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This paper discusses the role of hydrodynamic sta-
bility theory in understanding wall bounded turbu-
lent flows. Work in this area was pioneered by
Malkus, followed by Reynolds and Tiederman and
Reynolds and Hussain. The experimental results,
and theoretical cum computational results of Rey-
nolds and Hussain, were significant in many ways.
Mainly, they highlighted the behaviour of organized
disturbances introduced into the flow field. However,
no conclusions could be reached, one way or other,
regarding a definite connection between hydrody-
namic instability and wall turbulence. More recently,
and over the past few years, we have improved upon
the theoretical analysis of Reynolds and Hussain and
have also done some experiments. We are now able
to conclude much more positively that organized dis-
turbances and hydrodynamic instability modes may
have a very definite connection with wall turbulence.
Here we present brief reviews of the past works of
others and mainly summarize our work and discuss
some of our recent findings.

Introduction

Hydrodynamic stability theory, and several of the theo-
retical and numerical results based on this theory, have
been a fascinating subject of study over the past several
decades. These results, and the experiments inspired by
them, have led to virtually the entire body of knowledge
that exists today on laminar to turbulent transition.

In a relatively limited context, though not any less
significant than the topic of laminar-turbulent transi-
tion, the question has been asked as to whether or not
there is any connection between Aydrodynamic instabil-
ity and actual turbulence itself. The answers obtained in
the past have been fairly mixed, but the work of the
present authors over the past few years seems at least to
keep the question alive. Let us take a brief look at the
past work on this subject.

One very significant statement that can be made is
that hydrodynamic stability theory does indeed have a
strong presence in free turbulent shear flows. In fact the
dominant coherent structure in free turbulent shear flow
is the inviscid instability of the (turbulent) mean- velocity
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profile, which is inflectional in the cases of free turbulent
shear flows. Amongst a number of results confirming this,
the work of Gaster et al.' on the turbulent mixing layer is
a good example. There is also a comprehensive review on
stability and free turbulent shear flows by Liv?, and a
more recent overview by Roshko’. Where this question
remains ambivalent however, is in wall-turbulent flows.

The question of a connection between stability theory
and turbulent shear flow was first raised by Landau*
based on a non-linear stability model. Whilst his work
did not prove to be a suitable model for turbulence, his
equation for non-linear growth found many applications
in the field of instability and transition. The next work
of great conceptual importance is that of Malkus’,
wherein a theory of turbulence was developed based on
the concept, of marginal stability. According to this
concept, it was proposed that if the mean velocity pro-
file typical of wall bounded turbulent flows is used in
the solution of the classical Orr-Sommerfeld equation,
then the profile would prove to be marginally or neu-
trally stable at the existing flow Reynolds number. It is
significant also that Malkus suggested that the molecu-
lar viscosity and not the eddy viscosity be used in the
solution of the Orr-Sommerfeld equation. Malkus's the-
ory was rigorously put to test in an important work by
Reynolds and Tiederman®. This work also gives a lucid
review of Malkus’s theory. Reynolds and Tiederman®
investigated the stability of fully developed turbulent
flow between parallel plates, on the lines of Malkus’s
proposed theory. They used the turbulent mean velocity
profile for channel flow in the solution of the classical
Orr-Sommerfeld equation (using the molecular viscosity
in the equation). The results obtained showed without
doubt that Malkus’s theory as proposed was not valid,
and there was a huge discrepancy between the flow
Reynolds number and the Reynolds number correspond-
ing to neutral or marginal stability, the latter being an
order of magnitude higher than the former. Prabhu (1967,
pers. commun.) also independently obtained the same
result. More recently, Sen et al.” obtained the same result
for the turbulent boundary layer flow problem.

The general question of connection between instabil-
ity and turbulence, with reference to wall bounded tur-
bulent shear flow, went through another round of
serious examination by Reynolds and Hussain®. This
time, abandoning Malkusian precepts, first the basic
equations were derived for a superposed organized dis-
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turbance in turbulent flow. Thereafter an equation for
the stability of this organized disturbance was derived,
which was like an augmented form of the classical Orr-
Sommerfeld equation, but containing extension terms
dependent on the eddy viscosity. Underlying the model
was a closure problem for the Reynolds stress tensor,
which was resolved based on what the authors called the
‘Newtonian eddy’ model. Results of solution of their ex-
tended Orr-Sommerfeld equation, for channel flow, again
yielded damped modes. Nevertheless, the results were
closer to establishing a connection between instability and
turbulent wall flows than was obtained in ref. 6. Experi-
ments performed by Hussain and Reynolds™® showed
some agreement with the theory of Reynolds and Hus-
sain®. Subsequently, some non-linear and three-
dimensional theories were also developed'', but these
are outside the scope of present discussions.

The present authors have re-examined the question of
the connection between instability and wall turbulence,
and have obtained an improved theoretical model for the
problem. Experiments performed also confirm the theo-
retical findings. So far as theory is concerned, the chief
improvement over Reynolds and Hussain® is that a more
realistic and improved model has been chosen for the
turbulent stress tensor, based on the anisotropic model of
Pope'”. This model gives further extensions of the Orr-
Sommerfeld equation over what Reynolds and Hussain®
obtained. The results show that an unstable wall-mode
exists over a wide range of the spatial wave number «.
The instability characteristics scale very well with the
inner variables of turbulent flow, and are virtually inde-
pendent of the outer conditions. Therefore the results are
quite universal for wall turbulence and depend little on
the specific geometry of the problem. Extensive numeri-
cal computation has been done, for the cases of turbulent
boundary-layer, as well as channel flow, to confirm this.
One of the interesting theoretical findings is that the
organized disturbances mimic some of the key features
of wall-turbulence.

Some experiments have also been performed which
are reported in Sen and Veeravalli'. The one-
dimensional energy spectrum, for the turbulent longitu-
dinal velocity, indicates that the range of unstable
wavelengths is well contained within the energy-
containing part of the energy spectrum. More recently,
experiments have also been performed by the present
authors to compare the theoretical and experimental
eigenfunctions, corresponding to the organized distur-
bances. Good confirmation is obtained for the proposed
theory, from the experimental results. These experi-
ments are discussed later on in the present paper.

Thus, the results obtained so far, both theoretical and
experimental, keep alive the question of relevance of
stability theory in understanding turbulence in wall-
bounded turbulent flows.
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Details of past work by the authors may be seen in
refs 13-19.

Theory

The instantaneous velocity vector u; obeys the Navier—
Stokes and continuity equations:

2
ou; , E)ui:_la_p+v o7, ’ (1a)
ot ox; pox;  Ox;ox;
ou,

L=0. 1b
. (1b)

1

The velocity and pressure fields are decomposed in tur-
bulent flows by the well-known Reynolds decomposi-
tion; typically,

u =T +uj; p=p+p’ 2)

1

Here ;, p are respectively the mean velocity and pres-
sure, and u’;, p” are the (random) turbulent fluctuations.
If we now superpose an organized (solenoidal) distur-
bance i;, p (with zero mean), the instantaneous veloc-
ity and pressure are respectively given as follows:

wp =+ +up; p=p+p+p. (3a)
The time averages of u;, p are still respectively u,, p,
but, the ensemble (phase locked) averages

(up) =+, {(p)=p+p, (3b)
are different. Moreover, the organized disturbance is
assumed small, or linear, and in addition it obeys the
following:

[y < | @) ] @)

The above assumption (4) restricts the organized distur-
bances to being weaker than what was considered by
Reynolds and Hussain®.

For future clarity some definitions and notations are
introduced: (i) an overbar (-) over any quantity will
imply time average; (ii) the symbols () enclosing a
quantity will imply ensemble average. After some alge-
bra, described in Sen and Veeravalli'®, one is in a posi-
tion to obtain the dynamic equation for the organized
disturbance,

0 i i, o] % or
o, +iI, al+t7j o, =—iai+v a + 2 , (®
ot ox; ox; pox;  ox;0x; Ox;

where 7;is the modulation in the Reynolds stress ten-
sor, given by
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Reynolds and Hussain® have shown that 7~ O(ir;). The
above equations pose a closure problem for the various
forms of the turbulent stresses, including for 7. It will
be instructive to look at simplified physical models and
reasoning to understand the manner of resolution pro-
posed for the closure problems.

At this stage we introduce (twice) the rate of strain
tensor and (twice) the vorticity tensor, respectively s
and wy, as follows:

Qu;  du; | [ ou, du;

Yol ox ;ox

(7a, b)

These expressions are in generic form, implying that if
for example u is replaced by #, then s; and @j; are re-
spectively replaced by 5; and @;.

Attention is restricted to 2-D parallel and near-
parallel mean-flows, specifically the turbulent bound-
ary-layer and channel flow. Definition sketches of the
two problems are shown in Figure 1 a4, b. Note that in
the discussions to follow, the vectors (u;, u,, u3) and (u,
v, w) will be used interchangeably and so also (x, x»,
x3) and (x, y, z). The x coordinate is in the direction of
the free stream, y is in the direction normal to the wall,
and z is the transverse direction. Also we make the
quasi-parallel assumption due to which the mean-
velocity field is given as u =u(y),v=0,and w =0. Fur-
ther, all the mean-velocity gradients, except for 0z/dy,
are either zero, or negligibly small. The turbulence (u”;)-
field is also assumed homogeneous in the z direction,
and near homogeneous in the x direction. All deriva-
tives of time-averaged quantities are zero in the z-
direction, and nearly zero in the x-direction. Moreover
the correlations u'w and vw’ are zero. However, w'> is
non-zero, and this term keeps the Reynolds stress tensor
uju’, as three dimensional. The outer velocity scale for
the boundary-layer flow problem is the free stream ve-
locity, U., and for the channel flow problem it is the
sectional average velocity V. The outer length scale for
the boundary layer problem is the boundary layer thick-
ness § or the displacement thickness §*. For the channel
flow problem it is the half width of the channel H. Both
the problems have the same inner scalings, namely fric-
tion velocity, v* as the velocity scale and with v/v* as
the inner length scale. The characteristic Reynolds
number for the problems are respectively R = U, /v for
boundary layer flow, and R = VH/v for channel flow.

One needs now to look at the closure problem for the
modulation Reynolds stress tensor 7,. Much of the
physics of this problem is described in ref. 16. The sali-
ent points are that, so long as organized disturbances
are small compared to the random disturbances, the
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problem continues to be defined by the Generalized Eddy
Viscosity Hypothesis (GEVH), in which the turbulence
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Figure 1. a, Definition sketch for the flat-plate turbulent boundary-
layer; b, Definition sketch of the channel flow.
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Figure 2. a. Graph of anisotrophy function (from expression for 4,)
versus y ( = y4/8), standardized in terms of outer variables; b, Graph
of anisotropy function A" (= ) versus y*, standardized in terms of
inner variables. Comparison of the anisotropy function based on
experimental data of Klebanoff, and expressions A; and As.
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problem is described by one length scale and one veloc-
ity scale. Further the turbulent and mean flow time
scales are comparable. Under GEVH, therefore, the
stress tensor can be described by appropriate general-
ized tensorial combinations of turbulence-related quan-
tities and mean flow gradients. In order to improve over
the formulation of Reynolds and Hussain®, it was found
expedient to use an ‘anisotropic eddy viscosity model’
based on the model proposed by Pope'”. This model is

— 2 _ A 1 _ _
—u; = —gké‘ij +es; —s[aj{g[mikskj = 53Oy ]} s

)
where k& E%(Tu;) is the turbulence kinetic energy, and
two empirical functions are introduced, namely the eddy
viscosity € and the so-called ‘anisotropy function’ A.
Both these quantities require some description. But
prior to that, it is instructive to note that the fensorial
form of equation (8), as shown by Pope'’, is quite
unique; only the defining constants, or scalar functions
like £ and A, need to be determined from matching with
experimental data. Thus, equation (8) is a significant,
consistent and also tfensorially unique improvement
over the isotropic eddy viscosity model, which is ob-
tained by putting A = 0 in (8).

Details of the eddy viscosity, also defined in non-
dimensional form as E =é&/v, may be seen in ref. 16.
Basically, in the inner region, E scales with inner vari-
ables and is universal. In the outer region the shape of £
is problem specific, like whether channel flow or
boundary layer flow is being considered, and the magni-
tude of E depends on the flow Reynolds number (based
on outer variables).

The anisotropy function A is formally defined as
A=C(k/(=u"y)), where C is a constant that needs to be
matched from experimental data. Details of the match-
ing procedure are discussed in ref 16. As may be seen
from (8) above, if A =0, then all the normal stress com-
ponents u'?,»’* and w? are identical and equal to Zk.
Surely such a model is gravely in error close to the wall
where these quantities are very different from each
other. With A non-zero, it is seen from (8) that the nor-
mal stress components can be made unequal. Thus, by
matching from experimental data A may be suitably
back-calculated.

Generally speaking, two features are salient in the
empirical definition of A, namely it has a high value
(around 10) near the wall and tapers off to a low value
and finally to zero in the outer region. Thus, the most
‘comfortable’ shape of A, from the viewpoint of (easing
of) stiffness of the numerical calculations for stability,
is shown in Figure 2 a. The algebraic details are given
in ref. 16. This particular form, called A = A,, basically
is written in outer variable form. The high value persists
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till about mid range in y, and is made to taper off to-
wards the boundary layer edge/channel centerline.

Two other forms of A, namely A, and A; are shown in
Figure 2b. This figure also shows the actual back-
calculated value of A from experimental data. Based on
this experimental plot two other empirical forms of A,
namely A, and A;, were obtained and used in the calcu-
lations. The detailed expressions may be seen in refs 16,
19. Essentially, A, and A; are based on inner variables,
and are identical till about y' =50, after which A, is
made to attain a constant value of 3; whilst A; is tapered
off to 0 in the outer region. As will be seen later, the
stability calculations are not much affected by the as-
sumed form of A, especially for the inner modes. How-
ever A; is the best overall choice, as the same
expression can be used for capturing inner and outer
modes. Besides, A; is more faithful to the experimental
data also.

We now proceed further with the formulation. Using
some arguments discussed in detail in ref. 16, the same
form as (8) may also be proposed for (u;u’). The salient
points are that (i) the presence of organized distur-
bances does not modify turbulence-related quantities
like the eddy viscosity; and (ii) the organized distur-
bances do modulate the mean-flow, as may be seen from
(3 a, b). Thus one obtains

@
xB[<w,-k><sk,>—<s,-k><wk,->]} .
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Figure 3. Graph for rms values of # and v versus y. Normalization,
¢=1+0i at y=1.0 for channel flow and, R= 5000, o=3.15,
c:=0.3816348, ¢i = 0.0040752. Normalization ¢ =1+ 07 at y=1.5
for the boundary layer and R =15000, a=2.7, ¢ =0.3486034,
¢; = 0.0044436. (The channel flow curves have been scaled up by
1000 for comparison) (here A = A1).
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One may now obtain 7; by subtracting (8) from (9),

~ o~ A 1~ - < o~ _
1 =&s; _S[WJ{E[Q%% + 0y S — 8Dy — SOy ]} .
(10)

We next look at the stability equation corresponding to
the organized disturbances. The mean flow is assumed
to be parallel, or ‘quasi-parallel’, and two-dimensional.
The disturbance equation (5) for i, with 7; given by
(10), sets the framework for obtaining normal mode
solutions. Two-dimensional disturbances are consid-
ered, and this leads to an extended form of the Orr-
Sommerfeld equation, to be described later. Careful
examination of the stability problem shows that the
problem is not completely Squire-transformable. How-
ever it has been shown'®, that, for small obliqueness
angle 6, the Squire transform is valid to within errors of
0(6%). Thus, it is quite safe to base the analysis on two-
dimensional disturbances. However, three-dimensional
disturbances also need to be investigated for their own
sake, in order to look at possible C-type resonant-triad
interactions, and to look at longitudinal ‘rolls’, both of
which could have a bearing on the spanwise organized
structures seen in wall turbulent flows. Work on this
aspect is going on.

To continue with the formulation, a streamfunction y
is introduced for the organized disturbances such that
7=0dy/dy and 7 =-dy/dx. After assuming normal
modes, ¥ may be expressed in the form

Y= 9()e' ", 1y
where o is the spatial wave number and ¢ = ¢, + i¢; is
the (complex) wave speed. Introducing (11) in the evo-
lution equation (5) for #;, and remembering the quasi-
parallel approximation for the mean flow and the clo-
sure equations for 7, one arrives at extended forms of

lj E
the Orr-Sommerfeld equation, given below:

ia[(@—c)¢ - a’9)—T'9]-1/Rp"" - 209" +ar*¢]

—U/R[E{¢” - 20%¢" +o* ¢} + 2E {o” — 9"}
+E"{¢" +a )] - %[—21’0«])”4 2ia’ 9]

_2iag’

N [AE"+2A°E' + A"E]=0.

(12)

Here primes denote differentiation with respect to y. All
quantities in eq. (12) have been non-dimensionalised by
outer variables. Also, in eq. (12), the first group terms
in square brackets corresponds to the Rayleigh equa-
tion; the first two groups terms in square brackets corre-
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spond to the classical Orr-Sommerfeld equation; the
remaining terms constitute the modifications to the Orr-
Sommerfeld. Further, if A =0 in (12), the reduced equa-
tion thus obtained, is the same as the one derived by
Reynolds and Hussain®.

Incidentally, the unstable modes obtained (which will
be discussed further later on) are wall modes which
scale almost perfectly with inner variables. (Reynolds
and Hussain® could not capture these modes); it is there-
fore instructive to express eq. (12) in inner variables.
All quantities scaled with inner variables are super-
scripted by a ‘+’ sign. The resulting equation becomes:

07 [@ = )Y a0~ 1= =207 o]
LB 2079 a9y 4 267 (9 —a Ty
+ET{ a9y - ATET[2iot 9" + 2ia ]

it A EY + 22 ET + A7 ET ] =0. (13)
The equation (13) is near universal for wall modes, be-
cause the Reynolds number becomes unity in inner vari-
ables, and only the eddy viscosity £ has an outer
dependence; but it has been seen by our present numeri-
cal calculations that wall modes are virtually confined
to the wall region, which is why the answers are near
universal.

A further point comes from the boundary conditions,
which are the same as those for the classical Orr-
Sommerfeld equation. The wall boundary conditions are
the same for all cases, namely,

o, ¢ =0aty=0. (14)
The outer boundary conditions for the different cases
are as follows:

Boundary-layer flow:

P(y) ~ e @, for y — oo, (152)
Channel flow centerline, symmetric mode:

o, 907 =0, fory=1. (15b)
Channel flow centerline, anti-symmetric mode:

o, 9" =0, fory=1. (15¢)

The disturbance equation (12), along with the appropri-
ate boundary conditions, constitutes an eigenvalue prob-
lem. In the temporal problem, « and R are chosen real
and ¢ =c¢,+ic; is determined as the (complex) eigen-
value. Stability or instability is obtained respectively as
c;<0orc;>0.
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The universality of the unstable inner modes was ac-
tually found across different geometries, i.e. virtually
the same answers were obtained for boundary-layer
flow, and for channel flow in inner variables, and the
unstable range was found to be Reynolds number inde-
pendent. This is because the classical ¢ ~ e ® decay in
the outer region sets in virtually from the outer edge of
the inner layer. Thus, the eigenfunction becomes so
small at the channel centerline/boundary-layer edge,
that the actual outer boundary condition has little influ-
ence on the inner modes. However, outer modes, when
these exist, are very much dependent on the outer
boundary conditions.

Results and discussions

The numerical solutions of the extended Orr-
Sommerfeld equation (12) were based on finite-
difference methods developed in the earlier works of
one of the authors™*!. In the present work the methods
described in the earlier works for the stability of the
Blasius boundary layer and laminar channel flow are
extended to the present turbulent boundary layer and
channel flow problem. The resolution used is ten times
greater: the basic step size in y in the present problems
is 2#=0.001. Over a range of 0 <y <1.5, 1501 points
are required for each array specification. Calculations
have also been done using 15001 points. A seven-point
finite difference scheme, employing a Noumerov trans-
form and using a molecule described in Sen ez al.”?, was
employed in the calculations, and this gives a basic
round-off accuracy of O(h%), ie. 107 with A =0.001.
Thus all care was taken to ensure that the very rapid
changes taking place in the inner region are faithfully
taken into account in the numerical calculations. Also,
the Blasius boundary layer results were verified as a
cross-check. Calculations were performed using double
precision arithmetic.

Typical eigenfunctions for the inner modes, in bound-
ary layer and channel flow, are plotted in terms of
and u,, in Figure 3. Since the peaks are to arbitrary
scale, dependent on the normalization adopted for ¢, it
is seen that the eigenfunctions are close to each other in
shape. The same is also seen in Figure 4 for the plot of
the production term 74 (@), where T =u¥. The shapes
are similar for boundary layer flow and for channel flow
when A = 4, is used. However the shape is narrower for
A=As;. The peak of the curves is around y = 12.5,
which mimics the production peak in actual turbulence.

A wide range of numerical solutions was obtained for
the extended Orr-Sommerfeld equation (12), for both
boundary layer and channel flow, with R equal to 5000,
11000 and 17000. The results, plotted in inner vari-
ables, are shown in Figure 5a for the case A= A,. The
notable feature in the results, which are for wall modes,
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is that the answers are essentially same despite different
mean flow geometries. It is also seen that trends be-
come nearly universal in the reported range of R as R
becomes higher. Similar results are also shown, again
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Figure 4. Graph of 7z du/dy (production) versus y. a) Normalization
¢=1+0i at y=1.5 for the boundary layer and R = 5000, a=2.7,
¢ =0.3486034, ¢;=0.0044436; b) Normalization, ¢=1+0i at
y=1.0 for channel flow and, R = 5000, o=3.15, ¢, =0.3816348,
¢i = 0.0040752. [For curves (a) and (b), A= A]; ¢) Channel flow
(A =A3) and R = 5000, &= 9.434, ¢, = 0.28762, ¢; = 0.001693 (verti-
cal scale is arbitrary).
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Figure 5.4, Graph of the growth rate, of'c;” versus ', in inner scal-

ing. (Here A =4, for all the curves.); b, Graph of the growth rate,
ocit versus of.
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for wall modes, in Figure 5 b, but using 4, and A;. The
results are essentially the same for all cases, and are
qualitatively very close to the results for A,. It may also
be seen in ref. 16 (Figure 12 therein), that the unstable
range of o' is well contained within the energy-
containing range of the actual measured turbulence
spectrum.

The plot of an eigenfunction, in terms of u,,,, for an
outer mode solution, is shown in Figure 6, using A;. It is
indeed clear that these modes scale with outer variables
and are spread over the whole range of y, unlike wall
modes.

Some experiments have recently been performed to
look for the existence of wall modes. A trip wire was
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Figure 6. Graph of rms value of u versus y. Outer mode Normaliza-
tion: ¢ =1+ 0iat y=1.0. R= 12160, a=1.675, ¢, = 1.02087, ¢; = —
0.02426. (Here A = 13.)

800 -

Figure 7. Graph of experimental data for wu,,,, for the organized
disturbance, versus y. Data corresponds approximately to R = 5000
and o =25. The scale for wums is in arbitrary units. The inner peak
could not be obtained, since the data point obtained closest to wall is

only 0.2 mm away from wall, corresponding to y = 0.013.
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Figure 8. Graph of rms values of u versus y in the boundary layer.
The Reynolds number is 5000 and the peaks have been normalized to
1 in all cases. a, (i) & = 25.0, c¢; = 0.33453, ¢; = 0.054064; 1 = A;; (ii)
=250, ¢ =0316313, ¢=0.05135; A=A (i) a=250,
¢r=0.316319, ¢i =0.051151; A= A3; b, Graph of rms values of v
versus y in the boundary layer.

set on the bottom wall of a wind tunnel, at the start of
the test section, in order to generate a controlled turbu-
lent boundary layer on the tunnel bottom wall. Organ-
ized disturbances were introduced into the bottom wall
of the wind tunnel, through a 0.1 X 10 cm slot, using a
speaker system. The frequency chosen was 400 Hz,
which corresponds to about the peak growth rate in Fig-
ures 5a, b. Measurements for the u velocity were now
made downstream of the slot. By carrying out phase
averaging of the raw turbulence signal, using the phase
of the input sinusoidal disturbance as reference, the u,,,
corresponding to the phase-averaged organized distur-
bance was obtained. This was carried out at different y
stations, to obtain the distribution of u,,,. The result is
shown in Figure 7. The shape of the distribution is in
very good agreement with the theoretical results. In fact
the value of «, and the Reynolds number R, correspond-
ing to the experiments are respectively o« = 25 and
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R = 5000. Figures 8a and b respectively show numeri-
cally obtained plots for u,y,, and ., using all of 4, A,,
A3, with o =25 and R = 5000. The plots for u,, are in
remarkably good agreement with the experiments, see
Figure 7. Further, the outer peak of the u,, curve in
Figure 7 is further out as compared to the plots in Fig-
ure 8a. The experiments therefore provide some con-
firmation of the existence of wall modes, for organized
disturbances introduced in turbulent flow. A detailed
paper on experiments will appear in future. It is possi-
ble that Hussain and Reynolds”'® could not get the wall
modes in their experiments because they were looking
at the wrong frequency values. Some discussion on this
topic appears in Sen and Veeravalli'®.

Figure 8 b also shows the sharp ¢ * decay setting in
at as low a value of y as y = 0.2. This is the reason why
the mean flow geometry has very little influence on the
wall modes.

Conclusions

An extended Orr-Sommerfeld equation has been derived
to accurately describe the evolution of organized distur-
bances in the presence of background turbulence. This
has been done based on a few novel features in the for-
mulation. First, it has been emphasized that the turbu-
lent stresses in the problem can be suitably modelled
based on the generalized eddy viscosity hypothesis.
Second, after stipulating the validity of GEVH in the
present problem, a significant and logical improvement
has been made in modelling the Reynolds stress tensor,
based on the generalized anisotropic formulation of
Pope'’. This improvement is also unique in form.
Thirdly, in the formulation, the anisotropy is properly
accounted for in terms of a universal non-dimensional
function A, which has been called the ‘anisotropy func-
tion’ herein. Fourthly, it is still reasonable to consider
two-dimensional disturbances, because Squire’s theo-
rem is valid with error O(#%), where 6 is the angle of
oblique waves.

The numerical solution of the extended Orr-
Sommerfeld equation (12) yielded unstable eigenvalues
over a wide range of a. It has been found that instability
is obtained by a large value of A (= 9 or more) in the
wall region. However, the calculations are not sensitive
to the exact shape of the A-curve. The mode of instabil-
ity obtained is the wall-mode, and the eigenfunction and
the rms distributions of & and 7 are found to be quali-
tatively similar to those obtained for Blasius flow.
Moreover, the locations of the respective peaks of the
@i tms profile and the production term 7(#), agree
well with experimental values reported in literature, for
actual turbulence. Thus the organized disturbances
seem to mimic some of the features of actual turbu-
lence.
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The band of unstable eigenvalues, when scaled with
respect to inner variables, indicates that results ap-
proach universality with high R. Particularly, the
growth rate curves for different R in inner variables
approach a limiting curve for high R, as may be seen in
Figure 5a. This is also a feature that correlates well
with the inner scaling in actual turbulence.

The theoretical results also show the universality of
wall modes, when scaled with respect to inner variables,
across different mean-flow geometries. They also show
the universality of the unstable range of frequencies.
Essentially the same results are obtained for the wall
modes, both for boundary layer and channel flow. How-
ever, the results for outer modes are different, and are
dependent on the mean flow geometry. Outer modes are
not important as they were all found to be damped.

Experiments reported in Sen and Veeravalli'® have
shown that the range of unstable frequencies, theoreti-
cally predicted, are well contained within the energy-
containing range. Recent experiments are more reveal-
ing, and fully confirm the existence of the theoretically
predicted wall modes. It is possible that Hussain and
Reynolds’™'® were not looking in the appropriate fre-
quency range in their experiments, which is why they
could not capture the wall modes, or obtained a mixture
of wall and outer modes.

Three-dimensional spanwise structures, correspond-
ing to C-type resonant triads, will be looked into as fu-
ture work. Also, further experiments will go on for
boundary layer flow, and in future, for channel flow.

As a final word in conclusion, it may be stated that
the present work keeps alive the question of a possible
connection between stability theory and actual turbu-
lence in wall-bounded turbulent flows.
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