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One of the principal problems in statisti-

cal physics is to connect the dynamics of

fluid on the microscopic scale to that on
the macroscopic scale: How do we derive
large-scale conservation laws, in other
words the Euler equations, say, from
individual particle considerations given
by classical mechanics? The mathemati-

cal difficulty stems in part from making

certain physical approximations precise.
Granted that a very large system of dif-
ferential equations can be conceived to
govern the motion, but this Jarge system
has proved intractable to analysis. So,

what can be done? The guiding idea of

recent years has been not to solve app-
roximately this exact problem, but to try
to solve exactly an approximate tractable
problem. One way to go about this is to
introduce a little randomness to the micro-
scopic particle motion, making the sys-
tem a true stochastic process. If enough
noise is incorporated, the system evolu-
tion can be made to depend on this noise
so that the need for an eternal memory 1s

removed which was a prime ditficulty

for the original deterministic problem. In
this approximate stochastic system, one
recovers the macroscopic law by avera-

ging out the randomness in a suitable

space—time scaling limit. Briefly, the

intuition is that particles move and inter-
act quite rapidly on the microscopic scale

but only a small fraction of this inter-
action acts locally to contribute to the
macroscopic flow. Therefore, by linking
the space and time variables in terms of a
scale parameter and then taking limits on
this parameter, one passes from the micro-
scopic to the macroscopic. These limits,
called ‘hydrodynamic limits’, of course
need to be explained and justified, and
this is the crux of the problem.

The history of the scaling approach
goes back to Boltzmann and Maxwell at

the time when the atomic structure of

matter was being formulated. In the con-
text of the Boltzmann equation, these
hydrodynamic limits have been studied in
part by Grad (1958), Kac (1959) and
Lanford (1975) to some success. Wilh
respect to Euler equations, such himits
werge initiated by Morrey (1951) followed
in part by work by Rost (1981) and

others in the context of specific one-
dimensional models. We refer to De Masi
and PrasqttiI and Spohn® for exhaustive
SUrveys.

The seminal contribution of Prof.
Varadhan and his colleagues M. Guo and
G. Papanicolaou to the subject of hydro-
dynamic limits is the development in
1988 of a robust method which allows for
the rigorous derivation of macroscopic
conservation laws in a wide variety of
d 21 models’. Although the passage to
Euler equations from the microscopic
equations of classical mechanics 1s still
open, Varadhan’s work>?* is a tour de
force in that it provides a robust frame-
work upon which many of the ditticul-
ties, such as shock formation, are now
better understood; in fact, in ref. 5 the
Euler equations are rigorously derived
from noisy microscopic relations in the
smooth regime. At this point, we remark
that many other avenues of research have
opened up as a result of this framework,
such as large deviation and fluctuation
estimates, which have not been under-
stood even 1n the physics hterature.

We now describe more carefully Vara-
dhan’s contributions with respect to
a basic model. We follow the presenta-
tion given in ref, 6. Let —co < x <o be
the basic variable representing, say,
charge. Let the size of the system be
given by a large integer N which will be
the scaling parameter and tends to ec. For
each N, we have N charges x|, x3, ..., Xy
located at sites 1, 2,..., N. These sites
are placed at a distance 1/N apart on the
unit interval with end points identibied.
Denote by S -the unit interval with end
points identified and let 8 be its typical
point. The charges are dynamic in time
and we specify the configuration at time
(,0<t<T, by {xi(0), x2(0), ..., xy(£)}.
The way the charge moves 1s given by the
equations

d.l‘,:(f) - deq_i - ffE,-_,'H-

The term dz, ;4 is thought of as the flow
of charge from sile i (o site {+ 1 along
the ‘bond’ which connects them. With
this understanding, the equations above
represent the conservation law that the
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net change in charge at any site is the
difference between the inflow and out-
flow at that site. Clearly, the total charge
Z'.?lef(f) 1s conserved. We now must
describe the law governing the flow of
charge along a bond. For a suitable func-
tion v, define

dzi i = [Wx{1)) — Wx ()] dt
+ dﬁ:‘.i+l(f)r

where the B;;,.1(1) are N independent Bro-
nian motions. As an example, note that if
yix) =cx, for some ¢ >0, then system
motion tends to equalize charge at the
different sites. With the definition above,
the charge configuration evolves as a
diffusion on R" with infinitesimal gen-
erator given by

1%" 3 a2 ) i
=2 | =" + ) wixy)
d
“‘2W(xi)+¥’(xf+1)]-a—--
x..

{

Since the space has been scaled by a
factor /N, following standard intuition
regarding diffusions, we should speed up
time by a factor N, and we can redefine
the generator as
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Suppose now that the initial charge
configuration is randomly distributed.
For example, choose a smooth func-
tion or ‘profile’ ay(8) defined on 8. and
define a; = ay(¢(/N). We may take the
initial configuration {x;, X, ... Xy} to
be independent random variables with
x; uniformly distributed in the interval
|4, -l)-,al- +—é—], We now carry out Vara-
dhan's  calculiations in mean-value to
give the main lavour. Let J(OY be a
smooth function on S and note fhat
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This gives ap(8) as the profile of the
macroscopic charge density initially.

To compute the profile, a(z, 8), at time
t, we must use the infinitesimal generator
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At this point, unfortunately, one cannot
apply the fact that
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to compute the limit of
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As W 1s generally nonlinear, one must
understand the whole charge distribution
{x (D). x2(0), . . ., xp{8)}. However, one has
the tntuition from ergodic theory that as
Wix;(t)) fluctuates rapidly we can replace
1t by tts average value for a given macro-
scopic charge density. If we call this ave-
rage value, for a given charge density a,
as A(a), the exact statement is the fol-
lowing:
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[t this can be accomplished for some
function A(-), then it follows that the
profiie a(t, 8) at time ¢ given by

g;- j J(@)a(t,0) do =
j 77 (@) Aa(1, 8)) 46,
or

2 9°
3 a(t, ) = 52 Ala(1, 8)),

with a(0, 6) = a,(0).
The problem then reduces to identify-
ing A(-) and proving the limit above.

When the curtent  satisfies certain
regularity conditions, say a ‘gradient’
condition,

149
2 dx

for some ¢ such that M(0) = [e™*? dx
< oo for all o, then these two things can
be done with supple and deep ideas. In
fact, Varadhan computes, from some
large deviation ideas, that

y(x) =

AMa) == i (a),

where h(a) = supg{aoc - p(0)} and p(o) =
log M(G). We refer to refs 6 and 3 for
further details, and ref. 4 for significant
extensions to ‘non-gradient’ ¥’s.
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