just
mental games, such as trying to play poker without
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cards, has turned into a powerful theory and practical
systems of major economic importance. Complexity
theory, which attempts to classify problems according to
their computational difficulty, has integrated many of
these 1deas and has given rise to the field of proof com-
plexity, where the goal 1s to quantify what constitutes a
difficult proof.

Beyond these activities, which are internal to TCS, is
important cross-fertilization between TCS and other
subfields, such as combinatorics, algebra, topology and
analysis. Moreover, the fundamental problems of TCS,
notably ‘P vs NP’, have gained prominence as central
problems of mathematics in general. More and more
mathematicians are considering the computational as-
pects of their areas. In other words, they start with the

fact ‘An object exists’ and follow it with the problem

"How fast can this object be found’?

A final aspect of TCS, which is to some people the
most interesting, 1s that the field now overlaps with a
whole new set of algorithmic problems from the sci-
ences. In these problems the required output is not well
defined in advance, and it may begin with almost any
kind of data: a picture, a sonogram, readings from the
Hubble Space Telescope, stock-market share values,
DNA sequences, or neuron recordings of animals react-
ing to stimuli. Mathematical models are used to try to
make sense of the data or predict their future values.

In general, the very notion of ‘computation’, and the
major problems surrounding it, have taken on deep
philosophical meaning and consequences. In addition to
the P/NP question, the field is focused on a few clear
and deep questions: for example, does randomization
help computation? What constitutes a difficult theorem
to prove? Can quantum mechanics be effectively simu-
lated by classical means? The time is ripe for exciting
growth and fundamental new understanding throughout
this new field of theoretical computer science.

Quantum computing

Also related to the P/NP question is the investigation of

quantum computing. This topic is closely related to
P/NP because of a surprising demonstration in 1994 that
if a quantum computer could be built, it would be capa-
ble of brecaking any computer code now used or thought
to be secure.

The need for a fundamentally new form of computing
1s very real — especially for running complex simulation
models — and among several candidates, quantum com-
puting may have the most promise. Although modern
computers are extremely fast, they still use the classical
binary calculating system of Os and 1s that dates back
150 years to George Boole’s adding machine. For many
years this has seemed sufficient, especially in the pres-
cnce of “‘Moore's Law’ — the observation that the capac-
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ity of computer chips doubles every two years or so
while chip prices drop by half. This has been accom-
plished through better engineering and the production of
smaller and smaller chips. But as we approach the mil-
lennium, we are also approaching quantum mechanical
limits of chip size.

These limits were foreseen as early as 1982, when the
American physicist Richard Feynman predicted that ef-
forts to simulate quantum mechanical systems on digital
computers would carry an inherent exponential
‘overhead’. But in a lengthy side remark, he proposed
that this difficulty might be circumvented by some form
of quantum computer. In 1985, David Deutsch advanced
the dialogue by suggesting that if quantum computers
could be fast enough to solve quantum mechanical
problems, they might also solve classical problems more
quickly.

It appears that this is the case. In 1984, Peter W. Shor
showed that a quantum computer could factor large
numbers in time polynomial in the length of the num-
bers, a nearly exponential speed-up over classical algo-
rithms. This was surprising for two reasons. First,
modern cryptographers use long numbers as security
codes because they are so difficult to factor-a job
which a quantum computer could theoretically do rather
quickly. Second, theoretical computer scientists had
belhieved that no type of computing could be so much
faster than conventional digital computers.

On the other hand, experimentalists are not at all sure
they can build a quantum computer. As they pursue that
possibility, there are numerous parallel efforts to design
other kinds of computers based on principles other than
Boolean arithmetic — all with the same goal of greatly
expanding computer capacity. We can expect exciting
and intense work in this field for years to come.

Maintaining the strength of mathematics in the
21st century

The bulk of this essay has been devoted to trends and
problems of research. However, it is irresponsible to
discuss rescarch without mentioning the context in
which it occurs. The success of research depends on the
quality of the people doing it and the degree to which it
recerves sustained support from socicty; in other words,
It requires ‘paticnt capital’. The next millennium will
bring a sct of contextural questions every bit as chal-
lenging as the rescarch we want to do.

Lducation

First, how can we attract the best young talent into
mathematics? Here we have seen a significant change in
the last half-century, During World War 11, the systems
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and techniques of science and technology generated
much excitement, at[rncting post-war students to careers
in rescarch. This trend rcceived a powerful stimulus in
1957. when the Soviet sateltite Sputhik was launched
and scicnce was recognized for the political and eco-
nomic power it could generate. Rescarch became as 1m-
portant to socicty as it was fascinating to practitioners.

Towards the end of the century, however, society’s
interest in many areas of research appears to have dimin-
ished in both developed and developing countries. Many
bright students who would once have chosen careers I
mathematics or science are not doing so; they are
choosing applicd information science, business, or other
areas where the future looks more interesting. Certainly
there are practical reasons for bypassing mathematics,
such as the difficulty of the subject, the long period of
study required for entry, and the comparatively modest
salaries. But there appears also to be a fundamental lack
of appreciation for the richness and relevance of the
subject itself.

An obvious reason for student disinterest is that we
are not communicating a complete picture of mathema-
ics as a field where one may choose among many intel-
lectually rewarding and challenging careers. The people
best positioned to do this communication are high
school teachers, college professors, and fellow students.
However, these groups can only describe current oppor-
tunities and fast-growing fields if they, 1n turn, are in-
formed by those in the profession. The mathematics
community as a Whole can help by fostering more inter-
action at every level of teaching and practice, and by
widening channels of communication with the students
who will eventually replace us and extend our work into
the next century.

[t 1s ironic that student interest is low at a time when
career opportunities for professional mathematicCians
have never been greater or more diverse. This is true
both for the traditional disciplinary areas, which are
rich with new developments and challenging problems,
and in the more applied fields and other areas of sci-
ence, where demand for mathematicians with proper

training will continue to grow rapidly in the foreseeable
future.

Outreach

Closely allied with educational needs is the opportunity
{0 better communicate with public about mathematical
1ssues. Mathematicians understand the purpose and
value of their work, but many people in government,
business, and even in education do not. If mathemati-
cians expect thetr rescarch at universities to be sup-
ported by public funds, which is customary, we must
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present a vivid picture of that research and its power, It
is no longer acceptable to remain aloof from the press-
ing necds of the world or to work in an 1vory tower.

Interactivity

Finally, the trend towards interactivity mcrits a final
mention. We have seen that within mathematics and
throughout the sciences, much of the most productive
work 15 being done at frontiers between subfields, fields,
and disciplines. Mathematics loses something when it is
isolated or fragmented by disciplinary paradigms. How-
ever, many Institutions have been slow to adapt to this
reality. Universities around the world, and many indus-
tries and government agencies, stand to gain much by
removing barriers to collaborations.

In particular, much can be done to enhance interac-
tions between academic and industrial mathematicians.
The primary missions of academia and industry are dif-
ferent, but the two cultures have much to gain from col-
laboration. In general, the scientific enterprise can
function at full potential only when there is a fast flow
of knowledge between the creators and users of mathe-
matics.

The next millennium

A new and powerful trend that will carry us far into the
next millennium 1s characterized by the globalization,
Interactivity, and ‘opening out’ of the mathematical en-
terprise. As a harbinger of things to come, we note the
mode 1n which Thomas Hales chose to announce his
proof of the Kepler sphere-packing problem. Rather
than publish it in a journal, where his results would be
secen by a small number of specialists, he opened it to an
unlimited audience via the Internet. In addition, he
frankly invited scrutiny of his proof and further contri-
butions to its accuracy — a significant step in the com-
petitive world of top-level mathematics.

In general, then, we mathematicians have two objec-
tives as we enter the next millennium. The first is to
mainiain traditional strengths in basic research, which is

- the seedbed of new thirking and new applications. Sec-

ond, we are called to broaden our exploration of the
terrain outside the traditional boundaries of our field —
to the other sciences and to the world beyond science.
With each passing year, mathematicians achieve
more effectiveness in their work to the degree that they

offer it to others and include others in the world of
mathematics.
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