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Free disturbances and spot formation: (i) on a
surface roughness, (ii) in a near-wake, (iii) under
an adverse pressure gradient
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A review is given of recent and continuing theory on
initial-value problems arising in a surface-mounted
roughness flow, in the near-wake behind a stream-
lined body or in a boundary layer under an adverse
pressure gradient. These concern instability and
transition with entire spectra of modes present. In
every case the unsteady disturbances evolve through
a transient stage before forming spots. Absolute in-
stability can occur. Nonlinear responses in the near-
wake case drive the transition point extremely close
to the body trailing edge; while in the adverse-
gradient case they first affect significantly the spot
leading edge and the calmed region behind the spot.

1. Introduction

The present article considers instability and transition in
three fluid-flow configurations which are the subjects of
recent and continuing research. These are (i) flow over a
surface roughness, (ii) the near-wake of a streamlined body,
(iii) a boundary layer under an adverse pressure gradient.
Area (i) is addressed by the Savin et al.' theory. There
have been numerous experimental studies on flow tran-
sition over an isolated small roughness mounted on a
solid surface, or over distributed roughnesses. The ex-
periments cover a wide range of incident flows. A sub-
stantial point made clear by many of the experiments is
that the initial small disturbances which may lead on to
full transition downstream in practice are free distur-
bances (and intermittent), as distinct from the fixed-
frequency type used in traditional boundary-layer stabil-
ity analyses. This tends to accentuate the theoretical
need for studying initial-value problems. There has been
little apparent progress so far in direct computational
studies, or theoretical works, with regard to major
nonlinear three-dimensional developments for free dis-
turbances in roughness-induced transition. The focus of
the Savin et al. study is therefore on the onset of
nonlinear effects in such an initial-value setting, to cap-
ture the underlying early physics of the transition(s).
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Onset, which is related to marginal flow stability, refers
to the first occurrence of those nonlinear effects, typi-
cally near the top of the roughness element (or possibly
upstream) where an inviscid inflectional instability re-
gion starts as in Figure 1 a. The onset is associated with
reduced wave numbers (other wave numbers being sta-
ble), a key feature which is coupled with nonlinear the-
ory by Savin et al. This takes account of the need to
abandon the fixed-frequency or fixed-wavelength re-
striction, and even the wave concept altogether, in order
to tackle roughness-induced flow transition with free
disturbances acting. The nonlinear aspect stems from
transition theory on three-dimensional unsteady flow
properties developing in the form of vortex—wave inter-
actions, from an inflection point in the streamwise ve-
locity profile of the incident boundary layer or sublayer.

Area (ii) concerns disturbance growth in the thin
wake behind a stream-lined body®. Numerous theoreti-
cal investigations of classical type have been made for
temporal or spatial instability in wakes. The interest in
this study, however, concerns the linear and subsequent
nonlinear disturbance development from a general ini-
tial value, especially in the near-wake, given that the
rest of the wake may be dependent on the near-wake
properties. A more analytical and rational approach is
fruitful, based on genuine wake-velocity profiles start-
ing from a double boundary-layer-like form just after
the trailing edge, rather than the typical model profiles
often assumed. The near-wake response, with its unde-
veloped profiles, is worth studying first. For the flow
past a streamlined trailing edge the inflection point
originates just outside the tiny region of nonparallel
motion where the Navier-Stokes equations apply in full,
buried inside the triple-deck structure: then it emerges
close to the Hakkinen-Rott near-wake layer as in Figure
1) and it travels downstream inside the lower-deck
sublayer motion until, at a finite station (as inflection
disappears in the local velocity profile), it migrates
normally towards the main deck. The inflection point
subsequently enters the full wake just outside the Gold-
stein near-wake layer. For other trailing-edge configura-
tions the inflection point may or may not accompany
closely the Hakkinen-Rott near-wake, depending on the
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velocity profiles sweeping off the upper and lower trailing
edges. In all stream-lined configurations, most of the near-
wake in effect contains a single interface. There all wave
number components are agitated, a property which is found
to promote upstream convection of nonlinear disturbances.
Area (iii) is on unsteady travelling (spot) disturbances
near the onset of an adverse pressure gradient’. On tur-
bine blades there are substantial areas of adverse pres-
sure gradient. These are observed to leave enhanced
calmed regions trailing behind a travelling spot distur-
bance, the calmed regions being of practical importance
in the production of extensive patches of laminar or
relaminarized flow on the blades. The need for deeper
physical understanding of spots was highlighted at the
1997 Minnowbrook workshop on transition in turbo-

machinery®. Stress was placed on the unknown roles,
during spot evolution, of adverse pressure gradients, of
calmed regions, of separations, of high free-stream tur-
bulence, and on the need for more basic theoretical
study. Major issues in spot dynamics concern: the de-
termination of the sharp edges and global shape of the
typical spots; the underlying reason for the calmed re-
gion, with its advantageous relaminarizing effect; pres-
sure-gradient influences; and the breakdown to shorter
length scales inside the spot. As in areas (i), (ii), most
flows of real interest have large characteristic Reynolds
numbers; and all transients and growing amplitude
components of the travelling spot flow should be in-
cluded. A crucial position for the initiation of the spot is
near the point of minimum basic pressure, at the onset
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Figure 1. The flow configurations. @, Over an isolated roughness {case (i)) for which transition involves core-critical layer in-
teraction in a sublayer. The fraction % is small, so the sublayer is much thinner than the boundary layer; b, In a near-wake (case
(ii}), as the upper and lower surface boundary layers (BL) sweep past a streamlined trailing edge. Dots show the path of the in-
flection point; ¢, In a boundary layer at the onset of an adverse pressure gradient {case (iii}). In case (i) the inflection point in
the velocity profile & is mid-flow but in (iii) it is near the surface. Length scales are indicated.
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of the adverse pressure gradient, where inflectional in-
stability enters via a near-wall sublayer as in Figure 1 c.
Gostelow’s experimental spots in particular are initiated
there typically, as is the inflectional growth of fixed
frequency disturbances in experiments by Dovgal and
Kozlov. The present theory is local to that position at
first. In the adverse-gradient setting, nonparallel effects
need to be incorporated eventually; and, again, although
the linear incompressible range should be examined
first, the nonlinear range is also to be included in an
attempt at providing insight into the calmed region and
other mean-flow alterations. The interplay of the pres-
sure gradient with three-dimensionality, nonlinearity
and nonparallelism can be considered in turn as in
ref. 3.

The common theme is that areas (i)—(iii) involve
genuine initial value problems with all modes active,
i.e. an entire spectrum, to mirror the practical flow con-
figurations. In each case the free unsteady disturbances
pass through an important transient stage initially. Spots
then form; the typical Reynolds number Re is large; and
each case has a simple result at heart. These simple re-
sults are the following, in order:

(i) (roughness flows) the integral of (@—c)™ across
the sublayer must be zero, where 7 is the basic
local streamwise velocity profile and the con-
stant ¢ is the inflectional velocity (thus giving
frequency proportional to wave number);

(i1) (near wakes) the disturbance response to the
first approximation is at a constant frequency
given by [1]/2, where [1] denotes the jump in
velocity slope across the effective interface;

(iii) (adverse pressure gradients) the primary re-
sponse has a frequency proportional to the
square of the wave number.

More complicated responses arise at the next order to
determine the disturbance amplitude evolution, as de-
scribed below in §2—4 respectively.

They show the eventual formation of spots, along
with various nonlinear effects. In each case due to con-
sideration of space we must draw a veil over most of the
background, the solution details, the nondimension-
alization, the flow structure and the inherent scales,
which are in the original papers. We note, however, that
the underlying boundary layer or wake is taken to have
conventional normal thickness of order Re '? and
streamwise scale of order unity. Brief final comments
are made in §5.

2. Roughness-induced transition

The roughness element considered is smooth, buried
well within the boundary layer and has small stream-
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wise length and a height much less than the boundary-
layer thickness. Then physical reasoning suggests con-
centrating primarily on the height and corresponding
sublayer thickness in order-of-magnitude terms at which
the basic motion can yield sufficiently strong inflection
points for inviscid instability to arise (see Figure 1a).
The basic flow past the roughness is then governed by
the nonlinear interactive boundary-layer description in
the sublayer, with the wall pressure adjusting to satisfy
a displacement condition of the form 7 ~y+a@ at the
outer edge of the sublayer, where the shear is normal-
ized to unity for convenience. Here @ is zero for so-
called condensed flows. Instability in these basic planar
roughness flows with shear was considered in the
1980s, showing that the onset of inflectional instability
(with the inflection point typically being in the middle
of the sublayer) occurs at an 0(1) finite relative height
of the roughness element in general. We then address
the three-dimensional inflectional transition.

At leading order a simple long wave solution of the
Rayleigh disturbance equation holds, for the @ given
above. Hence as anticipated in the introduction for area
(i) the criterion

(FP) [@-cr2ar=o, ()
0

emerges, where FP signifies the finite part. This is fol-
lowed by the amplitude equation for the general initial
input at the next order. No assumption of wave depend-
ence is required. The resulting nonlinear amplitude evo-
lution takes place in a frame moving with velocity c,
which is also a real group velocity in essence. The main
amplitude equation for the pressure Laplacian R(X, Z, T)
in terms of scaled coordinates X, Z (streamwise, span-
wise) and time 7T is

A[28)- 3] 2 [

or] wlor ) (x-8
:17(f’"+cT)§—R+€ai +Eaij%—g—zv,
X ox X JE-x) X
(2)

where the constants B,C,D,x* are real, while 4 is
usually complex, and

_ V’R(E.n,T)dEdn
) (PV)_[, [, (X =8 +(Z-n) "

3)

Here PV denotes the principal value. The contribution N
is the nonlinear effect which can be of amplitude

CURRENT SCIENCE, VOL. 79, NO. 6, 25 SEPTEMBER 2000



INSTABILITIES, TRANSITIONS AND TURBULENCE

squared or cubed form. For linear disturbances eqs (2),
(3) yield, at large times, a travelling spot containing
exponentially growing amplitude and based on the ex-
panding coordinates (X, Z)= T(X, Z). Examples ob-
tained by Brown and Smith’ are given in Figure 2,
which shows the spot planforms under various condi-
tions. It is interesting that the working extends also to
negative ¢. Some flow conditions, therefore, provoke
backward moving spots, implying the presence of abso-
lute and upstream convective instability then.

For nonlinear disturbances, many examples are pre-
sented by Savin er al.', for special types of input. One
such is given in Figure 3. Typically complicated short
scale behaviour occurs at increased times, with ampli-
tude blow-up or saturation or continued growth being
found, depending on the coefficients in the amplitude
equation.

3. Near-wake transition

The flow in near wakes has an involved structure. This
is such that the basic local steady motion (u, V) there can
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Figure 2. The planforms of spots formed at large times (roughness
case) for: top, large adverse parameter ; middle, medium G; bot-
tom, small G.
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Figure 3. Nonlinear amplitude solution in roughness transition,
showing five Fourier components | P, |, n =1 to 5, vs time.

be regarded as providing either a quasi-parallel full,
nontrivial, wake velocity profile 7 (v), so that

(u, v) = (7 (»),0) 4

in effect, or nearly uniform shear flow such that

(u, v) = (xy + em(»),0), &)
or

(u, v)=(Ey, FeB). (6)

Again see Figure 1 5. Here eqs (4)—(6) all hold to within
a multiplicative constant. The parameter € in cases (5),
(6) is small and positive, the distortion #(y) giving
nonzero profile curvature, while the term B is a positive
constant due to the viscous Hakkinen-Rott influx veloc-
ity (variously described as the suction, entrainment or
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mass flux into the Hakkinen-Rott layer), and y 0 re-
spectively.

All three basic flows above are considered by Smith
et al. but here we highlight (5), (6), especially the latter.
The leading-order planar disturbance solution then has
simple exponential forms above and below the interface
v =0, from which the interface conditions give the non-

dimensional dispersion relation

o = sgn(a), (7

with ® (= oc) denoting the frequency response for wave
number o. So at this level the flow solution reacts at a
fixed frequency for any wave number o, corresponding
to the dimensional result for area (ii) quoted in the in-
troduction.

At the next level the influences of 7, B and nonlin-
earity are felt. The resulting amplitude (Q,) equation
takes the form

4922 22 [ (g, +ig:)0} (0 T)explio] da
or mJ

+4B ( )+J— (Jy) (8)

with g(a), g,(0)) being growth and dispersive terms
associated with @ . Also = signifies a planar Cauchy-
Hilbert integration and J;, J, are the nonlinear effects.
The asterisk denotes the Fourier transform and 7, x are
the local scaled time and streamwise distance respec-
tively. The governing equation reflects, on its right side,

an interplay between linear destabilization (for negative
7 ), linear stabilization from influx (B) and nonlinear
modification.

A representative solution is given in Figure 4. Points
of note are the following. The linear and nonlinear ini-
tial-value problems studied by Smith et al. cover a
range of quite general input disturbances. Nonuniform
vorticity as represented by the distortion profile 7 ()
can have a substantial impact on the linear disturbance
evolution in the near-wake, as negative (positive) pro-
file curvature is found to be destabilizing (stabilizing),
opposite to the response on a fixed surface. The
response in the near-wake actually hinges on the func-
tion yuy in symmetric cases, and on an average in non-
symmetric ones, for the current setting. By contrast, in
nonlinear cases the influx B is extremely important
close to the trailing edge as the nonlinear cases yield
upstream-convecting disturbances. These are present in
the figure. Short scale secondary instability is provoked
by the nonlinear effects and this has to be countered by
the short scale stability produced by the B effect. The
balance not only shows that upstream convection can
occur generally in the near wake but also forces the
transition point closer to the trailing edge as nonlinear-
ity is increased. The cause of the secondary instability
above is the slight streamwise velocity jump induced by
higher order nonlinear effects acting at the interface,
leading to slight Kelvin-Helmholtz growth, whereas the
slight normal velocity jump associated with the value of
B (which grows as the trailing edge upstream is ap-
proached) always induces secondary stability.
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Figure 4. Nonlinear responses (near-wake case), giving temporal development of d0,/dx vs x for zero B on the left and, on the

right, @, vs x for B = 125.
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Figure 5. Spot produced in near-wake transition, given in planform at late time.

In the figure, on the left B is zero and an upstream
convection and nonlinear bursting take place, whereas
on the right B is large and suppresses bursting. Larger B
values, corresponding to positions closer to the trailing
edge, always produce amplitude decay.

Three-dimensional spots are also examined by Smith
et al. An example indicating the late-time behaviour is
presented in Figure 5.

4. Adverse pressure-gradient transition

The basic flow here is a boundary layer, on a smooth
solid surface and subject to an 0(1) external pressure
gradient dp/dx. At the point of minimum pressure the
velocity profile is 7(y) say, with @”(0)=0 in view of
the condition 7’(0)=0. We also have #(0)=0,
7' (0)=X >0 for attached forward motion, #”(0)=0,
while #7(0)=-24k with ¥ positive. The above near-
wall properties tie in with the profile 77 having negative
curvature (no inflection) for all 0 < ¥ < oo, with & (o)
being positive. However, inflection enters just down-
stream of the minimum pressure point since, at a
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typical such downstream station, 7’ is small, say
go®, and so the basic profile near the wall is
O'IY+O’4(—ICY4+%§Y2) in effect. Again see Figure 1 c.
Here 7 is 6Y with ¢ small, and g is of order unity.

Hence for a three-dimensional disturbance it is found
that

o, =1 (co)ory / X, 9)

determines the leading order (real) part of the frequent
response, essentially as anticipated in the introduction
for area (iii). Here " = o + B> for spanwise wave num-
ber B. At a higher order the dominant growth rate

2 _ 4
oY M(M)j 2
W4y ﬂg[ 0!]2\7]( 1 |O!|’}/

(10)

is obtained, where a% =& /[12k7*(o0)].

With linear disturbances a three-dimensional spot
forms, the evolution of the disturbance being given by a
double Fourier (**) inversion,
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4m20(%,%,7) = j j O **(k, £,0) exp(K)dkd?, (11)
with, from (9), (10) with @(e), 7 unity,
K(k,0,%,7,7)= {ik/{’HEZA —ik(k* + 032
+gA{1—k2+2€2}|k|(k2+€2)]7. (12)
Oy

Here the scaled spatial coordinates are X,Z, the scaled
time 7 >1 but g7 ~1, where g=037g is small, while
(X,2)=(%,2)/7 are 0(1) and k, ¢ are written for o, B
respectively. The integral in eq. (11), with real &, ¢, is
taken over positive k because of symmetry. The initial
condition O** (k, £, 0) is exp(—g(K* + ¢*)"*) for exam-
ple. To find the spot behaviour at large times a double
steepest-descent method is used, giving the results in
Figure 6.

Nonlinear effects lead on to structural change of the
above fluctuating disturbances, occurring first at the
spot leading edge. There is also an alteration of the
mean flow. The result of most immediate interest there
is

(13)

1
A7 () =— anaom

giving the induced mean wall slip under and ahead of
the spot, subject to the initial condition u, = 0 at time
T = 0+ for all positive X. Here aq is the scaled fluctuat-
ing disturbance amplitude. This confirms that at a given
streamwise position the main fluctuations sweep by,
leaving mean-flow alterations behind. The solution is
presented in Figure 7 for different initial fluctuation
amplitudes. At comparatively low input amplitudes this
mean-flow solution continues for a long way down-
stream, and for a relatively long time, developing an
exponentially growing and expanding form in 1, T at
large 7. Here m is X/T. We observe also the similarity
form holding at the start, for small 7, in which Tu,, is a
function of m, along with T"24,, this form being ac-
commodated in the computations. At medium input am-
plitudes the nonlinear solution clearly terminates at a
finite time, as indicated by g, attaining its maximum
value. This termination time becomes shorter with in-
creasing input. Also, in most cases there is a pro-
nounced expanding region where the induced mean
velocity u,, is negative, this region moving with the spot
and supplementing the fixed region of positive and
negative velocity values which trails behind. The above
is for X and T positive, whereas the mean vorticity al-
teration, like u,, is zero for X negative behind the spot
trailing edge, where another mechanism acts.
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Figure 6. Large-time spot in the adverse pressure gradient case,
showing planform and representative amplitude E vs X,Z .

5. Further comments

We end with some brief comments. Regarding area (i)
(roughnesses), the transition onsets studied here are not
associated with the first appearance of an adverse pres-
sure gradient as there is a delay such that the critical
inflection point occurs mid-flow in the sublayer. The
flow conditions there govern whether the motion locally
is subcritical or supercritical and in addition they de-
termine the crucial coefficients 4 —D via integral
properties, once (1) is satisfied. The disturbance behav-
iours noted in §2 lead on to new flow structures at in-
creased times, as transition to turbulence continues
beyond the present scope.
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Figure 7. Nonlinear temporal development of the mean flow alteration u,, vs n for three amplitudes of initial disturbance, in-
creasing from the left. Leading edge break-up occurs at the final times marked in the middle and right-hand graphs.

A further motivation for the study in (i), apart from
the context of surface imperfections, is related to the
effects of an adverse pressure gradient on spots in
boundary layers. The substantial observed enhancement
of the spanwise spreading rate of the spot, under an ad-
verse pressure gradient, is an especially noteworthy fea-
ture compared with the case of a zero or favourable
pressure gradient. The trend seen in the present results
is one of relatively increasing spanwise spreading of the
spot as the adverse parameter G in Figure 2 increases.
Tentatively therefore, the present theoretical findings
bear some resemblance, albeit loose as yet, to the above
experiments, granted that the experimentally observed
spots are turbulent whereas the theory assumes laminar
motion and that the spatial scales and characteristic
speeds of the theoretical spot are smaller.

Another application concerning the theory in (i) is in
the onset of relatively high-frequency three-dimensional
disturbance components at the first-spike stage in deep
transition. Transitional disturbances leading to spots in
a laminar boundary layer were investigated by Breuer et
al., experimentally, following studies by Henningson et
al., Kachanov and Shaikh and Gaster, while related
theoretical work is by Hoyle et al., Smith and Bowles,
and others, partly connected with the condition (1). In
this application also, disturbances of predominantly
inviscid form with high typical frequencies and com-
paratively small amplitudes initially come into play be-
cause of the local positive growth rates that are induced.
These are described as in §2.

Regarding area (ii) (near wakes), destabilization fur-
ther to that described in §3 can be induced by nonsym-
metric velocity profiles and by even a small amount of
reversed flow. We add that the arguments involved in
area (ii) should extend to separating flows also.

Regarding area (iii) (adverse pressure gradients),
Smith and Timoshin also consider the approach to sepa-
ration and different types of disturbance initiation, in-
cluding wall forcing and vortical wake passing.

Links with experiments are considered in the three
original papers, as are certain further studies. There
have been a few quantitative comparisons with experi-
ments or simulations, for example with Nishioka et al.,
on the criterion (1) in area (i) and with Hannemann and
Oertel on the predictions in area (ii) but more are desir-
able. Recent numerical simulations concerning area (ii)
have been performed by C. Davies and show agreement
with (7) so far.
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