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Phase change problems form an integral part of seve-
ral manufacturing and materials processing applica-
tions. Such problems are computationally challenging
because of the presence of multiple length scales and
morphologically complex interfaces. In this work, we
address some of those challenges through a genera-
lized algorithm for computational modelling of soli-
dification processes of binary alloys along with the
associated transport phenomena. Different approaches
for modelling phase change problems are discussed,
and a fixed grid enthalpy-based model is presented.
The phase change model is integrated with a pressure-
based finite volume algorithm to obtain a complete
solution of alloy solidification along with the associ-
ated flow, heat and mass transfer. Special algorithms
related to non-equilibrium solidification issues are also
discussed.
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1. Introduction

WITH the advancement of technology, there is a growing
need for developing new materials and manufacturing
techniques. Quite often, thermal issues are dominant
tactors in the development and improvement of a broad
variety of manufacturing processes. The examples are
numerous, including new fabrication and bonding tech-
niques applied in the microelectronic manufacturing ind-
ustry, materials joining processes for traditional as well as
new advanced materials, micro-joining processes for the
manutfacture and assembly of electronic devices, high
energy beam (such as laser) manufacturing processes, and
also 1n the growth of semiconductor crystals. Frequently,
one 1s faced with the challenging task of modelling and
analysis of various transport phenomena (fluid flow, heat,
and mass transter) involved in manufacturing and materi-
als processing. Such problems are computationally cha-
llenging and require special algorithms to address the
presence of muluple length scales and morphologically
complex interfaces during phase change. The problems
are often CPU intensive, too, because of their inherent
three dimensionality and high degree of nonlinearity.

In each of the above applications, and in several others,
the process primarily involves one or more physical
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and/or chemical changes through heat addition or removal
to the feed material(s) and to produce a product‘ of desired
composition, properties, and physical state. In order to
achieve a desired quality of the final product, it is essen-
tial to predict the microstructure and physical properties
based on input parameters of the process. This necessi-
tates a complete thermo-fluid analysis of the process. For
most of the processes mentioned above, there are several
features that are common such as melting and solidifica-
tion, heat and fluid flow, species transport, microstructure
development, and so on. Hence, a unified approach is
desirable for thermal analysis and modelling of many of
the above processes in order to establish a correlation
between the thermal behaviour, microstructure develop-
ment and the final properties of the resulting product.

Among the various thermo-physical processes in materi-
als processing, phase change (especially solidification)
Is, perhaps, the most complex one in terms of physical
understanding and computational modelling. The modeli-
ing of 1t is also the most important since it directly affects
the prediction of microstructure development and physical
properties of the final product'. However, there are seve-
ral computational challenges involved in phase change
modelling, such as the presence of distinct length scales
(macroscopic and microscopic). Tracking a complex
interface shape and its dynamics is also a difficult task,
especially for binary and higher order mixtures. The aim
of the present work 1s to present a generalized algorithm
for computational modelling of solidification processes of
binary alloys along with the associated transport pheno-
mena. This would allow us to model a large class of
solidification problems under the same framework. Spe-
ctal numerical algorithms have been formulated to capture
the physics of the models of solidification which contain
important features of non-equilibrium eftects, convection-
modified partitioning, rationalization of latent heat tunc-
tion, and so on.

2. Physical and computational issues

To appreciate the kind of physical issues involved, we
consider the case of crystal growth. During crystatlizaton,
the intertaces separating the phases present can undergo
morphological  changes having serious  technological
implications. Such changes in morphology can contribute
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to the inhomogeneous distribution of the solute that s
rejected from the solid and can be greatly enhanced by
non-equilibrium phase change effects. The rejected solute
accumulates in the regions around the irregularly shaped
phase front, which may result in both microscopic and
macroscopic irregularities in the solute distribution. This
phenomenon of solute rejection and the associated trans-
port is called macro- or micro-segregation, depending on
the scale at which such processes occur®. Thus, in such
moving boundary problems, not only are the transport
of momentum, energy and species coupled, but also the
formation, evolution, and dynamics of the interface play
major roles in defining the behaviour of the system. Apart
from the inherent nonlinearity of these diverse pheno-
mena, the interfacial deformation in itself can be a mghly
complex and intractable feature. Coupied with these, the
physical phenomenon of phase change brings in certain
instabilities of flow. It 1s quite obvious that such an invol-
ved physical process occurring in a wide range of length
scales (both macroscopic and microscopic) can pose Seri-
ous challenges on the mathematical modelling and nume-
rical techniques to solve the problem.

The difficulties associated with the computer simula-
tion of such problems are of varied nature. One of the
major difficulties is that there are two distinct length
scales involved (namely macroscopic and microscopic)
for the entire physical problem. To illustrate the relevant
issues clearly, let us consider the solidification of an ammo-
nium chloride—water solution in a square cavity as shown
in Figure 1. This binary mixture in the configuration
shown 1s commonly used tor such basic studies on solidi-
fication. The solidification of such a substance takes place
over a range of temperature as determined by its phase
diagram (Figure 2). Hence, instead of a sharp solid-liquid
interface we have an interfacial region, the state of which
varies from a pure liquid at the liquidus temperature to a

Figure 1.

Schematic diagram of the model problem.
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pure solid at the solidus temperature. The morphology
of this region (popularly known as the ‘mushy’ region)
depends on several factors such as the composition,
cooling rate and temperature gradient. The morphological
structure, growth and evolution of the mushy region is at a
microscopic scale, while the overall shape of the interface
and transport within the bulk fluid region is at a macro-
scopic scale. Hence the computational technique, in addi-
tion to solving for fluid flow, heat and mass transfer, must
be capable of performing the following two important
tasks: (1) determining the complex and dynamic interface
shape, and (2) handling both the length scales.

3. Mathematical and computational modelling

In our present work, we aim to outline the modelling and
computer simulation for prediction of transport pheno-
mena associated with binary alloy sohdification, using a
generalized approach. The development of a general-
purpose algorithm satistying the above requirements starts
with the formulation of the problem in terms of the gover-
ning differential equations along with the initial and
boundary conditions. Most significantly, it is observed
that all the dependent variables of interest seem to obey a
generalized conservation principle. If ¢ 1s a general scalar
variable for which we write a governing differential equa-
tion arising out of a conservation law, the general diffe-
rential equation can be cast in the following form:

%,
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where p is the density of the medium, # is the velocity, T
1s the diffusion coefficient and S is the source term. Both
I and S are specific to the particular meaning of ¢ used in
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Figure 2. A typical linearized phase diagram.
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eq. (1) as well as the physics of the problem. Substituting
for the appropriate ¢ in eq. (1), we can write equations for
the conservation of mass, momentum, energy and species.
As a consequence, we need to-consider the numerical
solution of equations only in the form of eq. (1). Special
algorithms may need to be developed to model phase
change phenomena and incorporate microscopic issues in
Our macroscopic framework. We first present below a
method of solution of the general transport equations,
followed by special 1ssues related to alloy solidification
problems.

3.1 Solution of transport equations

In the construction of a general purpose computer code
for numerical simulation of eq. (1), it 1s sufficient to write
a sequence of instructions for solving eq. (1), which can
be repeatedly used for different meanings of ¢ along with
appropriate expressions for I' and S. The task then
reduces to the development of suitably coupled discreti-
zation equations along with their solutions.

In the applications that are relevant for this study, it 1s
important that the conservation laws in their integral form
are represented accurately. The most natural method to
accomplish this is to discretize the integral form of the
conservation equations rather than the differential form, 1n
order to satisfy the overall conservation. This is the basis
of the finite volume method (FVYM). By decoupling
of volumes and computational cells, the freedom in the
determination of the functional representation of the field
variables in the FVM i1s much larger than 1n the case of
finite element method (FEM) or finite difference method
(FDM). Since the discretization ts performed using an
integral form of the governing equations, conservation
is always preserved, unlike 1n the case of FDM which
involves truncation error in the discretization of deriva-
tives. Moreover, the discretization process tn FVM s
directly related to the physics of the problem, instead of
using variational formulation or functionals (as employed
in FEM) which have no easy physical interpretation in
problems involving fluid flow and diffusion. It is this par-
ticular combination of formulation of a flow problem over
control volumes with the geometric tlextbility in the
choice of grids as well as the flexibility 1in defining the
discrete flow variables, that makes FVM suitable for solu-
tion of such physical problems involving fluid flow, heat
and mass transfer. Details of the method can be found in
textbooks such as Patankar’,

Consistent with the choice of our computational tech-
nique as FVM, it is important to choose a solution scheme
accordingly. Since the equations relevant to this class of
problems are highly nonlinear, direct methods for solution
of the algebraic equations (arising out of discretization)
would be difficult and would require a large amount of
computer storage and time. Hence, for two- and three-

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

dimensional problems, an efficient iterative scheme,
popularly known as ‘line-by-line tridiagonal matrix algo-
rithm’ 1s employed. With this method, the boundary
information is quickly transmitted to the interior of the
domain by direction alteration of ‘sweeping’, resulting
in quick convergence. Also, as an aid for handling non-
linearities, controlled convergence can be achieved by the
introduction of suitable under-relaxation and over-
relaxation parameters in the iterative scheme.

3.2 Special issues related to alloy solidification

Once the broad issue of selection of the computational
method and solution scheme is settled, the next task is to
look into special issues relevant to the particular class of
problems and seek a formulation that is compatible with
the general framework of the broad computational tech-
nique. In the context of phase change problems in materi-
als processing, two such techniques parallely exist,
namely the moving grid techniques and the enthalpy-
based fixed grid techniques. In the moving grid technique,
an explicit tracking of the interface boundary is a nece-
ssity. Since the shape of the interface can be highly com-
plex 1n the presence of convective melt flow even for the
case of a pure substance undergoing isothermal phase
change, such a front-tracking technique is computationally
too involved (requiring extremely fine grids and very
small time-steps). Moreover, 1n the case of binary or
higher order mixtures, the phase change does not take
place isothermally, leading to the formation of a two-
phase (or multiple phase) zone instead of a distinct inter-
face. It would be virtually impossible to track such a
morphologically complex zone 1n a macroscopic frame-
work using any moving grid technique. Since most
materials processing activities involve more than one sub-
stance, a fixed grid enthalpy-based formulation seems to
be most suitable for the present scope of work. The
detailed development of such a model 1s quite involved,
and can be found in the literature'*. The basic principle is
to volume-average individual phase equations based on a
classical continuum mixture theory so that we can arrive
at an equivalent single phase equation in the form of
eq. (1).

As discussed earlier, one ot the major difficulties in the
modelling of alloy soliditication is the presence of two
distinct length scales (microscopic and macroscopic) tor
the entire physical problem. An effective way of tackling
both these scales in a single macroscopic framework 18 to
model the two-phase mushy region as a porous medium,
as described below,

In order to madel the velocity ftield, ¢ in eq. (1) s
replaced by u or v, for horizontal and vertical momentuny
balance, respectively, The source terms in these equations
contain the following additional term (according o
Darcy’s model): ’
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¢ = HPH (2)
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where u; represents viscosity of the hquid, u; is the res-
pective velocity component along x,, and K represents the
nermeability of the medium. The permeability 1s assumed
to vary in the domain according to the local liquid frac-
tion in the following manner:

g?+b

— e (3)
0 3t
(I-g,)

K=K

Equation (3) represents the well-known Carman-Kozeny
relation', in which K stands for the isotropic permeability
coefficient (a small number ~ 10™°) of the medium, g, is
the local liquid volume fraction, and b is a small number
to avoid division by zero. Effectively, g, is the porosity of
the medium, and is evaluated as the ratio, AH/L where AH
is the latent heat content of the computational cell under
consideration and L is the latent heat of fusion of the sub-
stance. In the fully liquid region, the value of g; is 1,
making K in eq. (3) very large, thus rendering §; in eq. (2)
zero (i.e. no porous medium-like resistance 1s offered).
On the other hand, in the fully solid region (g,=0), K
becomes a small number, thus forcing §; in eq. (2) to be
very large. This large source term offers a high flow
resistance, making the velocities in the entire solid region
effectively zero. In the mushy region (0 < g;< 1), how-
ever, the porous medium-resistance varies smoothly from
zero at the liquidus to a high value at the solidus, thus
making the velocities vary accordingly.

Another potential complication is the treatment of the
phase diagram of any general shape in the framework.
This 15 taken care of in our model by the introduction of
four mathematical functions, namely solhdus, liquidus,
inverse-solidus and 1inverse-liquidus functions. These
functions can be derived analytically using thermo-
physical considerations, or can be constructed from avai-
lable experimental data. This enables us to perform
suitable functional manipulation and the final result is of
the form:

_Fg'F(C))

k
P C)

(4)

where k, is the partition coefficient, Fg and F, are the
solidus and liquidus functions, respectively, C; 1s the liq-
uid composition, and the superscript * denotes equili-
brium condition. Equation (4) helps to numerically
calculate the partition coefficient inside the iteration loops
using the current value of Cf. Additionally, one must note
that the partition coefficient derived using eq. (4) is based
on diffusion transport alone. Hence, the above partition
coefficient has to be corrected appropriately to incor-
porate the effects of convection in the mushy region. The
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convection correction can be made using Burton-
Fleming’s equation’, which requires numerical estimation
of the interface speed and the diffusion boundary layer
thickness.

Probably the most computationally involved portion of
our numerical algorithm 1s the rationalization of the latent
heat function which appears 1n our iterative procedure.
The current value of nodal latent heat has to be adjusted
such that the difference between the latest predicted value
of nodal enthalpy from the energy equation and that deter-
mined from phase change considerations is nullified. The
latent heat function, which gives the functional variation
of nodal latent heat with temperature, can be very com-
plex and nonlinear. To suit our generalized framework,
we follow an iterative procedure for updating the nodal
latent heat according to the following equation:

[AHP]”H =[AHP]n +E%l[{hi=}n “”F_I{AHP}H]*

Qp

()

where a, and aﬂ are the coefficients of the finite volume
discretization equation, h, i1s the enthalpy at node P, F 1s
the latent heat function, AH is the latent heat, A is a
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Figure 3. Flowchart of the numerical algorithm.
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relaxation factor to prevent possible numerical oscilla-
tions and the subscript # denotes the iteration stage. The
key factor in successful implementation of such a latent
heat update is to devise an algorithm suitable to generate
the function F~' for a given class of phase change prob-
lems. However, there is a basic requirement to ensure that
the mathematically generated functions remain consistent
with the physics of the phase change. A flow chart for the
overall algorithm is presented in Figure 3.

3.3 Simulation of solidification of NH,CI-H,O
solution in a cavity

As an 1llustration, we present here a simulation of solidi-
fication in a square cavity with the boundary conditions as
shown in Figure 1. The solution is initially in a fully lig-
uid state with the left boundary maintained at a tempera-
ture less than the solidus temperature corresponding to the
initial liquid composition. Figure 4 shows a typical velo-
city distribution during solidification of the binary mix-
ture (ammonium chloride solution in water). It is evident
from the figure that convection plays a significant role in
the solidification process. The model incorporates non-
equilibrium effects and convection-correction of the par-
hition coefficient. Such effects play a significant role in
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Velocity distribution during alloy solidification. Zoomed boxes on the right indicate macro-segregation.

enhancing macro-segregation effects, as observed in the
zoomed boxes on the right in Figure 4.

4. Concluding remarks

A generalized algorithm for modelling phase change
problems is presented. A single domain enthalpy-based
method with porosity formulation for the mushy region is
found to be suitable and flexible enough to accommodate
a large variety of problems. A finite volume-based itera-
tive algorithm is chosen for the solution of fluid flow and
associated transport phenomena. Special algorithms are
developed to address realistic issues such as non-
equilibrium effects and convection-correction of partition
coefficient.
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