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An introduction to the proper orthogonal

decomposition

Anindya Chatterjee*

Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania, PA, 16802, USA

A tutorial is presented on the Proper Orthogonal
Decomposition (POD), which finds applications in
computationally processing large amounts of high-
dimensional data with the aim of obtaining low-
dimensional descriptions that capture much of the
phenomena of interest. The discrete version of the
POD, which is the singular value decomposition (S§VD)
of matrices, is described in some detail. The continu-
ous version of the POD is outlined. Low-rank app-
roximations to data using the SVD are discussed. The
SVD and the eigenvalue decomposition are compared.
Two geometric interpretations of the SVD/POD are
given. Computational strategies (using standard soft-
ware) are mentioned. Two numerical examples are
provided: one shows low-rank approximations of a

surface, and the other demonstrates simple a posteriori

analysis of data from a simulated vibroimpact system.

Some relevant computer code is supplied.
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1. Introduction

COMPUTERS have increased our capacity to not only
simulate complicated systems, but also to collect and
analyse large amounts of data. Using personal computers,
it 1s now unremarkable to record data at, say, 20 kHz for a
few hours. One might then process hundreds of millions
of data points to obtain a few quantities of final interest.
For example, expensive machinery might be instrumented
and monitored over days, with the sole objective of effi-
ciently scheduling maintenance.

This article provides an introduction to the Proper Ortho-
gonal Decomposition (POD) which is a powerful and
elegant method of data analysis aimed at obtaining low-
dimensional approximate descriptions of high-dimensional
processes. The POD was developed by several people
(among the first was Kosambi'), and is also known as
Principal Component Analysis, the Karhunen-Loéve
Decomposition, and the single value decomposition. The
POD has been used to obtain approximate, low-dimensional
descriptions of turbulent fluid flows®, structural vibra-
tionsﬂ'd, and insect gaits, and has been used for damage
detection®, to name a few applications in dynamic sys-
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tems. It has also been extensively used in image process-
ing, signal analysis and data compression. For references
to the many sources of the POD, for applications of the
POD in a variety of fields, as well as for a nice treatment
that complements this tutorial, the reader is encouraged to
read Holmes, Lumley and Berkooz” (chapter 3).

Data analysis using the POD is often conducted to ex-
tract "'mode shapes’ or basis functions, from experimental
data or detailed simulations of high-dimensional systems,
for subsequent use in Galerkin projections that yield low-
dimensional dynamical models (see ref. 2). This article
concentrates on the data analysis aspect, and subsequent
reduced-order modelling is not discussed.

2. Motivation

Suppose we wish to approximate a function z(x, ) over
some domain of interest as a finite sum in the variables-
separated form

M
2(x, 1) = Y a, (D, (), (1)
k=i

with the reasonable expectation that the approximation
becomes exact in the limit as M approaches infinity, except
possibly on a set of measure zero (readers unfamiliar with
measure theory may ignore it if they deal with finite-dimen-
sional calculations; and consult, e.g. Rudin’ otherwise).

While in eq. (1) there is no fundamental difference
between t and x, we usually think of x as a spatial coordi-
nate (possibly vector-valued) and think of ¢ as a temporal
coordinate.

The representation of eq. (1) is not unique. For exam-
ple, if the domain of x is a bounded interval X on the real
line, then the functions ¢.(x) can be chosen as a Fourier
series, or Legendre polynomials, or Chebyshev polynomi-
als, and so on. For each such choice of a sequence ¢,(x)
that forms a basis for some suitable class of functions
z(x, 1) (see note 1), the sequence of time-functions q,(¢) is
different. That 1s, for sines and cosines we get one
sequence of functions a,(t) is different. That 1s, for sines
and cosines we get one sequence of functions a(r), for
Legendre polynomials we get another, and so on. The
POD 1is concerned with one possible choice of the
functions ¢,(x).
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If we have chosen orthonormal basis functions, 1.e.

(1if ky =k,
[0, (s, () dx =

0 otherwise '

then

ap ()= | z(x, )¢, (x) dx, (2)

i.e. for orthonormal basis functions, the determination of
the coefficient function a(t) depends only on ¢,(x) and
not on the other ¢’s.

What criteria should we use for selecting the functions
¢,? Orthonormality would be useful. Moreover, while an
approximation to any desired accuracy in eg. (1) can
always be obtained if M can be chosen large enough, we
may like to choose the ¢«(x) in such. a way that the
approximation for each M is as good as possible in a least
squares sense. That is, we would try to find, once and for
all, a sequence of orthonormal functions ¢.(x) such that
the first two of these functions give the best possible two-
term approximation, the first seven give the best possible
seven-term approximation, and so on. These special,
ordered, orthonormal functions are called the proper
orthogonal nodes for the function z(x, ). With these
functions, the expression in eq. (1) is called the POD of
z{x, ).

3. Theory: Finite-dimensional case

Consider a system where we take measurements of m state
variables (these could be from m strain gauges on a
structure, or m velocity probes in a fluid, or a mixture of
two kinds of probes in a system with flow-induced vibra-
tions, etc.). Assume that at NV instants of time, we take N
sets of m simultaneous measurements at these m locations.
We arrange out data in an N x m matrix A, such that ele-
ment A; is the measurement from the jth probe taken at
the ith time 1nstant.

The m state variables are not assumed to be measured
by transducers that are arranged in some straight line 1n
physical space. We merely assume that the transducers
have been numbered for identification; and that their out-
puts have been placed side by side in the matrix A. In the
actual physical system these measurements might represent
one spatial dimension (e.g. accelerometers on a beam), or
more than one spatial dimension (e.g. pressure probes in a
three-dimensional fluid flow experiment). Each physical
transducer may itself measure more than one scalar quan-
tity (e.g. triaxial accelerometers); in such cases, the diffe-
rent scalar time series from the same physical transducer
are arranged in different columns of A. The final result
of the data collection is assumed here 10 be the N x m
matrix A.

It 1s common to subtract, from each column of A, the
mean value of that column. Whether or not this 18 done
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does not affect the basic calculation, though it affects the
interpretation of the results (see section 3.5 below).

3.1 The singular value decomposition

We now compute the singular value decomposition (SVD)
of the matrix A, which is of the form (for a discussion of
the SVD, see ref. 8):

A=UsVT, (3)

where U is an N x N orthogonal matrix, V is an m X m
orthogonal matrix, the superscript 7 indicates matrix
transpose, and X 1s an N x m matrix with all elements zero
except along the diagonal. The diagonal elements X; con-
sist of » = min(, m) nonnegative numbers o;, which are
arranged in decreasing order, 1.e. 07203 2...20,20.
The ¢’s are called the singular values of A (and also of
A") and are unique. The rank of A equals the number of
nonzero singular values it has. In the presence of noise,
the number of singular values larger than some suitably
small fraction of the largest singular value might be taken
as the ‘numerical rank’.

Since the singular values are arranged in a specific
order, the index & of the kth singular value will be called
the singular value number (see Figures 1 e and 2 ¢).

3.2 Correspondence with eqgs (1) and (2)

In eq. (3), let UZ = Q. Then the matrix Q is N X m, and
A = 0OV’ Letting g, be the kth column of @ and v; be the
kth column of V, we write out the matrix product as

ni

A=0VT =) g, (4)
k=l

Equation (4) is the discrete form of eq. (1). The function
z(x, 1) is represented here by the matrix A. The func-
tion a(t) is represented by the column matrix g;. The
function ¢i(x) is represented by the row matrix vi. The
approximation of eq. (1) 1s now exact because the dimen-
sion is finite. Due to the orthonormality of the columns of
V. eq. (2) corresponds to multiplying eq. (4) by one of the
v’s on the right.

3.3  Lower-rank approximations to A

For any k<r, the matrix Z; obtained by setting
Oil = Oz = . ..= 0, =0 in X can be used to calculate an
optimal rank k approximation (see note 2) to A, given by

A, =UZ, VT, (5)

In computations, one would actually replace U and V with
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the matrices of their first k columns; and replace 2, by 1ts
leading & x k principal minor, the submatrix consisting of
L's first & rows and first & columns (see the computer
code in Appendix Al).

The optimality of the approximation in eq. (5) lies In
the fact that no other rank £ matrix can be closer to A n
the Frobenius norm (square root of the sums of squares ot
all the elements), which i1s a discrete version of the L, norm;
or in the 2-norm (the 2-norm of a matrix is 1ts largest
singular value). Thus, the first & columns of the matrix V
(for any k) girve an optimal orthonormal basis for app-
roximating the data. Note that V is determined once and
for all: the rank k£ of the approximating matrix can be
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Figure 1.
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chosen afterwards, and arbitrarily, with guaranteed opti-

mality for each k.
The columns of V are the proper orthogonal modes.

3.4 SVD vseigenvalue decomposition

Consider the differences between the SVD and eigenvalue
decomposition. The SVD can be computed for non-square
matrices, while the eigenvalue decomposition is only
defined for square matrices; the SVD remains within real
arithmetic whenever A 1s real, while eigenvalues and
eigenvectors of unsymmetric real matrices can be com-
plex; the left and right singular vectors (columns of U and

D Rank 1 approximation

f The modal contributions
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Approximation of surface example.
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of V respectively) are each orthogonal, while eigenvectors
of unsymmetric matrites need not be orthogonal even
when a full set exists; and finally, while an eigenvector
(say) and its image Ay are in the same direction, a right-
singular vector v, (kth column of V) and its image Ay,
need not be in the same direction or even in spaces of the
same dimension.

However, the SVD does have strong connections with
the eigenvalue decomposition. On premulitiplying eq. (3)
with its transpose and noting that V™' = V', we see that V
is the matrix of eigenvectors of the symmetric m x m A’A
matrix A’A, while the squares of the singular values are
the r = min(N, m) largest eigenvalues (see note 3) of A’A.

Similarly, on premultiplying the transposed eq. (3) with
itself and noting that U™ = U”, we see that U is the matrix
of eigenvectors of the symmetric N x N matrix AA’, and
the squares of the singular values are the r = min(¥V, m)
largest eigenvalues of AA".

It A 1s symmetric and positive definite, then its eigen-
values are also its singular values, and U=V. If A is
symmetric with some eigenvalues negative (they will be
real, because A 1s symmetric), then the singular values are
the magnitudes of the eigenvalues, and U and V are the
same up to multiplication by minus one for the columns
corresponding to negative eigenvalues.

displacement of mass 4

15

displacement
N

0 100 200 300 400 500
time

gingular values of mean-subtracted dala

o 2 4 6 8 10
singular value number

3.5 Geometric interpretations

The SVD of a matrix has a nice geometric interpretation.
An N x m matrix A is a linear operator that maps vectors
from an m-dimensional space, say S, to an N-dimensional
space, say §;. Imagine the unit sphere in §;, the set of
vectors of unit magnitude (square root of sum of squares
of elements). This unit sphere gets mapped to an ellipsoid
in S,. The singular values o), 03, . . . are the lengths of the
principal radii of that ellipsoid. The directions of these
principal radii are given by the columns of U. The pre-
images of these principal radii are the columns of V.

A second geometric interpretation may be more illumi-
native for POD applications. We now view the N x m
matrix A as a list of the coordinates of N points in an
m-dimensional space. For any & < m, we seek a k-dimen-
sional subspace for which the mean square distance of the
points, from the subspace, is minimized. A basis for this
subspace is given by the first k columns of V.

Recall that 1t is common in POD applications to sub-
tract from each column of A the mean of that column.
This mean-shift ensures that the N-point ‘cloud’ is cen-
tered around the origin. Figure 3 shows how the one-
dimensional optimal subspace basis vector, indicated in
each case by a grey arrow, depends on where the point
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Figure 2. Vibriobmpact example results,
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coordinate axis

original point cloud

iiai )

coordinata axis

point cloud, mean-shilted
(centered around origin)

Figure 3. Effect of shifting the mean of the point cloud (o the origin.

cloud is centered (by definition, a subspace must pass
through the origin).

3.6 Computations

The matrix V can be found by computing the SVD
directly using commercial software like Matlab. Alterna-
tively, the calculation can be indirectly carried out using
eigenvalue/eigenvector routines, using ATA as mentioned
in section 3.4, |

If m> N, it is more efficient to first compute the
matrix U as the matrix of eigenvectors of AA’. This
method is called the ‘method of snapshots’ in the POD
literature. For example, in trying to find low-rank repre-
sentations of a digital image that evolves over time, one
micht have a 1000 x 1000 pixel image (m = 10%), but only
on the order of N = 10° images; in such cases, the method
of snapshots might be used. Once U is known, premulti-
plying eq. (3) by U' gives

Uvia=3zv? . | (6)

The product in eq. (6) is obviously still N x m. The last
m ~— N columns of T are zero; the bottom m — N rows of
v or the last m —~ N columns of V, are multiplied by
zesos and are indeterminate and irrelevant, If there are X
nonzero singular values, then the first k rows of sy’ are
nonzero and orthogonal. Their norms are the singular
values. Normalizing them to unit magnitude gives the cor-
responding proper orthogonal modes v;.

4. Theory: Infipnite-dimensional versions

For most users of the POD, the simpler theory for the dis-
crete case suffices. Experimental data are always discrete,
and in any case integral equations (which arise in the
infinite-dimensional case) are usually solved numerically
by discretization. However, those requiring the infinite-
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dimensional versions may wish to consult, e.g. Holmes,
Lumley and Berkooz® as well as a text on integral equa-
tions, such as Porter and Stirlingg. For completeness, the
main points are outlined here.

Infinite-dimensional PODs are solved as eigenvalue
problems. The issue to resolve 1s what A'A should mean
for infinite-dimensional problems.

To this end, note that in the finite-dimensional version

discussed in preceding subsections, element (i, j) of the
matrix B=A"A is

=

Bi' —

] Af-;- Akj ’ (7)

!

b
I

1

with the sum being carried out on the ‘time’ variabie or
the row-index of A.

In the finite-dimensional-in-space but continuous-time
version of the POD, the vector inner products involved in
computing ATA become integrals. We simply take

1 prg+7
T

Z{(x;, )ex;, 1) dr, (8)
where for any finite 7 the correspondence between the
integral (eq. (8)) and the sum (eq. (7)) is clear. Since B
is still just a matrix, it still has only a finite number of
eigenvalues. |

In the discrete case, with finite data, the factor of U/T
can be ignored since it affects only the absolute values of
the o’s and leaves their relative magnitudes unchanged;
the matrices U and V are unaftected as well.

Before going on to the fully infinite-dimensional case,
we briefly consider the significance of the averaging time
duration T in eq. (8). In applications of the continuous-
time POD to steady state problems, one usually assumes
that in eq. (8) a well-defined limit is attained, independent
of 15, as T approaches infinity. In practical terms this
means that if the POD is being used to obtain a low-
dimensional description of the long-term or steady state
behaviour, then the data should be collected over a time
period much longer than the time scale of the inherent
dynamics of the system. However, applications of the
POD need not only be to steady state problems. In study-
ing the impulse response, say, of a complicated structure,
the steady state solution may be the zero solution. How-
ever, a finite-time POD may well yield useful insights 1nto
the transient behaviour of the structure.

As was the case with subtracting vs not subtracting the
means from the columns of A, whether or not the data
collection time T was long enough to accurately capture
the steady state behaviour does not affect the basic calcu-
lation but affects the interpretation of resuits.

We now consider the fully infinite-dimensional version
of the POD. Now the rows of A are replaced by functions
of space, and there is an infimite sequence of eigenvalues
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(with associated eigenfunctions). B 1S not a matrix any-
more, but a function of two variables (say x; and x;).

Z(x],t)Z(xZ, t) dr: (9)

where x; and x, are continuous variables both defined on
some domain X. How should we interpret the eigenvalues
of B as given by eq. (9)? The eigenvalue problem in the
discrete m x m case, By = Ay, can be written out in com-
ponent form as

ZB;;;'W; = Ay,

j=l

(10)

For the B of eq. (9), the sum of eq. (10) becomes an 1inte-
gral, y becomes a function of x, and we have the integral
equation

[ B(x), X0 (xy) dxy = Ay ().

It is clear that the above integral equation has the same
form whether the space variable x is scalar valued or
vector valued.

5. Numerical examples

5.1 Approximation of a surface

Let z be given by

—(x-0.5)(r-1)! 0L

(1)

Z(x,t)=e +sin(xt), 0<x<1,

Imagine that we ‘measure’ this function at 25 equally
spaced x points, and 50 equally spaced instants of ¢. The
surface z(x, ¢) 1s shown in Figure 1 a.

Arranging the data in a matrix Z, we compute the SVD
of Z, and then compute (see section 3.3) rank I, rank 2,
and rank 3 approximations to Z, as shown 1n Figure | b—d,
The computer code used for this calculation is provided in
the appendix. (The means were nof subtracted from the
columns for this example.)

The rank 3 approximation (Figure 1 d) looks indistin-
guishable from the actual surface (Figure 1 a). This is
explained by Figure 1 e, which shows the singular values
of Z. Note how the singular values decrease rapidly In
magnitude, with the fourth one significantly smaller than
the third. (The numerical values are 47.5653, 2.0633,
2.0256, 0.0413,0.0106, ....)

Note that in this example without noise, the computed
singular values beyond number 14 flatten out at the nume-
rical roundoff floor around 107°. The actual singular
values beyond number 14 should be smaller, and an 1den-
tical computation with more digests of precision should
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show the computed singular values flattening out at a
smaller magnitude. Conversely, perturbing the data matrix
by zero-mean random numbers of typical magnitude (say)
107, causes the graph of singular values to develop an
obvious elbow at about that value. For experimental data
with noise, the SVD of the data matrix can sometimes
provide an empirical estimate of where the noise floor is.

So far 1in this example, we have merely computed
lower-rank approximations to the data, and the use of the
SVD in the calculation may be considered incidental.
Now, suppose we wish to interpret the resuits in terms of
mode shapes, 1.e. in the context of the POD. The first 3
columns of V provide the 3 dominant x-direction mode
shapes, and on projecting the data onto these mode shapes
we can obtain the time histories of the corresponding
modal ‘coordinates’.

The calculation of the modal coordinates 1s straightfor-
ward. Using eq. (4), the kth modal coordinate g; is simply
u, 0, where u;, 15 the kth column of U (assuming U 1s
available tfrom the SVD). Alternatively, if only the proper
orthogonal modes V are available, then the projection
calculation 1s simply g, = Av,, where v; 1s the kth column
of V.

The modal coordinates for the surface given by eq. (11)
are plotted in Figure 1 f. The first coordinate is obviously
dominant (the first singular value i1s dominant), while the
second and third have comparable magnitude (singular
values 2 and 3 are approximately equal).

5.2 Proper orthogonal modes in a simplified
vibroimpact problem

Let us consider the one-dimensional, discrete system
shown in Figure 4. Ten identical masses m are connected
to each other (and to a wall at one end) by identical linear
springs of stiffness k and identical dashpots of coefticient
c. The forcing on each mass 1s identical with

F(t)=F(t)=...= F(t)= Asn wr.

The fifth mass has a hard stop which intermittently con-
tacts a nonlinear spring; the spring force i1s Kx* when the
displacement x of mass 5 is negative, and zero otherwise,
The equations of motion for this system are easy to
write, and are not reproduced here. The system was
numerically simulated using ode23, a Matlab routine
implementing a low-order Runge-Kutta method with
adaptive step size control. The program’s default error
tolerances were used (107 for relative error and 107° for
absolute error). The solution, though adaptively refined
using internal error estimates, was finally provided by the
routine at equally-spaced points in time (this 1s a convent-
ent feature of this routine). The simulation was from
t = 500 to t = 6000 equal intervals. For initial conditions,
alt ten displacements and velocities were taken to be zero.
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In the simulation, the on/ott switchings of the cubic spring
were not monitored, since the nonlinearity is three times
differentiable. the routine uses a low-order method, there
1S adaptive error control, and overall speed of computa-
tion was not a concern in this simulation,

The parameters used in the stmulation were:

m=1 k=1 ¢=0.3 A=008, w=0.2, and k =35.

Figure 2 shows the results of the simulation. Figure 2 a
shows the displacement vs time of mass 4, which is seen
settling to a periodic motion. In Figure 2 b, the displace-
ments vs time of masses 2 and 5 are shown over a shorter
time period. The ‘impacts’ of mass 5 are clearly seen.
Figure 2 ¢ depicts the singular values of the matnix of
positions (velocities are not used). Note that the mean
displacements of the masses were nonzero because of the
one-sided spring at mass 3, and in the computations the
mean displacements were subtracted from the columns of
the data matrix (see section 3.5). Finally, the furst three
proper orthogonal modes are shown in Figure 2 d. The
relative magnitudes of the maximum displacements of
masses 2 and 5, in Figure 2 b, are consistent with the
relative magnitudes of the corresponding elements of the
first, dominant, proper orthogonal mode shown in Figure
2 d. Note that in Figure 2 d the three mode shapes have
comparable magnitudes. This is as it should be, because
the mode shapes themselves are all normalized to unit
magnitude; it is fime-varying coefficient of the third mode,
say, which is much smaller than that of the first mode.

The computer code used for these calculations (1o proc-
ess the previously computed displacement vs time data) is
given in the appendix.

From Figure 2 ¢ and 4, we observe that the first two
singular values are together much larger than the rest; as
such, the response is dominated by the first two modes.
However, the effect of the nonsmooth impacting beha-
viour shows up more clearly in the third mode (Figure
2 d), although it has a relatively small overall amplitude.
This is consistent with Figure 2 b, where 1t is seen that the
displacements at a ‘typical’ location (mass 2) are signifi-
cantly smoother than those at the impact location (mass
5). The displacement of mass 5 itself 1s slow for relatively
long portions of time, and has some localized high-
frequency, small-amplitude behaviour near the impacts.

~a wall

'
'
-3
-
-
4
o

.

E® BN EW

AC

praliagy,

Roughly speaking, the softness of the impact contact
(cubic spring) as well as the damping in the structure lead
to smooth-looking mode shapes capturing most of the
action most of the time. In other words, the ‘fast’ dyna-
mics introduced by the impacts is localized in space
(meaning it is significant only at and near the impact
location), and also localized in time (meaning it is signifi-
cant for only a short pertod following each impact); and in
an overall average sense, the amplitude of the high-speed,
impact-induced osciliations is small. For this reason, the
modes that dominate the POD do not show the impact
behaviour clearly.

The foregoing example provides a glimpse of how the
POD may be used to extract qualitative and quantitative
information about the spatial structure of a system’s beha-
viour; and how a posteriori data analysis might lead to an
improved understanding of the system.

6. Some words of caution

6.1 Sensitivity to coordinate changes

The POD 1s sensitive to coordinate changes: it processes
numbers, whose physical meaning it does not know. The
SVD of a matrix A 1s not the same as the SVD of another
matrix AB, where B 1s an invertible n X n matrix (corres-
ponding to talking linear changes of variables). In par-
ticular, 1nappropriate scaling of the variables being
measured (easily possible in systems with mixed measure-
ments such as accelerations, displacements and strain) can
lead to misleading if not meaningless results.

In the experimental study of chaotic systems one some-
times uses delay coordinate embedding (see, e.g. Ott'";
which implicitly involves a strongly nonlinear change of
variables. Readers may like Ravindra’s brief note'' dis-
cussing one inappropriate use of the POD in this connection.

6.2 Subspaces vs surfaces

The analysis is based on linear combinations of basis
functions. The POD cannot distinguish between a feature-
less cloud of points on some plane, and a circle on the
same plane. While the circle obviously has a one-dimensional
descriptions, on blindly using the POD one might con-
clude that the system had two dominant ‘modes’.

wall | nonknear spring, f=K xJ
| hard stop
] maaas I masas L maaas ] me sae B YT %

£ AC F ot

Figure 4. Simple model of a vibrioimpact system.
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6.3 Rank vs information content

As the SVD can be used to compute low-rank approxima-
tions to data matrices, it is tempting to think that rank is
related to information content. To see that this is not nece-
ssarilly true, consider an n x n diagonal matrix (rank n)
with another n X n matrix which has the same nonzero
entries but in a single column (rank one). Though the
ranks differ widely, the information contents of these two
matrices may reasonably be called identical.

Incidentally, this diagonal matrix vs single-nonzero-
column matrix example has a nice correspondence with
two types of physical phenomena: the diagonal matrix
corresponds to travelling disturbances (e.g. pulses), while
the single-nonzero-column matrix corresponds to distur-
bances that stay localized (e.g. standing waves). Readers
are invited to mimic the surface-approximation example
of section 5.1 with the function z(x, f) = e““~ ", which
represents a travelling hump, with (say) a=5, -2 <x <2,
—2<1t<2, and with (say) a grid of 80 points along each
axis. In this example (whose details are not presented here
for reasons of space), it is found that the largest several
singular values have comparable magnitudes; and low-
rank approximations to the surface are poor. For increas-
Ing a, the approximation at any fixed less-than-full rank gets
poorer. This example shows that some physical systems
may be poorly suited to naive analysis using the POD.

6.4 Modal ‘energies’

The eigenvalues of A’A (or the squares of the singular
values of A) are sometimes referred to as ‘energies’ corres-
ponding to the proper orthogonal modes. In signal
processing, this energy is not a physical energy. In incom-
pressible fluidd mechanics with velocity measurements,
this energy is related to the fluid’s kinetic energy. How-
ever, 1n structural dynamics problems with, say, displace-
ment and/or velocity measurements, there is generally no
direct correspondence between this energy and either the
system’s kinetic energy or its potential energy or any
combination thereof. Thinking of the eigenvalues of A’A

Appendix — Code for numerical examples

as ‘energies’ in a general mechanical context is incorrect
in principle and may yield misleading results.

For example, consider a two-mass system. Let one mass
be 107 kg and let it vibrate sinusoidally at a frequency @
with an amplitude of 1 m. Let the second mass be 10° kg,
and let 1t vibrate sinusoidally at a frequency 2w with an
amplitude of 107 m. Then the first proper orthogonal mode
corresponds to motion of the first mass only, while the
second proper orthogonal mode corresponds to motion of
the second mass only. The modal ‘energy’ in the first proper
orthogonal mode is 10* times larger than that in the sec-
ond mode. However, the actual average kinetic energy of
the first mass (first mode) is 10* times smaller than that of the
second mass (second mode). (Readers who like this example
may also enjoy the discussion in Feeny and Kappagantu®.)

6.5 Proper orthogonal modes and reduced-order
modelling

Proper orthogonal modes are frequently used in Galerkin
projections to obtain low-dimensional models of high-
dimensional systems. In many cases, reasonable to excel-
lent models are obtained. However, the optimality of the
POD lies in a posteriori data reconstruction, and there are
no guarantees (as far as I know) of optimality in modell-
ing. Examples can be constructed, say along the lines of
the system considered in section 6.4 above, where the
POD provides misleading results that lead to poor models.
As another example, a physical system where a localized
disturbance travels back and forth i1s poorly suited to
analysis using the POD; and while such system might in
fact have a useful low-dimensional description, the POD
may fail to find it because that description does not match
the form of eq. (1).

The previous warnings notwithstanding, through a
combination of engineering judgement and luck, the POD
continues to be fruitfully applied in a variety of engineer-
ing and scientific fields. It 1s, tn my opinion, a useful tool
at least for people who regularly deal with moderate to
high-dimensional data. |

All computations presented in this paper were carried out using the commercial software Matlab. Some of the codes

used are provided below.

A.1 From section 5.1

x=linspace(0,1,25);
t=linspace(0,2,50);
[X,T)*=meshgrid(x,t);
z=exp(-abs ((X-,5).#(T-1)))+sin(X.*T);

subplot(3,2,1)
surf (X,T,z)
axis({0,1,0,2,0.4,2.1))

/i generate the data matrix A

% plot the surface

xlabel(’x'), ylabel(’t’), zlabel(’z'), title(’Actual surface’)
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[u,s,v]=svd(z); %, note: the means are pot subtracted
A from the colunmns
for k=1:3 % for rank 1,2 and 3 approximations
zz=u(:,1:k)*s(1:k,1:k)sv(:,1:k)’; % compare with Eq. 5, and following text
subplot(3,2,k+1)

surf (X,T,zz),axis({0,1,0,2,0.4,2.1})
xlabel(’x’), ylabel(’t’), zlabel(’z’)
title([’Rank ’,num2str(k),’ approximation’])

end

subplot(3,2,5) % plot the singular values, semilog scale
s=diag(s); semilogy(s,’o’)
xlabel (’number’), ylabel(’singular value’), title(’Singular values of z’)

subplot(3,2,6)
v=v(:,1:3); % drop all but first 3 columns of V
c=v'sz?; % note, this is the transpose of z*v, which

yA corresponds to A*v in the text

plot(t,c(l,:).’--’.t.c(2,:).’:’.t,c(B,:).’-.’) % plot modal coordinates
xlabel(’t’), ylabel(’modal coordinates’)

title(’The modal contributions’)

legend(’1’,72%,?3?)

A.2 From section 5.2

load vibdata % data file containing time t, and y=[x,xdot]
x=y{(:,1:10);

subplot(2,2,1)

plot(t,x(:,4)) % plot displacement of mass 4

xlabel(’time’),ylabel(’displacement’)
title(’(a) displacement of mass 4’)
axis([0,500,-3,171)

subplot(2,2,2) % start another displacement plot

plot(t(4000:5500),x(4000:5500,2),’-.’,t(4000:5500),x(4000:5500,5),’-')
xlabel(’time’),ylabel(’displacement’) |
title(?(b) dash-dot: mass 2; solid line: mass 5’)
axis([340,4%5,-3,20))

for k=1:10 |
x(:,k)=x(:,k)-mean(x(:,k)); % mean subtraction
end
[u,s,f]=svd(x(2001:6000.:),0); % the second argument (i.e., O0) is used for
% far-from-square matrices to save time and memory
% note: first 2000 points are dropped (transients)
s=diag(s);
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subplot(2,2,3)

semilogy(s,’0’)

xlabel(’singular value number’),ylabel(’singular value’)
title(’ (¢) singular values of mean-subtracted data’)

axis([0,11,1e-2,1e4])

subplot(2,2,4)

% plot singular values

%4 plot proper orthogonal modes

plot(1:10,v(:,1),%0-’,1:10,v(:,2),7%-?,1:10,v(:,3),7<-")

xlabel(’location (mass number)’),ylabel(’first 3 proper orthogonal modes’)
title(’(d) modes 1 (circles), 2 (stars) and 3 (triangles)’)
axis([0,11,-0.7,0.7])

Noftes

1.

{d

We assume these functions are bounded and integrable. In experi-
ments, measurements are bounded and discrete; integration 1is
equivalent to summation; and the subtleties of integration can
safely be ignored. Here, 1 stay away from integraiton theory. The
interested reader may consult, e.g. Rudin’.

Strictly speaking, one should say ‘rank at most &°.

. If m> N, then r = N, there are m eigenvalues but only N singular

values; the largest N eigenvalues equal the squares of the & singu-
lar values; and the smallest m — N eigenvalues are all exactly zero.
If m <N, then r=m; and the m eigenvalues equal the squares of
the m singular values. (Readers may wish to work out the details of
these calculations using a numerical example of their choice.)
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