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Tilings, coverings, clusters and quasicrystals

E. A. Lord**, S. Ranganathan* and U. D. Kulkarni’

*Department of Metalluegy, Indian Institute of Scicnce, Bangalore 560 012, India
"Matenials Scicnce Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

A guasiperiodic covering of the plane by regular
decacons and an analogous structure in three dimen-
sions are described. The 3D pattern consists of inter-
penetrating triacontahedral clusters, related to the T
inflation rule for the 3D Penrose tiling patterns. The
overlap regions are triacontahedron faces, rhombic
dodecahedra and rhombic icosahedra. The structure
lcads to a plausible model for the T2 icosahedral quasi-
crystalline phases.
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SINCE the first discovery of a quasicrystalline phase' the
number of different varieties of quasicrystals has become
guite large. The elucidation ot the detailed atomic struc-
ture of these alloys has called forth new concepts and
methods. The traditional methods of crystallography are
inadequate; even such basic concepts as lattices and unit
cells are inapplicable. Two theoretical approaches, sepa-
rately and in conjunction, have proved valuable. In the
‘tiling patterns’ approach the tiles of a quasiperiodic tiling
pattern (usually the two rhombuses of the Penrose pat-
terns~ or the two rhombic hexahedra®” that are their three-
dimensional analogues) are decorated by ‘atoms’ —in a
manner similar to the description of a periodic structure 1n
terms of the decoration of a unit cell. The discovery that
quasiperiodic tiling patterns with rhombic or rhombo-
hedral tiles can arise from a projection of a (periodic)
lattice in a higher-dimensional® space has given rise to a
large body of literature, Another approach 1s based on the
concept of clusters of atoms joined together by sharing of
atoms to build an aperiodic structure — clusters possessing
icosahedral symmetry gtving rise to structures with long-
range orientational order with icosahedral or decagonal
symmetry.

Icosahedral atomic clusters

In both the ‘tiling’ approach and the ‘cluster’ approach,
model building is guided by knowledge of known struc-
tures of the crystalline (i.e. periodic) phases that are
closely related to quasicrystalline phases. These ‘approxi-
mants’ occur together with the quasi-crystalline phases
and share grain boundaries with them, hence they clearly
have microstructures simtlar to those of quasicrystals. An
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early example, in which the tiling approach and the cluster
approach were successfully combined is the 3D quasi-
periodic structure deduced from the periodic o{AIMnSi)
phase’ —a bcc structure in which the 54-atom Mackay
icosahedron occurs as a structural unit. An alternative
model consists of aluminium icosahedra with octahedral
linkages along their three-fold axes®,

The structures ot decagonal AlMn phases consist essen-
tially of towers of i1cosahedra with their axes along the
periodic direction, packed in a quasiperiodic arrangement.
Contiguous towers are related by a two-fold rotation
about an axis perpendicular to the periodic axis. Li’ has
deduced the quasiperiodic structure of the (ftat and
puckered) layers perpendicular to the periodic axis in
terms of decorations ot a tiling pattern involving three tile
shapes'’.

The ‘clustering’ picture 1S obviously closer to the
reality of the way quasicrystals actually grow (though one
should not discount the value of the concept of decorated
tilings — after all, the ‘unit cells’ of a periodic crystal have
no bearing on the way atoms actually combine to build the
structure!). A cluster 1s conceived to grow by accretion;
successive shells of atoms are added to an initial seed
such as a 12- or 13-atom icosahedron. The clusters bond
to each other by sharing of atoms. They can be quite

‘large. Of particular importance are the 54-atom Mackay

icosahedron'' and the 44-atom Bergman unit or Pauling
triacontahedron'’. A cluster of 102 atoms with icosahedral
symmetry occurs as a building block in Mgs,(Al, Zn)y
(refs 12 and 13). In the remarkable R-AlCuLl bcc struc-
ture’™'* the bee positions are centres of 136-atom clusters
which overlap (in the sense of having shared atoms) to
produce a large cubic unit cell of 154 atoms. An even
larger cluster containing 14 shells and a total of 498
atoms can be identified'>'®, The vacant bcc positions lie
at their centres and eight of the vertices of the fourteenth
shell (a lithium dodecahedron). The R phase is closely
related to the quasicrystalline T2 phase'®, Romeau and
Aragon'’ claim that the seventh shell has cubic symmetry
in the R phase (24 atoms at the vertices of the Archi-
medean polyhedron (3.47), ie. the semi-regular figure
with an equilateral triangle and three square faces sur-
rounding each vertex) whereas in the quasicrystalline T2
phase it has 6 extra atoms and forms an icosidodeca-
hedron (3.5.3.5).

Romeau and Aragon'' have investigated the way in
which overlapping clusters can build quasiperiodic struc-
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tures. Starting from an icosahedral seed or a 19-atom seed
in the form of a pair of icosahedra sharing a double
pentagonal pyramid, special ‘O-points’ arise at some stage
of the accretion that can act as centres of a new cluster.

Janot'® has drawn attention to the way 1n which
clusters, ‘bonded’ by sharing atoms, appear to behave
rather like atoms — at a larger scale. He has shown how
electronic and other properties of quasicrystalline materials
can be understood 1 terms of farge clusters mimicking the
behaviour of individual atoms.

Coverings of the plane

The first ‘aperiodic’ set of 2D tiles (i.e. a finite number of
shapes that can tle the plane, but which cannot be
arranged to form a periodic tiling pattern) consisted of
over 20,000 tile shapes'”! Penrose’s discovery of an aperi-
odic set of only six tiles® and finally a set of only rwo™
was an amazing event. Whether any aperiodic ‘set’ con-
sisting of only one tile 1s possible 1s an open question. It
seems unlikely. If one considers coverings of the plane
rather than rilings, the situation is different. Gummelt*’
has produced a regular decagon decorated by black and
white regions (Figure 1), copies of which can be super-
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Figure 1. Gummelt's decagon.

Figure 2. An ‘ace’ of a Penrose kite and durt pattern, The matching
rule for the assembling of quasipeniodic Kie and dart patterns s
provided by colouring the vertices ol the kites and durls, as indieated.
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imposed, obeying the matching rule ‘black on black, white
on white’, producing a quasiperiodic covering of the plane.
Gummelt’s result can be most simply established by
considering the Penrose ‘kite and dart’ patterns®. The
patch shown in Figure 2, consisting of two kites and a
dart, is called an ‘ace” in Conway’s terminology. The
matching rules for assembling a kite and dart pattern
(enforced by requiring the vertices to be ‘black’ or ‘white’
according to the scheme shown in Figure 1) imply Con-
way’s theorem that, in a tiling of the plane by kites and
darts satistying the matching rule, every point of the plane
ts part of an ace. (This is very easily proved by con-
sidering the ways in which the white vertex at the re-
entrant angle of the dart, or the white vertex at the join of
the two short edges can be surrounded.) There are just
four ways (1gnoring orientation) that a pair of aces can be
joined to produce a larger patch. These are shown in
Figure 3. Now decorate the kites and darts with black and
white regions according to the scheme shown in Figure 4
and consider the black and white patterns that arise in the
neighbourhood of an ace when further aces are added to it
in the ways shown in Figure 3. We deduce that every ace
(and hence, by Conway’s theorem, every point of the
pattern) lies in a decagonal region like Figure 1. Conver-

Fipure 3. The four ways in which two aces can be combined,
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scly, therc are just four ways in which pairs of these
decagons can ovcerlap, black on black, white on white.
Inscribing the associated aces in them, we recover Figure
3. This establishes that the decagon coverings and the kite
and dart tilings are ‘equivalent’ (in the sense that the one
can be converted to the other without ambiguity), and
Gummelt’s result 1s proved.

The ‘cartwheel” employed in Gummelt’s rather compli-
cated proof can be obtained by applying two inflations” to
an ace (Figure J).

A model for the decagonal quasicrystalline phases of
AINiCo and AlCuCo, based on the concept of identically
decorated overlapping decagons has been proposed by
Burkov™. Jeong and Steinhardt™ emphasized the impor-
tant role that Gummelt's covering of the plane by iden-
tical decagons could play in the development of structural
models of decagonal quasicrystalline phases, based on the

Figure 4. The decoration of the kites and darts that leads to Gummelt's
palterns.

Figure §. A ‘cartwheel’ in a kite and dart pattern.
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clustering concept rather than the tiling concept. Very
recently a successful model for the quasicrystalline phase
of AINiCo has been obtained in this way™.

A different quastpertodic covering of the plane by
decagons can be seen simply by looking at a Penrose rhomb
pattern; it is immediately obvious that these patterns
contain overlapping regular decagons whose edges are
edges of the tiles. These decagonal patches are of rwo
kinds (Figure 6). Sasisekharan® has studied the Penrose
patterns in terms of the covering of the plane by these
decagons. The matching rules for the Penrose rhombs imply
that, in the coverings of the plane by these decagons two
contiguous decagons either abut along an edge, or overlap
by sharing a thin rhomb, or overlap by shaning a hexagon
(consisting of a fat rhomb and two thin rhombs). If the
rhombic tiles that decorate the decagons are eliminated
and the decagons decorated, instead, by three concentric
rings of ‘atoms’, in the ratio 1:7: 7 (where 7T is the
‘golden number’ (1 +\15)!2) we arrive at a 2D quasi-
pertodic structure comprising clusters all of the same
kind. A pair of contiguous clusters can combine in just
three different ways (Figure 7).

Triacontahedral clusters

The coverings of the plane by the overlapping decagons in
Penrose rhomb patterns have an analogue in three dimen-
sions. The quasiperiodic space filling by hexahedral units
contains overlapping triacontahedra (each consisting of
10 oblate + 10 prolate units). This was recognized by
Mackay”’ who emphasized the importance of clusters with
icosahedral symmetry in quasicrystal structure.

We shall now demonstrate the existence of a 3D ana-
logue of the patterns produced by the decorated decagons
of Figure 7. The analogue of the decagon in 2D patterns
1S a rhombic triacontahedron. The decagonal clusters of
points have 10 external and 21 internal vertices. This
pattern of 31 points arises by projection along the [11111]
axis of the vertices of a 5D hypercube (the two hypercube
vertices on the axis project to the single point at the centre

Figure 6. Two kinds of decagonal patch in a Penrose rhomnb pattern.
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of the decagon). In the construction of a decagon from 5
fat rhombs and 5 thin rhombs (Figure 6), only 6 of the 21
internal vertices appear. A 3D analogue of the decagonal
cluster is obtained by projecting a 6D hypercube. The
04 vertices of the hypercube project to the 32 vertices

of a rhombic triacontahedron, and 32 internal vertices
(Figure 8). !

Six orthogonal vectors of length }'\/2 (y= V(2 + 7)) In
Es can be projected on to a 3D subspace, so that their
images are the six vectorsey, . . ., € given by the columns of

(1 0 -1 0 7 1)
0 1 7 ] 0 1.

1l 7 0 -1 -1 0O
\ /

The projected image a 6D hypercube of edge length yV2
1s then a rhombic triacontahedron of edge length v. The 32
vertices of the triacontahedron, and the 32 internal ver-
tices, are indicated in Figure 8. Position vectors in 3D are
indicated by the following labelling system: e;, €, ..., €
are denoted by 1, 2, .. ., 6 and e, + e, + e, for example, is
denoted by 146. Figure 8 illustrates views along e,

The 32 internal vertices are vertices of 2 pentagonal
dodecahedron with an icosahedron inside it. Both have
edge length 2/7. The stellation of the small pentagonal
dodecahedron gives the 12 five-fold external vertices:
stellating the small icosahedron gives the 20 three-fold
vertices (Figure 9).

The standard 3D generalization of the Penrose rhomb
tiling patterns, consisting of the vertices of a spacefilling
by two rhombic hexahedra, a prolate unit (PU} and an

Figure 7. Three ways of combining the decagonal clusters: sharing an
edge, a thin rhomb, or i hexagon. _
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oblate unit (OU), arises as the projection of a slice of a
6D hypercubic lattice.

According to Mackay™, it was Robert Amman who
first recognized that the two units PU and OU are 3D
analogues of the rhombic Penrose tiles. Accordingly,
we shall refer to the standard 3D patterns as ‘Amman
patterns’.

They have a T inflation rule. The relationship between
the Amman pattern of edge length T and the one of unit
edge length associated with it is described by Audier and
Guyot”‘

Every vertex of the T pattern 1s the centre of a star
polyhedron comprising twenty prolate units (Figure 10).
the mid-point of every edge of the 7’ pattern is the centre
of a rhombic icosahedron (Figure 11) (comprisirg 5 PU
and 5 OU). These fit, in an obvious way, into the ‘dumples’
oI the star polyhedra. The space in the interior of the 7°

156 331 4516

Figure 8. Projection of a 6D hypercube: @, the 32 external vedices:
b, the 32 internal vertices.

67



RESEARCH ARTICLE

PU is exactly filled by a pair of rhombic triacontahedra
sharing a single QU at the mid-point of the three-fold axis
of the ©° PU (Figure 12).

The two star polyhedra centred at the two vertices on
the three-fold axis of a © OU overlap; they share one PU.

Fignre 9. a, The ‘small’ icosahedron and the ‘small” dodecahedron
inside the 30-hedron; b, Stellation of the small dodecahedron:
¢, stellation of the small icosahedron.
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The remaining spaces in the interior of the © QU are filled
by a ring of six OUs surrounding this PU (Figure 13).

This completes the spacefilling by the hexahedron of
unit edge length. Any Amman pattern must fit the des-
cription we have given. There remains scope for varia-
tions, of course, because a rhombic icosahedron can be
built from 5 PU + 5 OU in more than one way, and the
building of a rhombic triacontahedron from 10 PU + 10
OU is also not unique.

Figure 14 shows a ring of five OUs placed on a star
polyhedron. Wher a rhombic icosahedron (R]) is placed
in the resulting ‘cup’, we get a rhombic triacontahedron
consisting of RI, five of the PUs of the star polyhedron
and the five OUs that have been added. The centre of the
star polyhedron is a vertex of the triacontahedron.

Figure 10. Star polyhedron consisting of 20 prolate hexahedra.

Figure 11. The rhombic icosahedron.

CURRENT SCIENCE, VOL.. 78, NO. 1, 10 JANUARY 2000
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The mid-points of all the edges of the 7 pattern are =~ The centres of the two triacontahedra are at golden mean
centres of rthombic RI connecting a pair of stars. If we  positions on the 7 edge.
imagine all these icosahedra to be supplemented by ten We now have arrived at description of a pattern of
OUs (five round the ‘top’ and five round the ‘bottom’),  overlapping triacontahedra. (It should be noticed that it is
we shall obtain a pattern in which every edge of the © not a complete covering of the space — the PU along the
pattern contains the centres of two triacontahedra. These  axis of every 7 OU is not contained in any of the tri-
triacontahedra overlap, the overlap region being the RI.  acontahedra.) Taking the triacontahedra to have unit edge
length, their centres are related to a © Amman pattern in a
simple way: two centres lie on every T edge, at golden
mean positions, and two centres lie at the golden mean
posttions on the long diagonal of every 7 PU.

Figure 12. Two rhombic triacontahedra sharing (@) a rhombic
dodecahedron; (b) a rhombic icosahedron; (c) a single oblate unit.

Figure 15. Lines of centres for overlapping pairs of 30-hedra,

occutring in the T units, a, A face of a T unit (edge length is rr‘);
Figure 13. Six oblate units on a star polyhedron. b, T PU; ¢, T OU.

CURRENT SCIENCE, VOL. 78, NO. 1, 10 JANUARY 2000 69
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We now consider the pattern of overlapping clusters
that arises when every triacontahedron of this covering is
a decorated with the 64 points indicated in Figure 8.

Clustering of triacontahedra

We now illustrate, by means of pictures, the various ways
in which the triacontahedra enter into combinations in the
covering pattern.

When the centres of the triacontahedra are placed at the
golden mean positions in the way we have described,
there are just four ways in which a pair of them can share
vertices. The line of centres can be directed along a two-
fold, a three-fold or a five-fold direction. In Table 1 the
nature of the overlap is listed for each of the four kinds of
bonds.

Other lengths occurring in the pattern are: Distance
from centre of 30-hedron to mid-point of a face,7; dis-
tance from centre of 30-hedron to a 3-fold vertex,zV3:
distance from centre of 30-hedron to 5-fold vertex,zy;
short diagonal of an QU, r'lxb; and long diagonal of a
PU, 3.

The four ways in which two triacontahedra can be
joined will be referred to as ‘type’ 2’, 2, 3 or 5. Pairs of
types 2, 3, and 5 are illustrated 1n Figures 12—-14. The way

Table I. Data for the four ways in which two of the triacontahedra
can combine. Y= Y(2 + 7)

Bond Distance bet- Number of shared
direction  Overlap region ween centres external vertices
2° Face 27 4

2 Rhombic dodec. 27 6

3 Oblate unit V3 3

5 Rhombic icos. Y 10

Figure 16. a, A rnng of 5 edge-sharing pentagonal dodecahedra;

b, a cluster of twelve. The intcrior of this figure is an icosidodeca-  Figure 17. The configuration insi'deaty;?e-i pair. The two icosahedra
hedron (32.5%).This configuration occurs in {c) the cluster of 12 tri- are joined by a pcqtagﬁnal anl_tipr:sm w'htch is not quite regular: the
acontahedra that surround the centre of a £ star polyhedron. triangular faces are isosceles, with edges in the ratio 2 : V3 ~1 ~ 0.86.

70 CURRENT SCIENCE, YOL, 78, NO. 1, 10 JANUARY 2000.
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Three triacontahedra in face contact surrounding a PU. Three

:d by tnversion, gives a configuration with 3 symmetry: six
dra around the short diagonal of the £ OU.

a, A 100-atom shell with 16 pentagons, 32 hexagons and
§. Its symmietry is mmn; 1t occurs in the double clustet wilh
ding: b, An 8O-atom shell with symunetry 5, occurring in the
ter with type-5 bonding,

"SCIENCE, VOL. 78, NO. [, TOJANUARY 2000

the four kinds of bonds between triacontahedron centres
occur in the 7 units is shown in Figure 15.
If we consider the internal vertices of the triacontahedra

of a pair, we find that in a type-2 pair the two inner
dodecahedra share an edge. In a type-5 pair, the inner

icosahedron/dodecahedron of each triacontahedron shares
five vertices with the inner dodecahedron/icosahedron
of the other. The various geometrical configurations that
artse from these considerations are shown in Figures 16—18.

Application to clustering models of QC

The patterns produced by decorating the triacontrahedra
with their 32 external and 32 internal vertices have arisen
from purely geometrical considerations. A motivation for
the study of these patterns is the light they may shed on
the mode of growth of quasicrystals and their approxi-
mants, and the contribution they can make to the search
for realistic clustering models of quasicrystal structure.
Consider the 136-atom cluster that is a basic ‘building
block’ in R-AlZnLi. Qur 64-‘atom’ cluster can be con-
verted to the 136-atom cluster by adding 12 atoms around
the inner pentagonal dodecahedron, thus producing a 44-
atom Bergman unit: this is then surrounded by a shell of
60 more atoms forming an Archimedean (5.6°) between
the 1nner and outer triacontahedra. The inner and the outer
triacontahedra are in the ratio 1 : 7. The R phase is a bee
structure. The triacontahedral clusters are centred on the
bce positions, each is coordinated to 8 others by type-3
‘bonding’ and to six others by type-2’ ‘bonding’. The
arrangement of triacontahedra in the manner we have
described suggests immediately a plausible model for the
related quasicrystalline T2 phase. (Notice, incidentally,
that when the dodecahedra of Figure 16 b are completed
to triacontahedra by placing an atom over each pentagonal
face, we obtain a cluster of twelve triacontahedra in face
contact; the twelve innermost vertices form an icosa-
hedron, and the innermost shells of the resulting cluster

igure 20, A rhombic 50-hedron. Two ‘zones' have been inserted i
o 30-hedron. In the type-S pairing of the ‘small’ triacontahedra, the
extra edpes are reduced in length by a factor 72
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form a 54 atom dackay wosahedron! The occurrence of
Bergman clusters and Mackay clusters in the same struc-
ture has been noted as a feature of other, quite different
models™.) The essential difference between the model
proposed here and that of Audier and Guyot is that the
centres of our tnacontahedral clusters lie at the golden
mean positions on the 7 edges, whereas Audier and Guyot
placed them at the vertices of the T units.

When our basic 64-vertex clusters are completed to
[ 36-atom clusters, the three types of double clusters (cor-
responding to the *bonds® of types 2, 3, and § of Table 1)
that are thereby produced have the following characteris-
tics. In type-2 the two inner triacontahedra share a face
and the two 60-atom shells can be ‘merged’ — the two
inner triacontahedra can be surrounded by a shell with
16 pentagons, 34 hexagons and 4 heptagons (V= 100,
E=150, F=52) (Figure 19 a). In type-3 the inner tri-
acontahedron of each cluster shares a single vertex with
the outer triacontahedron of the other. In type-5 the
addition of atoms over the faces of the inner dodecahedra
of Figure 17 produces the polyhedron shown in Figure 20
and the 60-atom shells are replaced by an elongated shell
withh 12 pentagons and 30 hexagons (V =80, E =120,
F=42) (Figure 19 5). In the complete structure arising
from this model every cluster is, of course, coordinated
with others that share atoms with it and completely sur-
round it. To produce a realistically acceptable arrange-
ment of atoms, some of the vertices need to remain
unoccupied, and certain close pairs of vertices need to be
replaced by a single atom at their mean position to
produce an acceptable realistic arrancement of atoms.
These small changes to the abstract geometrical pattern
are minor and systematic. As in the model proposed by
Audier and Guyot, in the complete pattern the 60-atom
(5.6%) shells of isolated clusters will ‘merge’ to produce
more elaborate configurations with 5-, 6-, 7- and 8-
membered rings. The atoms in this layer of the structure
are perhaps best thought of as ‘glue atoms’ that fill in gaps
in the growing structure, whose basic ‘building-blocks’ are
large and small triacontahedra (in the ratio 1 : 7).
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