SPECIAL SECTION: COMPUTATIONAL SCIENCE

SURVEYS

Reconfigurable computing: Architectures,

models and algorithms

Kiran Bondalapati* and Viktor K. Prasanna
Department of Electrical Enginecring, University of Southern California, Los Angeles, CA 90089-2562, USA

g i

The performance requirements of applications have
continunously superseded the computing power of
architecture platforms. Increasingly larger number of
transistors available on a chip have resulted in com-
plex architectures and integration of various architec-
ture components on the chip. But, the incremental
performance gains obtained are lower as the complex-
ity and the integration increase. Reconfigurable archi-
tectures can adapt the behaviour of the hardware
resources to a specific computation that needs to be
performed. Computing using reconfigurable architec-
tures provides an alternate paradigm to utilize the
avatlable logic resources on the chip. For several
classes of applications, reconfigurable computing
promises several orders of magnitude speed-up com-
pared to conventional architectures. This article pro-
vides a brief insight into the architectures, models and
algorithms which facilitate reconfigurable computing.

i i L

1. Introduction

MICROPROCESSORS are at the heart of most current high
performance computing platforms. They provide a flexi-
ble computing platform and are capable of executing a
large class of applications. Software is developed by
implementing higher level operations using the instruction
set of the architecture. As a result, the same fixed hard-
ware can be used for general purpose applications. Un-
fortunately, this generality i1s achieved at the expense of
performance. The software program stored in memory has
to be fetched, decoded and executed. In addition, data is
fetched from and stored back into memory. These condi-
tions force explicit sequentialization in the execution of
the program. Casting all complex operations into simpler
instructions to be executed on the computer results in de-
graded performance. Application Specific Integrated
Circuits (ASICs) provide an alternate solution which
addresses the performance issues of general purpose
microprocessors. ASICs are designed for a specific appli-
cation and hence each ASIC has fixed functionality and
superior performance for a highly restricted set of appli-
cations.

i—

*For correspondence, (e-mail: kiran @halcyon.usc.edu)

828

A new computing paradigm wusing reconfigurable
architectures promises an intermediate trade-off between
flexibility and performance. Reconfigurable computing
utilizes hardware that can be adapted at run-time to
facilitate greater flexibility without compromising on per-
formance. Reconfigurable architectures can exploit fine
grain and coarse grain parallelism available in the appli-
cation because of the adaptability. Exploiting this para-
llelism provides significant performance advantages
compared to conventional microprocessors. The recon-
figurability of the hardware permits adaptation of the
hardware for specific computations in each application to
achieve higher performance compared to software. Com-
plex functions can be mapped onto the architecture
achieving higher silicon utilization and reducing the inst-
ruction fetch and execute bottleneck.

Recontigurable architectures have evolved from Field
Programmable Gate Arrays (FPGAs). FPGAs consist of a
matrix of logic blocks and interconnection network. The
functionality of the logic blocks and the connections in
the interconnection network can be modified by down-
loading bits of configuration data onto the hardware.
Currently, hybrid architectures which integrate program-
mable logic and interconnect together with a microproce-
ssor on the same chip are being developed. On-chip
integration of reconfigurable logic reduces the memory
access costs and the reconfiguration costs.

Applications are mapped onto reconfigurable architec-
tures by analysing the computations performed. Compu-
tations that can be speeded up by using reconfigurable
hardware are identified and mapped onto the reconfigu-
rable hardware. In the presence of a microprocessor, the
computations which have complex control and data struc-
tures are executed on the microprocessor. The partitioning
of the computations of an application between the micro-
processor and the reconfigurable hardware is performed
manually or by using automatic/semi-automatic tools. The
partitioned computations have to be compiled into execu-
table code on the microprocessor and hardware configura-
tions on the reconfigurable hardware. The reconfigurable
hardware needs to be configured using the configuration
information before the actual execution can be performed.
This configuration can be updated at run-time to execute a
ditferent set of computations from the application.

Development of systematic scheduling and mapping
techniques for computing architectures requires high level

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

abstractions. Computing models, which are high level
abstractions of the architectures, can be utilized to deve-
lop algortthmic techniques for mapping applications onto
the architectures. Reconfigurable computing 1s difterent
from the Von-Neumann paradigm of computing and
requires computational models different from conven-
tional models. In this article, we briefly describe some of
the theoretical and practical models of configurable com-
puting architectures that have been developed over the
past several years.

There are several application areas where reconfigu-
rable computing has been shown to achieve significant
performance. These include long multiplication', crypto-
graphy’?, genetic algorithms*, image processing®, geno-
mic database search’ and signal processing®'". The nature
and diversity of the reconfigurable architectures results in
a wide variety of implementation issues with respect to
applications. In this article, we focus on the architectural
and algorithmic aspects and desist from describing the
various 1implementation 1ssues.

Section 2 of this tutorial presents a brief overview of
reconfigurable hardware technology and architectures.
Section 3 describes the methodology needed to exploit
reconfigurable computing. Section 4 briefly examines
some of the computational models developed for recon-
figurable computing. Section 5 describes a few algo-
rithmic techniques developed using the computational
models on the reconfigurable architectures. Section 6 out-
lines several directions in which reconfigurable comput-

ing research is being performed. Section 7 concludes the
article with a note on some of the open research issues.

2. Reconfigurable architectures

Reconfigurable architectures have evolved from FPGAs.
Currently, there are a large class of FPGAs available
commercially. Various computing systems have been con-
structed by integrating multiple FPGAs and dedicated
memory. Some systems also couple a general purpose
microprocessor or an ASIC such as a Digital Signal Pro-
cessor (DSP) to the FPGAs. To alleviate the communica-
tion and memory access bottleneck for configuration and
data, future systems are integrating configurable logic
onto the same chip as a microprocessor. Such hybrid
architectures can distribute the computations between
different components of the system. We give a brief over-
view of the different classes of architectures here.

2.1 FPGAs

A FPGA consists of an array of combinational logic
blocks overlaid with an interconnection network of wires
(Figure 1). Both the logic blocks dand the interconnection
network are configurable. The configurability is achieved
by using either anti-fuse elements or SRAM memory bits
to control the configurations of transistors. Anti-fuse
technology utilizes strong electric cusrents to create a
connection between two terminals and 1s typically less

Murti—FPGA Board

Logic Block

Figure 1.

CURRENT SCIENCE, VOL. 78, NO, 7, |0 APRIL 2000

i

‘..-4'
‘=-r/# wz/r 1/#

L7 e et e A

Ry

rmﬂ'fr:mw- /mﬁrﬂ-r 3
rﬁ"’ﬁ'ﬁﬁ
=, 4,9

'ﬂ'ffii)ﬁ'fﬂ/ﬁ# o Ib{?;i'

I HHTH =

W///f//////[
ﬁ:-gwa%ﬁr

e

FPGA

it
7

Typical FPGA board, device and logie block architecture.

529

SPECIAL SECTION: COMPUTATIONAL SCIENCE

reprogrammable. SRAM-based configuration can be re-
programmed on the fly by downloading ditferent configu-
ration bits into the SRAM memory cells.

Typical logic block architectures contain a look-up
table, a f{lip-flop, additional combinational logic and
SRAM memory cells to control the configuration of the
logic block (see Figure 1). The logic blocks at the periphery
of the device also perform the IO operations. The inter-
connection network can be reconfigured by changing the
connections between the logic blocks and the wires and by
configuring the switch boxes which connect different
wires. The switch boxes for the interconnection network
are also controlled by SRAM memory cells. The functions
computed in the logic block, the interconnection network
and the I/O blocks can be configured using external data.
FPGAs typically permit unlimited reconfiguration. These
versatile devices have been used to build processors and
coprocessors whose internal architecture as well as inter-
connections can be configured to match the needs of a
given application. For a detailed architectural survey of
FPGAs and related systems, see refs 11-13.

Current and future generation reconfigurable devices
ameliorate the reconfiguration cost by providing partial
and dynamic reconﬁgurﬂbiiityd'”’”. In partial reconfigu-
ration, it is possible to modify the configuration of a part
of the device while the configuration of the remaining part
is retained. In dynamic reconfiguration devices permit this
partial reconfiguration even while other logic blocks are
performing computations. Devices in which multiple con-
texts of the configuration of a logic block can be stored in
the logic block and the context switched dynamically have
also been proposed”'lﬁ. |

Typically, the application requirements increase at a
rate faster than the increase in the size of logic resources
on most FPGA devices. FPGA architectures also have
limits on the I/O capability due to the limitation on the
number of I/O pins on the device. To map large applica-
tions onto configurable logic, various systems have been
designed which have several FPGAs on a board. These
architectures also provide local memory and dedicated or
programmable interconnect between the FPGAs. These
board-level architectures are usually designed to function
under an external controller or use one of the onboard
FPGAs as a controller. Examples of such systems include
the experimental DECPeRLe board', SPLASH-2 (ref. 18)
and Teramac'’ and the commercial WILD series from

Annapolis Microsystems™. Some software tools exist

which can automatically partition the design between
multiple FPGAs on a board using hgher level abstrac-

tions”’. For a detailed overview of FPGA devices and
multi-FPGA architectures, see Hauck'”.

2.2 Hybrid architectures

Configurable platforms which have shown impressive
results typically have configurable logic attached to a host

830

_.. - .

-

system through some interface such as the system bus or
the I/O channels. These systems have shown significant
speedups for specific applications. The limiting factor in
this case in achieving higher performance on all applica-
tions is the delay in communicating with the configurable
logic. This delay results in higher data transfer and recon-
ficuration overheads. Currently, systems which try to alle-
viate this problem by moving configurable [ogic to the
processor die are being designed.

The Berkeley Garp architecture combines configurable
logic with a standard MIPS processor on the same chip’’.
The configurable array is composed of a matrix of logic
blocks which are organized into 32 rows of 24 blocks.
One block in each row is a control block and the remain-
ing are logic blocks which can implement a 2-bit opera-
tion. Four memory buses run vertically through the rows
for moving information into and out of the array. They
can be used for data transfer and memory accesses. A
separate wire network provides interconnection between
the logic blocks. The loading and execution of the con-
figurations is under the control of the main processor. A
transparent integrated configuration cache holds the
equivalent of 128 total rows of configurations (as 4
cached configurations for each row). Reconfiguration
from this cache takes 4 cycles irrespective of the number
of rows. The operation of the reconfigurable array 1s
carried out by using some extended instructions to the
MIPS instruction set. The reconfigurable array, however,
can perform data cache or memory accesses independent
ot the MIPS core.

The hybrid architecture approach is currently being
commerclalized by several companies. Triscend Corpora-
tion and Chameleon Systems are two of the commercial
architectures available in the market. The Triscend con-
ficurable system-on-a-chip ES architecture 1ntegrates a
8032 8-bit microcontroller, onchip programmable logic,
RAM and I/Os on a chip®*. Future generations are expec-
ted to utilize the ARM 32-bit RISC core in the reconfigu-
rable architecture. The E5 is targeted towards embedded
systems and promises fast development and high level of
customization. Chameleon Systems uses the ARC 32-bit
RISC-based microprocessor engine to power its recon-
figurable network-processor line>. Next to the embedded
processor, the architecture features several banks of pro-
grammable logic, allowing customers to choose system
functions to suit their needs.

3. Algorithmic reconfigurable computing

To achieve high performance using configurable archi-
tectures, effective configuration design techniques have to
be developed. Existing design methodologies are based on
ASIC design tools and fail to realize the full potential ot
configurable logic. These logic synthesis tools are geared
towards compiling a hardware oblivious algorithm. The

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

behavioural description of the algorithm 1s mapped to
logic using synthesis tools in several phases. In this pro-
cess, the structure of the algorithm is not utilized resulting
in sub-optimal designs with respect to area and delay per-
formance. Also, this design methodology does not incor-
porate the input data knowledge into the configuration.
Algorithm specific and instance-aware configurations are
the key to achieving large speedups on configurable archi-
tectures. Current design compilation times are too long
and preclude any run-time, dynamic modification of the
configurations. Existing designs also lack modularity and
scalability and have low performance (e.g. clock rates)
unless optimized by hand.

One major problem in using FPGAs to speedup a com-
putation is the design process. The ‘standard CAD approach’
used for digital design is typically employed (see Figure
2). The required functionality is specified at a high level
of abstraction via an HDL or a schematic. FPGA hbraries
specific to a given device (e.g. Xilinx, Altera, efc.) and
time consuming placement and routing steps are required
to perform the logic mapping. This approach of logic
synthesis as opposed to algorithm synthesis allows the
user to specify the design using a behavioural model. But
this abstraction is achieved at the expense of performance.
The semantics and nature of the algorithm are lost in the
mapping phases.

The model-based mapping environment takes into account
the capabilities and limitations of current as well as pro-
jected hardware technologies. In Section 4 we 1llustrate
some of the models and describe algorithmic approaches
in Section 5. Parameterized models for algorithm design
and analysis will possess the following characteristics:

High-level

RT/gate-level
Networ

L
r----—---'-—-—---q-p---l‘

By
5 ®
E-n

Library of
Modules

Layout .
Placement/Routing #

oo R M e e e b A e W W -y

ar e sy wr By = wi ol pm =k m Bar AN AR WE W W mm oge e G EE W BR

e M ER B AR B W DR EY - ok My R e A B o s W Ak wE PR A

Netlist (device specific)

- W Ee W B W e wr mh g A mm v W ek owr om A I Ay A oA e e

‘---‘h----'—————-—-----ﬂ---‘

I
{
I
|
A
)
)
1
)
)
'
i
¢
I

e Cost models for analysis of reconfigurable architec-
tures.

¢ Techniques for partitioning and placement of designs
exploiting algorithm and input structure.

o Cost analysis incorporating the cost of reconfiguration
and partial and dynamic reconfigurability.

e Impact of off-chip communication in designing recon-
figurable computing solutions.

e Tradeoffs between reconfigurability and redundancy of
hardware.

Utilizing FPGAs for speeding-up applications has been
mostly limited to developing configurations which opti-
mize the computation time for a given task. The optimized
configuration is then used to execute the task. This pro-
cess is 1llustrated in Figure 3. A given computational task
1s analysed and an optimized configuration 1s developed
for that computational task. The configurable logic device
is then configured, usually under the control of the host,
with this optimized configuration. Finally the configura-
tion i1s executed by initiating the computation and com-
municating the data to the device. The programmability of
the device i1s not exploited and the logic resources are not
reused during a computation.

The conventional approach is static, because the hard-
ware 18 configured just once followed by execution. The
concept of dynamic configurable computing is illustrated
in Figure 4. The configurable resources are reused by
reconfiguring the hardware after a computation is com-
pleted. The configuration of the logic and the inter-
connection network are adapted on the fly during the
execution. The run-time reconfiguration can be based on
intermediate results generated by the computations. This

Applications
Technology
Independent
Algorithms
Parameters Scheduling
Technology Abstraction Mapping
Dependent

Architectures

Figure 2. Traditional design synthesis approach and the model-based approach,

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

B3t

SPECIAL SECTION: COMPUTATIONAL SCIENCE

approach has enormous opportunities to achieve higher
performance than the conventional approach by closely
adapting the hardware to the nature of the computation.

4. Reconfigurable computing models

Bridging the semantic gap between the algorithm and the
hardware by using such a model allows the user to deve-
lop reconfigurable computing solutions in a natural manner.
We discuss here briefly a theoretical and a practical
model which has been developed to map computations
onto reconfigurable architectures.

4.1 Reconfigurable mesh model

A reconfigurable mesh is a theoretical model of a VLSI
array of processors overlaid with a reconfigurable bus
architecture™ . An overview of various models and
architectures designed based on the model is given in
Bondalapati and Prasanna®. A reconfigurable bus archi-
tecture consists of a multi-dimensional array of processing
elements (PEs) connected to a bus through a fixed number
of I/0 ports. This bus architecture is capable, on a per
instruction basis, of configuring a topology that contri-
butes to solving the problem at hand. Bus reconfiguration
1s achieved by locally configuring the switches within
each PE. Difterent shapes of buses such as rows, columns,
diagonals, z1g-zag and staircase can be formed by configur-
ing the switches/ports.

A two-dimensional processor array with a reconfigu-
rable-bus system of size MN consisting of identical pro-
cessors connected as a M x N rectangular mesh system is
called a reconfigurable mesh. An example of a 4 x 4 re-
configurable mesh is shown in Figure 5. A set of four I/O
ports labelled N, E, W and S connect each PE to its four
neighbours to the north, east, west and south, respectively.
Each PE has locally controllable switches which configure
the connection patterns between the four I/0 ports. The
switches allow the broadcast bus to be divided into sub-

Design

Configure

Logic Execute

Configurations

Figure 3. Static configurable computing.

Design Configure

Logic

Configurations

Figure 4. Dynamic configurable computing,

832

buses, providing smaller reconfigurable meshes. The bus
and all I/O ports are assumed to be m-bit wide. The con-
nection patterns are represented as {g, g5, ...}, where
cach of g, represents a group of switches connected
together. For example {NS, E, W} represents the connec-
tion pattern with N and S connected and E and W un-
connected.

The basic computational unit of the reconfigurable
mesh 1s the PE which consists of a switch, local storage
and an ALU (Figure 5). In an unit time, a PE can perform:

I. Setting up of a connection pattern.
2. Read from or write onto a bus or local storage.
3. Logical or arithmetic operations on local data.

Various models of reconfigurable meshes have been
proposed in the literature. Most of these models are syn-
chronous in nature and permit unconditional global switch
setting 1n addition to local switch control. Unconditional
global switch setting 1s performed by the broadcast of a
global nstruction from a central controller. Reconfigu-
rable mesh models can be characterized by several para-
meters such as data width of the PE, signal propagation
delay, shared/exclusive access to the bus, switch connec-
tion patterns, among others.

4.2 Hybrid system architecture model

Hybrid system architecture model (HySAM) is a para-
meterized model of a configurable computing system,
which consists of configurable logic attached to a tradi-
tional microprocessor. The HySAM model cleanly partitions
the capabilities of the hardware from the implementations
and presents a very clean interface to the user. Figure 6
shows the architecture of the HySAM model and an
example of an architecture. The architecture consists of a
traditional microprocessor, standard memory, configur-
able logic, configuration memory and data buffers comm-
unicating through an interconnection network. More
details of the model can be found in refs 27 and 28.

Figure 5. Reconfigurable mesh.

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

ome of the main parameters of the HySAM are out-
d below.

F. Set of functions %,...F, which can be per-
formed on configurable logic (capabilities).
C: Set of possible configurations C,... C of the
configurable logic unit (implementations).
A; - Set of attributes for implementation of function
% using configuration C;.
R; : Reconfiguration cost in changing configuration
from G to C,.
B . Bandwidth of the
(bytes/cycle).
K, : Cost of accessing data from the on-chip and ex-
ternal memory, respectively (cycles/byte).

interconnection network

he parameterized HySAM which 1s outlined above can
lel a wide range of systems from board-level archi-
ures to systems on a chip. Such systems include
ASH'®, DEC PeRLE', Oxford HARP®, Berkeley
p'°, Triscend ES (ref. 22) among others. The values
each of the parameters establish the architecture and
 dictate the class of applications which can be effec-
ly mapped onto the architecture.

he applications tasks to be executed are decomposed
-a sequence of Configurable Logic Unit (CLU) func-
s (7). Execution of a function on the CPU 1s repre-
ed as execution in a special configuration (G).
cution of a function on the CL.U involves loading the
figuration onto the CLU and communicating the
iired data to the CLU. % can be executed by using any
configuration from a subset of the configurations. The

cPU | Memory |

Interconnection

Data Buffers 4

Network

_ E:n{f;gurabla | Configuration
onr . (CLU) Cache |

different configurations might have been generated by
different tools, libraries or algorithms. These configura-
tions have different area, time, reconfiguration, precision,
power, etc. characteristics. For example, it is possible to
design multipliers of various area/time characteristics by
choosing various degrees of pipelining and carry look-
ahead techniques. The multiplier can have different values
for the area, pipeline stages, cycle time and number of
cycles for finishing the computation. The attributes 4,
describe the characteristics of executing a function ¥ in a
configuration G,

After executing in a configuration C, to execute in a
different configuration C;, the CLU has to be reconfigured
which takes a time ZX; This cost is a measure of the
amount of logic reconfigured and the time spent in recon-
tiguring. It 1s possible to reduce the reconfiguration over-
head by exploiting partial and dynamic reconfiguration
cost. More architectural features such as the configuration
caching and configuration prefetching combined with
dynamic reconfiguration can be exploited to reduce this
cost. The total execution time is the time spent in execu-
ting 1n each configuration and the time spent in reconfigu-
ration between the executions.

S. Algorithms

The design flow for mapping application and subsequent
execution on the hardware is illustrated in Figure 7. The
application and the spectfic problem instance are utilized
by the model to generate the architecture required for

BUS 1
G

il

Configurable

o Configuration
ogic
. Cache
Unit
TR

Figure 6. Hybrid system architecture model and an example architecture,

Instance Data

Reconfiqurable

Application Computing Modal |

II Generate l Reconfigure l
: and

Intermodiate Results

Configurations § Exocute

Figure 7. Computation and reconfiguration in the model-based approach.

RENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

833

SPECIAL SECTION: COMPUTATIONAL SCIENCE

exccuting the application. The configurations of the hard-
ware required tor executing are then generated by using
the architecture features and the analysis performed in the
model-based analysis. The generated configurations are
ased to reconficure the hardware and execute the applica-
tion. It is possible to update the required configurations
and reconfigure the hardware by using intermediate
results from the computation. The following sections
iifustrate the mapping of some computations on the two
different models that are outlined 1n Section 4.

5.1 Reconfigurable mesh compurations

A significant amount of research has been performed 1n
exploiting the power of reconfigurable meshes. Algo-
rithms for basic computations such as Or, And, Exor,
Addition, Multiplication, etc. have been designed and
shown to be optimal on several variants of the reconfigu-
rable mesh models. Using these basic data operations and
additional non-trivial techniques of exploiting reconfigu-
ration, algorithms for problems in 1mage processing,
computational geometry, graphs, etc. have becn designed.
In this section some algorithms are described to illustrate
the power of these architectures.

5.1.1 EXOR computation. The EXOR of N bits of data
can be computed on a reconfigurable mesh of size 2a % 3
in @(1) time assuming unit-time delay for the broadcast
operation in the mesh™. An example EXOR computation
of 3 input bits with 18 PEs is shown in Figure 8. The
highlighted path shows the flow of the -signal from the
left to the right. The result of the EXOR computation
appears at the output after a constant delay. Based on a
single input bit a 3 x 2 array of PEs set their local switch
configurations to one of the two patterns as shown tn
Figure 8. If the input bit is I, the top two rows Cross-over
and the 1-signal toggles to the other row; 1If the input bit 1s
Q, the 1-signal passes through the PEs in the same row.
When a 1-signal is applied to the top row input of the first
processor of the system the EXOR of all the inputs
appears at the last processor in the mesh. A I-signal out of
the top row indicates a result of 0 and a 1-signal out of the
middle row indicates aresult of I.

5.1.2 Sorting: There are several sorting algorithms on
reconfigurable mesh models. We describe here the algo-
rithm presented 1n Jang and Prasanna’. Sorting of a
sequence can be decomposed into sort of its subsequences
and data movement between the sorted subsequences. The
reconfigurable mesh algorithm uses a variation of Leighton’s
eight-stage column sort. The stages are a combination of
stages of n'* sorters, each capable of sorting 7' numbers,
and n'-shuéfle network stages. The input sequence of n
numbers is assumed to be initially stored in the top row of
the reconfigurable mesh. The sequence is partitioned into

834

R - —

subsequences of n! numbers each, Sorting of a sub-

sequence is done by computing the ranks of all the num-
bers and then storing each number according to 1is rank
by using shuffle networks.

Sorting of ™ numbers in constant time is carried out
using a n X n*" reconfigurable mesh. In the first step, each
of the n°'* PEs broadcast their numbers along each column
of n PEs. Then the mesh is divided into n”* submeshes
each of size n'" x n**. The rank of number x; is computed
by submesh i using row broadcasts. The results of the
comparisons made after this row broadcasts are added to
give the rank of each number. The addition can be done In
constant time using an algorithm similar to the EXOR
computation. The n'"*-shuffle stage can also be imple-
mented in constant time using a sequence of broadcast
operations.

5.2 Summary of results

We present a brief summary of algorithms on the recon-
figurable mesh models. A comprehensive bibliography of
results can be found in Nakano’'. All results are with res-
pect to the unit-time delay reconfigurable mesh model.

5.3 HySAM dynamic precision management

Reconfigurable hardware possesses more flexibility than
ASIC hardware and can be utilized for a more diverse set

a 23 2]4- 1 'Zj

2§+1

1 XOR. 0 XOR. 1=0
Figure 8. EXOR computation.

CURRENT SCIENCE. VOL. 78, NO. 7, 10 APRIL 200

SPECIAL SECTION: COMPUTATIONAL SCIENCE

of computations. There are several methods of generating
custom hardware configurations suited to the computa-
tions to be performed. The ability to perform variable
precision arithmetic 1s one of the significant advantages of
reconfigurable hardware'. Reconfigurable hardware con-
tains finegrained configurable resources which can be
utilized to build computing modules of various sizes. For
example, it is possible to build a standard 16-bit X 16-bit
multiplier or a 8-bit x 12-bit multiplier using reconfigu-
rable hardware. The &-bit x 12-bit multiplier would con-
sume less area .and execute faster than the standard 16-
bit x 16-bit multiplier. Reconfigurable architectures also
support dynamic precision, which 1s the ability of the
hardware to change its precision at run-time in response to
variant precision demands of the algorithm.

Applications typically perform operations on standard
32-bit variables. The precision of the operands and the
operations is sufficient to guarantee the correctness of
the operations in the worst case. But, in most applications,
the actual precision required for computations is usually
much lower than the precision implemented. In addition to
the performance benefits obtained by mapping of compu-
tations in a loop onto configurable hardware, loops can
also take advantage of variable precision. We briefly out-
line how the HySAM model 1s utilized to develop an opti-
mal solution to the dynamic precision management problem.
The complete details of the approach and the proots can
be found in Bondalapati and Prasanna’.

Given the characteristics of the dynamic precision
variation in a loop, we need to determine the mapping of
the 1terations to a set of configurations which are used to
execute the operations in the loop. For each iteration, the
precision of the corresponding configuration which exe-

cutes the iteration should be equal to or greater than the
required precision for that iteration. The greedy strategy
of reconfiguring the hardware whenever the required pre-
cision changes can result in significant reconfiguration
overheads. For architectures in which the reconfiguration
times are much higher than the execution times, the recon-
figuration overhead might be prohibitive. Also, the set of
configurations which are available for executing an ope-
ration might not encompass all the possible precision val-
ues that are required. Some of the operations will have to
be executed with more precision than is necessary in the
absence of configurations with the exact precision.

Thus, 1t 1s necessary to identify an optimal set of con-
figurations which minimizes the overall execution cost,
including the reconfiguration cost. Efficient techniques
using dynamic programming have been developed to map
application tasks onto available configurations. These
algorithmic techniques consider the reconfiguration over-
heads 1n minimizing the total execution time for a given
operation in a loop™*.

An tllustrative example: The approach is illustrated by a
mapping of the multiplication operation from the example
code segment given below. The total execution time for
the MAXQx«SCALE(I) computation on Xilinx XC6200
(ref. 33) is measured using five different approaches. The
first two approaches do not exploit the dynamic precision
variation.

DO 20 I=1,N
DO 10 J=1,N |
RSQ(J) = RSQ(J)+XDIFF{(I,J)«*YDIFF(I,bJ)
10 IF (MAXQ.LT.RSQ(J)) THEN
MAXQ = RSQ(J)

Box 1. Summary of results on the reconfigurable mesh

Problem Mesh size Time
EXOR of n bits 2n x 3% Constant
Prefix-And of n 1-bit numbers 1 X n* Constant
Maximum (minimum) of n log n-bit numbers nxHn Constant
Addition of n k-bit numbers, 1 £k <n n x nk* Constant
Multiplication of two n-bit numbers nxn* Constant
Division of two n-bit numbers nxn* Constant
Histogram of an n x n image (h grey levels) nxn O(min(wﬁ’l— + log(n/h), n))
Sort of n O(log n) bit numbers nXxn Constant
Convex Hull of n points) Constant
Smallest enclosing rectangle of n points nxn Constant
Triangulation of n planar points n® x n Constant
All-pairs nearest neighbours of n points nxn Constant
Two-set dominance counting of n points nxn Constant
Connected components of an n X n image nxn O(log n)

*The bit model of reconfigurable mesh 1s used.

CURRENT SCIENCE, VOI.. 7, NO. 7, 10 APRIL. 2000

CRN

SPECIAL SECTION: COMPUTATIONAL SCIENCE

R S S w—

POVERR = POVERR / MAXQ
20 VIRTXY = VIRTXY + MAXQ » SCALE(T)

The execution times including the reconfiguration times
are summarized in Table 1. The approaches using dyna-
mic precision achieve significantly lower execution times
-ompared to the fixed precision approaches. The dynamic
rogramming-based algorithms (DPMA and DPMA-run)
esult in optimal schedules that have up to 30% lower
xecution cost compared with other approaches.

5. Further reading

[he following topics highlight the different aspects of
econfigurable computing that research has been address-
ng 1n the past several years. The list cites resources for
xploring the different research directions and is not
ntended to be an exhaustive or definitive list.

: 2.23.34-3 : :
 Architectures™- =278 Device and system archi-

tectures are being developed which propose various
ways of organizing and interfacing configurable logic.
Some architectures are also based on coarse grain
functional units that are configured on the fly to exe-
cute an operation from a given set of operations. Com-
mercial architectures are exploring integration of
reconfigurable logic and microprocessors on the same
chip.

Theoretical models Vartous theoretical models
have been proposed, including the reconfigurable mesh
and HySAM mentioned 1n this article.
Applications*'**"*: Specialized configurable archi-
tectures which are uttlized for speeding up specific
apphcations are replacing some ASICs. Some applica-
tions also exploit optimization based on a specific
input instance of the computation.
Algorithmic synthesis >4 Dynamically recon-
figurable architectures give rise to new classes of
problems in mapping computations onto the architec-
tures. New algorithmic techniques are needed to sched-
ule the computations. Existing algorithmic mapping
techniques focus primarily on loops in general-purpose
programs. Loop structures provide repetitive computa-
tions, scope tor pipelining and parallelization and are
candidates for mapping to reconfigurable hardware.
Software tools’™°°': Current software tools still rely
on CAD-based mapping techniques. But there are seve-
ral tools being developed to address run-time recon-
1guration, compilation from high level languages such
as C, simulation of dynamically recontigurable logic in
software and complete operating system for dynami-
cally reconfigurable platforms.

2.5,27.39,

. Future directions

.econfigurable computing is an active research area with
everal new directions being explored to develop better

36

Table 1. Execution times using different approaches

Execution time Reconfiguration time Total
Algorithm (ns) {ns) (ns)
Standard 655360 20480 675840
Static 532480 17920 550400
Greedy 468010 56320 524330
DPMA 471160 33280 504440
DPMA-run 409600 15360 424960

w

architectures, algorithms and software tools. Self-recon-
figuration of the devices i1s being explored. to provide
on-chip reconfiguration control avoiding external con-
troller®>®. Self-reconfiguration promises higher gains and
greater flexibility by removing the reconfiguration data
access bottleneck and external scheduling mechanisms.
Reconfigurable mesh 1s one model which is potentially
realizable by using self-reconfigurations.

A significant bottleneck in mapping applications to
reconfigurable architectures is the lack of software tools.
In spite of a large number of tools developed for recon-
figurable computing, most implementations are hand
tuned. Most of the tools do not support or exploit dynamic
reconfiguration and result in sub-optimal designs. They
have been adapted from existing ASIC CAD tools as
mentioned 1n Section 3. The designs developed using high
level abstractions have to be hand tuned to achieve high
performance on reconfigurable architectures. There is an
acute need for software tools that permit stmulation of
dynamic reconfiguration and mapping of applications
onto dynamically recontigurable architectures.

To alleviate the software tools and reconfiguration
overhead problems, domain-specific mapping tools are
also being explored. Domain-specific mapping tools reduce
the problem space by developing mapping techniques and
tools for a specific application domain**®*. The algo-
rithmic techniques learnt in this process are expected to
be general enough to be applied to designing tools for
several different domains. Domain-specific tools also
permit the study of using run-time specialization of hard-
ware based on the problem instance. Instance-dependent
mapping is an approach that can provide significant per-
formance gains compared to ASICs and microprocessors.

I. Vuillemin, 1., Bertin, P., Roncin, D., Shand, M., Touati, H. and
Boucard, P., [EEE Trans, VLSI Syst., 1996, 4, 56-69.

2. Dandalis, A., Prasanna, V. K. and Rolim, J. D. P., IEEE Symp. on
FPGAs for Custom Computing Machines, April 2000 (submitted).

3. Graham, P. and Nelson, B., in [EEE Symp. on FPGAs for Custom
Computing Machines, April 1996.

4. Sidhu, R. P., Mei, A, and Prasanna, V. K., in Int. Workshop on
Field Programmable Logic and Applications, September 1999,

5. Athanas, P. and Abbott, A., IEEE Comput., 1995, 16-24.

6. Chung, Y. and Prasanna, V. K., in Int. Workshop on Computer
Architectures for Machine Perception, October 1997,

7. Lemoine, E. and Merceron, D., in IEEE Symp. on FPGAs for

Custom Computing Machines, 1995,
8. Dandalis, A. and Prasanna, V. K., in 7th Int, Workshop on Field-

programmable Logic and Applications, September 1997,

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

10.

[1.

12.
13.

14,
15.

i6.

17.
18,

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34,

33.

37.

38.

39,

40,

. Xilinx DSP Application Notes, The Fastest FFT in the West,

http://www._xilinx.com/apps/displit. htm.

Shirazi, N., Athanas, P. M. and Abbott, A. L., in Int. Workshop
on Freld-Programmable Logic and Applications, September 1995.
Stephen Brown and Jonathan Rose, IEEE Design Test of Compu-
ters, Summer 19%6.

Scott Hauck, Proc. of the IEEE-86, April 1998.

Jonathan Rose, Abbas El Gamal and Alberto Sangiovanni-
Vincentellt, Proc. IEEE, 1993,

Andre DeHon, Ph D thesis, MIT Al Lab, September 1996.

Hauser, J. and Wawrzynek, J., in IEEE Syrop. on FPGAs for Cus-
tom Computing Machines, April 1997, pp. 12-21.

Scalera, S. M. and Vizquez, J. R., IEEE Symp. on Field-
Programmable Custom Computing Machines, April 1998,

Xilinx Inc., (www.xilinx.com), Virtex Series FPGAS.

Buell, D. A, Arnold, J. M. and Kleinfelder, W. J., Splash 2:
FPGAS in a Custom Computing Machine, IEEE Computer Society
Press, 1996.

Amerson, R., Carter, R. J., Culbertson, W. B., Kuekes, P. and
Snider, G., in IEEE Symposium on FPGAs for Custom Computing
Machines, April 1995, pp. 32-38.

Annapolis Microsystems, http://www.annapmicro.cony.

Tessier, R., Babb, J. and Agarwal, A., IEEE Workshop on FPGAs
for Custom Computing Machines, April 1993.

Triscend Corporation, http://www.triscend.com/.

Chameleon Systems, http://www.chameleonsystems.com/,

Miller, R., Prasanna Kumar, V. K., Reisis, D. L and Stout, Q. F,,
Proc. 5th MIT Conference on Advanced Research in VLSI, March
1988, pp. 163-178.

Miller, R., Prasanna Kumar, V. K., Reisis, D. 1. and Stout, Q. F.,
ILEE Trans, Comput., 1993,

Bondalapati, K. and Prasanna, V. K., in Reconfigurable Architec-
tures Workshop, RAW °97, April 1997.

Bondalapati, K., Ph D thesis, University of Southern Califorma
(under preparation).

Bondalapati, K. and Prasanna V. K., in 8th Int. Workshop on
FField-Programmable Logic and Applications, September 1998,
Lawrence, A., Kay, A., Luk, W, Nomura, T. and Page, L, in 5th Int.
Workshop on Field-Programmable Logic and Applications, 1995.
Jang, J. and Prasanna, V. K., J. Parallel Distributed Comput.,
1995, 25, 31-41.

Nakano, K., A Bibliography of Published Papers on Dynamically
Reconfigurable Architectures, Parallel Processing Letters, Special
Issue on DPynamically Reconfigurable Architectures, 1995.
Bondalapat, K. and Prasanna, V. K., in IEEE Symp. on FPGAs for
Custom Computing Machines, April 1999,

Xilinx Inc., XC6200, Advance Product Specification.

Bittner, R. and Athanas, P., in ACM Int. Symp. on Field-
Programmable Gate Arrays, February 1997, pp. 79-85.

Cadambi, S., Weener, J., Goldstein, §. C., Schmit, H. and
Thomas, D. E., in Proc. ACM/SIGDA Sixth Int. Symp. on Field-
Programmable Gate Array's, February 1998,

Ebeling, C., Cronquist, D. C, and Franklin, P., tn 6th Int. Work-
shop on Field-Programmable Logic and Applications, 1996.

Kress, R., Hartenstein, R. W. and Nageldinger, U., in 7th Int.
Workshop on Field-Programmable Logic and Applications, Sep-
tember 1997, pp. 304-313. -

Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek
Sarkar, Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter
Finch, Rajeev Barua, Jonathan Babb, Saman Amarasinghe and
Anant Agarwal, IEEE Comp., 1997, 86~93,

Brebner, G., in Int. Workshop on Ficld-Programmable Logic and
Applications, September 1997,

Choi, §. and Prasanna, V. K., in Int. Conf. on Parallel and Distn-
buted Systems, December 1997,

CURRENT SCIENCE, VOL. 78, NO. 7, 1(APRIL 2000

4].

42,

43,

44,

43,

40.

47.

48,

49,

50.

51.
52.

53.

24.

55.

56.

7.

58.

59.

60.

61.

62,

63,

64,

63.
66.

Petersen, R. J. and Hutchings, B., in 5th Int. Workshop on Field-
Programmable Logic and Applications, 1995.

Rashid, A., Leonard, J. and Mangione-Srnith, W. H., [EEE Symp.
on FPGAs for Custom Computing Machines, April 1998,

Zhong, P., Martonosi, M., Pranav Ashar and Sharad Malik, Int.
Workshop on Field Programmable Logic, September 1998,
Jonathan Babb, Matthew Frank and Anant Agarwal, SPIE Pho-
tonics East: Reconfigurable Technology for Rapid Product Deve-
lopment and Computing, November 1996.

Bondalapati, K. and Prasanna, V. K., in Reconfigurable Architec-
tures Workshop (RAW ’2000) to be held in May 2000.

Callahan, T. J. and Wawrzynek, J., Int. Workshop on Field-
Programmable Logic, September 1998.

Chang, D. and Marek-Sadowska, M., in IEEE Trans. Comput.,
June 1999,

Dandalis, A., Mei, A. and Prasanna, V. K, in Reconfigurable
Architectures Workshop, April 1999.

Luk, W., Shirazi, N., Guo, S. R. and Cheung, P. Y. K, in 7th Int.
Workshop on Field-Programmable Logic and Applications, Sep-
tember 1997. ’

Payne, R., in 7th Int. Workshop on Field-Programmable Logic and
Applications, September 1997, pp. 161-172.

Purna, K. M. G. and Bhatia, D., in IJEEE Trans. Comput., 1999
Subramanian, R., Ramasubramanian, N. and Pande, S., in Lang-
uages and Compilers for Parallel Computing, August 1998,
Weinhardt, M., in Reconfigurable Architectures Workshop (RAW
"97), IT Press Verlag, April 1997.

Wirthlin, M. J. and Hutchings, B. L., in ACM Int. Symp. on Field
Programmable Gate Arrays, February 1997, pp. 86-92.

Bellows, P. and Hutchings, B., in TEEE Symp. on Field-
Programmable Custom Computing Machines, April 1998,
Bondalapati, K., Diniz, P., Duncan, P., Granacki, J., Hall, M.,
Jain, R. and Ziegler, H., in Reconfigurable Architectures Work-
shop, RAW ’99, April 1999,

Bondalapati, K. and Prasanna, V. K., in Int. Workshop on Field-
Programmable Logic and Applications, September 1999.

Mike Donlin, Comput. Design, 1996,

Gokhale, M. B. and Marks, A., in Proc. 1995 Int. Workshop on
Field Programmable Logic and Applications, Oxford, England,
September 1995.

Levi, D. and Guccione, S., in ACM Int. Symp. on Field Program-
mable Gate Arrays, February 1999,

Lysaght, P. and Stockwood, J., [EEE Trans. VLSI Syst., 1996.
Sidhu, R. P. §., Wadhwa, S., Mei, A. and Prasanna, V. K., I[EEE
Symp. on FPGAs for Custom Computing Machines, April 2000
(submitted).

Zebulum, R., Stoica, A. and Keymeulen, D., Third Int. Conterence
on Evolvable Systems: From Biology to Hardware, April 2000.
Hutchings, B. L., Int. Workshop on Field-Programmable Logic and
Applications, September 1997,

MAARC Homepage, http://maarc.usc.edu.

MAARCII Homepage, http://maarcil.usc.edu,

ACKNOWLEDGEMENTS. Over the years, several students at USC
have conducted research in reconfigurable architectures and algorithms.
We would like to acknowledge the contributions of Seontl Choi, An-
dreas Dandalis, Ju-wook Jang, Heonchul Park, Dionisis Retsis and
Reetinder Sidhu. This paper summarizes some of their contnibutions 1n
reconfigurable computing.

The USC MAARC® and MAARCI®® (Models, Algorithms and
Architectures for Reconfigurable Computing) projects have addressed
several issues described in this article. Research at USC tn Recon-
figurable Computing has been supported in part by the DARPA

Adaptive Computing Systems

program under contract numbers

DABT63-96-C-0049 and DABT63-99-1-0004,

RY

