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This article reviews recent work done by us on some
initial steps towards the implementation of quantum
computation using liquid state NMR. We describe
how special kinds of states required for such compu-
tation (called pseudo-pure states) can be created
from a thermal ensemble of spins. We demonstrate
the implementation of several quantum logic gates
through one- and two-dimensional NMR methods,
using transition- and spin-selective pulses. Finally,
we discuss the implementation of the Deutsch—Jozsa
algorithm using NMR.

ALL present-day computations use two-state binary
logic and have led to a large revolution in data process-
ing and manipulation. However, several scientists have
wondered if quantum mechanical systems could provide
a new paradigm for computation. Feynmann in particu-
lar, hypothesized that it might be possible to simulate
quantum evolution efficiently, provided the simulator
was itself quantum-mechanical in nature'.

The question that arises is: can real quantum systems
be used to build computers that operate in the quantum-
mechanical regime, and how much more computing
power would such devices be able to achieve? These are
some interesting issues being addressed by researchers
today, and this fusion of ideas from quantum physics
and information theory has led to exciting new devel-
opments in quantum cryptography>”, teleportation®,
error correction”’, and quantum computation® ',

It was proved early on, that traditional Boolean logic
gates can be implemented using a set of modified ‘re-
versible’ gates, and that one can find a minimal set of
such gates that are sufficient for computation'®'’. Fur-
thermore, researchers in the early 1980s made a funda-
mental connection between quantum mechanics and
reversible computation by proposing that reversible
Boolean computation can be simulated by the time evo-
lution of a quantum system, which is a unitary reversi-
ble dynamic'®'’. Logical operations in quantum
computation are implemented on quantum bits (qubits),
the basic units of quantum information. A qubit can be
visualized as the states of a two-level quantum system,
like the two spin states of a spin-1/2 particle or the two
different polarization states of a single photon. The re-
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alization that, the two eigenstates labelled by |0) and |1)
can be mapped onto logical 0 and 1, leads to the possi-
bility of the quantum-mechanical implementation of
logic gates and circuits’® >, Unlike the classical bit
which can exist only in two states, the permitted states
for a qubit (cos® [0) + sin® e|1)), span a 2D complex
vector space (Figure 1). A state for n qubits can in gen-
eral be represented by a 2"-dimensional complex vector.
While all classical computation can be performed using
the mapping between eigenstates and logical states, the
fact that a qubit can exist in a general coherent superpo-
sition of the eigenstates, leads to new possibilities for
computation. What is intrinsically different about a
quantum computation? The answer lies in the fact that it
exploits inherently quantum features like quantum su-
perposition and entanglement to solve problems hitherto
deemed intractable, on any classical computer. If two
qubits are in a state such as —={ 00)—|11)}, which is
not resolvable into the tensor ‘I/)Eroduct of the states of
the individual qubits, the qubits are said to be entan-
gled* %, Neither qubit by itself has a definite state, in
contrast to a classical system which can be completely
resolved into the states of each part of the system. The
existence of such entangled states is fundamental to the
quantum world and leads to counter-intuitive phenom-
ena like the violation of Bell’s inequalities. It is inter-
esting that such intriguing states have now found an
application in computation and information processing,
to reduce the level of complexity of computational
tasks.

A measure of computational complexity is how the
number of steps required for the computation (denoted
s) evolves mathematically as a function of the size of
the problem (denoted L). If 5 is a polynomial function of
L, the problem is tractable; if s rises exponentially with
L, the problem is thought to be intractable'*'’. An ex-
ample of a computationally hard problem is that of the

0 10)
BIT QUBIT — cos8|0) + sinPe’|1)
1 1)

Figure 1. Units of information: bits and qubits. A classical bit can
only take the values 0 and 1, whereas a qubit can exist in any coher-
ent superposition of the two.
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factorization of a number, i.e. to find all the prime fac-
tors of a given large integer. Classically, this is known
to be computationally intractable since the time taken
by the best-known classical algorithm grows exponen-
tially with the size of the input number. This is the se-
curity on which most cryptographic systems rely on
today. A quantum computer can factor large integers in
a time which is polynomial in the logarithm of the best
classical time. This brings the non-tractable factoring
problem to the domain of tractability and illustrates the
true power of quantum computing15’27. In quantum
computation, the computation itself can be thought of as
a set of unitary transformations U; acting on a set of
input qubits. The main task is to identify suitable quan-
tum systems, prepare them in pure initial states and
physically achieve Hamiltonians that generate these
unitary transformations, where U, = e,

A massive parallelism is achieved in quantum compu-
tation, since one is able to perform the computation on
all the inputs in one go, by preparing the state of the
qubits in a quantum superposition of all the possible
classical inputs. However, not all tasks can be speeded
up by a uniform amount on a quantum computer —
problems like factoring and the simulation of quantum
dynamics gain an exponential speed-up, while the data-
base search problem is speeded up polynomially. On the
other hand, many problems like inserting an element in
an ordered list do not get speeded up at all. The identi-
fication of classes of problems that can indeed be solved
more efficiently by a quantum computer opens up newer
avenues for research. Three path-breaking quantum al-
gorithms in this direction are, the Deutsch—Jozsa (DJ)
algorithm to distinguish between two classes of mathe-
matical functions®™?, Shor’s quantum factoring algo-
rithm®”°, and Grover’s algorithm to rapidly search a
database’.

The choice of physical systems to build elements of
quantum hardware explored thus far, ranges from opti-
cal photons’>”, cavity QED***, quantum dots™,
trapped ions’”® to nuclear spins’> *. As a candidate for
quantum computing, NMR is attractive because of the
long coherence times exhibited by the spins, and also
due to the complexity of logical operations that can be
executed on modern spectrometers. A molecule with N
spin 1/2 nuclei can be visualized as an N-bit quantum
computer, provided the spins are able to interact, one
can manipulate their states in a desired fashion and
there is a well-defined method of reading out the result
of the computation. In the case of liquid-state NMR,
one has an ensemble of such N-bit computers with N
determined by the number of manipulatable, interacting
spins. Quantum computing is usually performed on pure
input states, whereas nuclear spins at thermal equilib-
rium are in a statistical mixture of pure states, with the
signal being an average over all the individual states of
the ensemble. It has been shown recently that it is pos-
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sible to perform quantum computations using special
kinds of mixed state ensembles as well (ensembles in
pseudo-pure states), and the challenge now is to explore
the possibility of carrying out bulk quantum computing
using NMR-based information processors.

Previous workers in the field have employed
various NMR methods like non-selective pulses, rf gra-
dients, coherence transfer via J-coupling and simultane-
ous multi-site excitation to create pseudo-pure
states*** ™ construct  universal quantum logic
gates** and implement quantum algorithms for two-
and three-qubit systems” .

In this research account, we demonstrate the utility of
transition- and spin-selective pulses in achieving quan-
tum computing using NMR. We exploit the non-
commuting nature of operations on connected transi-
tions to prepare the spin system in a pseudo-pure state
and execute different logical operations simultane-
ously®. Different quantum logic gates have been dem-
onstrated using one- and two-dimensional (1D and 2D
respectively) NMR techniques. As an illustration of
these ideas, we have implemented the DJ quantum algo-
rithm using 1D and 2D schemes. It turns out that a
modified version of the DJ algorithm, which uses lesser
qubits, brings out its subtle aspects more clearly. The
implementation of the algorithm for up to one and two
bits does not involve the manipulation of quantum en-
tangled states, and thus finds a classical explanation. It
is only for the three-bit case that entangling transforma-
tions become essential to solve the problem®.

Experiments have been performed at 300 K on Bruker
AMX-400 and DRX-500 spectrometers operating at 'H
resonance frequencies of 400 and 500 MHz, respec-
tively. Two, three and four-spin systems have been cho-
sen as qubits for the computation. The 7| relaxation
times in the molecules used, is of the order of a few
seconds (3.4-4.6 s), whereas 7, relaxation occurs within
an interval of about 1 second. Selective excitation has
been achieved using low power, long duration rectangu-
lar-shape and Gaussian-shaped pulses. The lengths of
these pulses are tailored to achieve sufficient selectivity
in the frequency domain without perturbing the nearest
line and hence depends on the magnitude of the smallest
J coupling present. The duration of the pulses applied
varies from 100 to 263 ms (for J couplings of 9.6 to
3.8 Hz). For small computations, such as the ones per-
formed here, drastic decoherence or dephasing does not
occur during the duration of these selective pulses.
However, the deleterious effects of such selective
pulses must be considered and compensated for, when-
ever larger computations are attempted.

Creation of pseudo-pure states

Quantum algorithms are usually formulated in terms of
pure quantum-mechanical states. The purity of a state
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can be best visualized in the ensemble interpretation. A
pure state corresponds to an ensemble with each mem-
ber being described by the same state vector. A mixed
ensemble on the other hand, cannot be represented by a
single vector in Hilbert space. The density matrix ap-
proach has been devised to handle this physical situa-
tion, whereby a density operator can be assigned to pure
as well as mixed ensembles. Given a pure ensemble
with the state vector |y), the corresponding density op-
erator p = [Y){y| contains all the relevant information
about the state. For a mixed ensemble, with say a frac-
tion f members in a state |y) and 1-f members in state
|0), the density operator is a statistical mixture of opera-
tors corresponding to both the state vectors and is given
by p =fWXw| + (1 —f)|0){d|. Therefore, we can always
associate a density operator with a general quantum-
mechanical system drawn from a general (pure or
mixed) ensemble. When the system is in a pure state
(drawn from a pure ensemble), it is also possible to as-
sign a state vector to it. A necessary and sufficient con-
dition for the density matrix corresponding to a pure
state is p° = p. A quantum computer comprising these
spins is therefore an ensemble of independent quantum
computers, doing the same computation. The initial
state of each quantum computer (spin) is randomly de-
termined and the only accessible measurement is an
average of all the computers’ registers (states of the
spins). The result of a computation attempted on this
mixed ensemble might get erased by the averaging
process over the ensemble. The problem of working
with such mixed initial states has been circumvented by
creating within the overall density matrix of the system,
a subsystem that behaves exactly like a pure state. Such
states are termed °‘pseudo-pure’ states and different
schemes to create pseudo-pure states in NMR have been
proposed and experimentally implemented®®*** 4¢3,

The preparation of pseudo-pure states from a thermal
ensemble involves isolating a sub-manifold of spin
states whose transformation properties are similar to
those of a pure state. In effect, the excess (or deficit)
population of a state among a uniformly populated
background of levels, causes it to behave like a pure
state. Consider a system of n spins with a 2"-dimensional
Hilbert space. If we now have a state for which all levels
except one are equally populated and we are interested
in measurements of those operators for which the uni-
form background (density matrix is a multiple of iden-
tity) does not contribute, then for such measurements
this state behaves like a pure state, corresponding to the
level with excess population. Such states will hence-
forth be referred to as pseudo-pure states.

At high temperature, the density matrix of an N-spin
system is given by

é =2LN(i+BdA), ()
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which consists of a background part proportional to the
identity I and a traceless, deviation density matrix & ,.
The factor B = hy/kT is very small (= 10°%) for nuclear
spins at room temperature. The identity part of the den-
sity matrix does not evolve under rf pulses and does not
contribute to the measured NMR signal. After manipu-
lation by rf pulses and/or gradients, the deviation part of
the density matrix can be made to behave like a pure
quantum state. To illustrate this point, consider a system
of two spin-1/2 particles, with the thermal equilibrium
density matrix being described by

100 0
000 0

ce—lJ+E- . ©2)
1747 4/0 0 0 0
000 -1

A small fraction of the spins are in the state describable
by (Oa)eq = {1z + 125 the subscripts 1, 2 label the spins
and I, etc. are the usual product operator representa-
tions of angular momentum vectors®. The rest of the
spins are in the uniformly populated background and do
not contribute to the signal.

Consider now the matrix representation of a traceless
deviation density matrix corresponding to the state
Ilz + I2z + 2112122 is

3/2 0 0 0
0 -1/2 0 0
(GA)p-pure = 0 0 ~1/2 0 - (3)

0 0 0 -1/2

This matrix can be visualized as

4

2 0 00

0 0 0 0f 14
(GA)p-pure = 00 0 0 _EI

0 0 00

=2mmmm—%i

where the identity term does not evolve under rf pulses
and is ignored in NMR experiments. This combination
of product operators, Iy, + I, + 211,1,,, hence represents
a pseudo-pure state. It is to be noted that the equilib-
rium density matrix G.q (eq. (2)) cannot be resolved into
two such matrices (one of them being identity) and
hence the thermal equilibrium state is not a pseudo-pure
state™.

Techniques to experimentally prepare pseudo-pure
states can be broadly classified as (i) spatial averaging
methods which rely on rf gradients for their implemen-
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tation®, (ii) temporal averaging, where the result of
different experiments performed sequentially is time-
averaged® and (iii) logical labelling methods which use
manipulations by rf pulses to re-label the states of the
spins™.

Spatially averaged pseudo-pure states

A spatially averaged pseudo-pure state can be prepared
by a judicious combination of rf gradients and pulses
with different flip angles as shown by Cory er al.*’. It is
termed spatial since unitary transformations are applied
as a function of a spatial degree of freedom. For exam-
ple, the scheme [517—[AL —[§1, ~[55]-[-%1, - [AL,
where 1, 2 are the spin labels, J the coupling constant,
and A, a gradient in the z direction, leads to a final
pseudo-pure density matrix represented by
%[llz +IZZ +2[12122]'

Temporally averaged pseudo-pure states

The temporal averaging technique uses several experi-
ments with different preparation steps, the results of
which are averaged to give a pseudo-pure state as dem-
onstrated by Knill et al.*. The unitary transformations
are performed sequentially in time. As an example, the
average of three different experiments P,, yields a tem-
porally-averaged pseudo-pure state whose density ma-
trix is given by

3
1 Z t
Gavg = 5 PIGPI . (5)
i=1

The unitary transformations corresponding to the three
experiments are given by

1 000 1 0 00
01 00 001 0
A= ; B=
0010 00 0 1
00 0 1 0100
and
P =P (6)

Logically labelled pseudo-pure states

The logical labelling technique to create pseudo-pure
states is categorized by the fact that unitary transforma-
tions are used to redistribute the populations of states,
such that an effective pure state is obtained in the sub-
manifold of qubits (spins) to be used for computation,
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and ancillary qubits are used as ‘labels’. While the con-
cept underlying the logical labelling method of pseudo-
pure state creation has been delineated by Gershenfeld
and Chuang’® and Chuang et al.*', there have been very
few experimental implementations of such an elegant
technique™. We have designed novel pulse schemes
using transition-selective pulses to create such logically
labelled pseudo-pure states®®. Consider a three spin-1/2
system (AMX), with the energy levels labelled as in
Figure 2. The selective inversion of two unconnected
single-quantum transitions of the A spin (|001) — |101)
and [010) — |110)) would lead to the creation of a logi-
cally labelled pseudo-pure state, with A being the ‘label
qubit’ and M, X being the ‘work qubits’ available for
computation. The first four eigenstates (labelled by the
first spin being in the |0) state) now form a manifold
that corresponds to a two-qubit pseudo-pure state, while
the last four (labelled by the first spin being in the |1)
state) form a different manifold that corresponds to an-
other two-qubit pseudo-pure state. The creation of a
pseudo-pure state by this method leads to relative popu-
lation differences of

{000 001 010 011 100 101 110 111}

3/2 -1/2 -1/2 -1/2 1/2 1/2 1/2 =3/2
(7
|r =32 |
S =z
|
! -122 ap M !
| — Lo
| 011 yIIO :
i 12 12 | 172 |
|
| 001 5, 010 100 |
! .
! 000
a ! I
U 4
o T |
I =32 l
I — =
111 l
i -172 12 1|
| I
| -1 112 101y 110
I - |
100 i
! 001 ., 010 |
! B
b | 000 !
Sy 4

Figure 2. Creation of a pseudo-pure state in a homo-nuclear AMX
three-spin system using logical labelling. The energy levels are ar-
ranged in increasing order of Larmor frequency with the states of the
three spins being labelled as shown below each energy level. The
lower (dashed) box encloses states with the first spin (the label qubit)
in the |0) state and the upper (dashed) box groups states with the first
spin in the |1) state. @, Deviation population distribution at the ther-
mal equilibrium is given above each level. b, Population distribution
of a pseudo-pure state, created by inverting the populations of the
two single-quantum A transitions shown in {(a) by long arrows.
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Figure 3. A logically labelled pseudo-pure state in the homo-nuclear
three-spin system (AMX) of 2,3-dibromo propionic acid. a, Equilib-
rium proton spectrum with the three protons labelled A, M and X
resonating at 8, = 3.91 ppm, 3y = 3.69 ppm and dx = 4.48 ppm, re-
spectively. b, Selective inversion of the two (nearly overlapping)
central transitions of the A spin leads to the creation of a logically
labelled pseudo-pure state. The selective inversion has been carried
out using a long, low-power rectangular @ pulse. The state of the spin
system has been read by a high-power, small angle (10°) detection
pulse.

The experimental creation of a logically labelled
pseudo-pure state in the homo-nuclear three-spin system
of 2,3-dibromo propionic acid is shown in Figure 3. The
pseudo-pure state has been distilled by manipulating
unconnected single quantum transitions of the label
qubit A, as detailed in eq. (7). A transition-selective T
pulse was applied on the two central (nearly overlap-
ping) transitions of the A spin.

Quantum logic gates

A set of two-state systems which evolve under simple
unitary operations can be used to implement quantum
logic gates and Deutsch proved that one can find a
minimal set of gates that are sufficient for computa-
tion'”. The action of these gates can be represented by a
network diagram and several such gates have been con-
structed using NMR. One-qubit gates correspond to ro-
tations in the subspace of a single spin, and are easily
implemented using spin-selective pulses. The two-qubit
quantum XOR (or controlled-NOT) gate has been dem-
onstrated to be fundamental for quantum computation®’
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and has been implemented in NMR by a selective &
pulse on a single transition*’. The action of the quantum
XOR is an evolution under a Hamiltonian that achieves
a mapping of two-qubit basis states according to the
XOR truth table, i.e. {|00) — |00}, |01) — |01), |10) —
[L1), |[11) — |10)}. It has been proved that the reversible
quantum XOR gate, supplemented by a set of general
one-qubit quantum gates, is sufficient to perform any
arbitrary quantum computation®®. Various other gates
which combine many logical operations might be useful
in reducing the number of pulses when larger computa-
tions are attempted. We detail the design and experi-
mental implementation of such gates here, using 1D and
2D NMR methods; borrowing from Lewis Carroll, we
call such ‘many-in-one’ gates ‘Portmanteau’ gates®.

In the 1D method, various transition- and spin-
selective pulses have been applied on a two-spin system
in equilibrium, to implement different logic gates®. In the
context of quantum computing, it was recently recognized
by Madi et al.’', that the four stages of a quantum compu-
tation (namely initial state preparation, state labelling,
computation and readout of result), can be directly related
to various steps in two-dimensional NMR (namely prepa-
ration, evolution, mixing and detection).

In the two-dimensional method, the states of the
‘computation’ qubits are labelled by the individual tran-
sitions of an extra ‘observer’ qubit (instead of being
identified by their energy level labels, as is usually the
case in one-dimensional experiments). The 2D experi-
ment begins with a /2 pulse on the observer spin,
which is then allowed to evolve under the free Hamilto-
nian for a time period #,. After the #| period, a selective
7/2 pulse on the observer spin restores its magnetization
to z-direction, followed by a gradient pulse which de-
stroys unwanted transverse magnetization, if any. The
quantum logic gate is then implemented on the compu-
tation qubits and the detection of the final state is per-
formed by a spin-selective 7/2 pulse on the observer
qubit (Figure 4). The positions of the different multiplet
components of the observer spin 2D spectrum, represent
the results of the computation.

Consider a two-spin system (AX) with each spin being
a qubit, the spin A being the first qubit and the spin X,
the second qubit. The eigenstates of this system can be
represented by |€;, €,), where €, and &, are 0 or 1. Various
logic operations and portmanteau gates that can be im-
plemented on this two-spin system are categorized in
Table 1, along with their truth tables and corresponding
unitary transformations. The NOP gate corresponds to a
no operation (with no pulses being applied on the qubits).

The SWAP operation

The logical SWAP operation exchanges the states of
a pair of qubits. This gate might be useful dur-
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Table 1. Characterization of various two-bit logic operations and portmanteau gates. The truth tables and cor-
responding unitary transformations are given in the different columns

Gate In Out Ur Circuit diagram
10 00 1
00 00
NOP 01 01 01009
ler, £2) > le1, €2) 10 10 0010 2
11 11 00 01
10 00 1
00 00
SWAP 01 10 0.0 10 ><
ler, €2) > |2, &1) 10 01 0100 2
11 11 00 01
00 01
00 10 01 0 0 1 —€
XORI1 + SWAP + NOT1 01 01
|81,82>—>|§2,81®82> 10 1 10200 2 — ¢
11 00 0010
0010
00 11 01 0 0 1 —4
XNOR2 + SWAP + NOT2 01 01
—_— — 10 00 00 01 2 _E
®
ler, €20 = | €, By, 8) 11 10 100 0
00 01 1
00 11
NOT + SWAP 01 01 0100
ler, €20 = | €5,€)) 10 10 0010 2
11 00 10 00

The symbol @ stands for ‘addition modulo 2°, while the bar denotes a complement. The symbol

represents

the operation NOT. The NOP stands for No OPeration, in which no pulse is applied and the unity operator per-

forms no operation.

. Evo-— . .
Preparation tution Mixing Detection
(mfZ}y (ur/Z)_y (2, y

Ip
Pt L n
L.L,,... i Computation i
o i
Creation Labelling Reading
of Initial of Initial Computation of Output
States States States

Figure 4. Pulse scheme for quantum computing using two-
dimensional NMR. [, is the observer qubit and I, I,... are the com-
putation qubits. The gradient pulse G, eliminates unwanted trans-
verse magnetization before the computation. A two-dimensional data
set s{t, t») is collected, which on double Fourier transform yields
a two-dimensional spectrum s(®, ®;). The two-dimensional spec-
trum correlates the input and output states of the work qubits depend-
ing on the computation performed during the mixing/computation
period.
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ing the course of a computation when qubits need to be
permuted™. In spin systems where some scalar J cou-
plings are not well resolved, the logical SWAP could be
used to compensate for the missing couplings’'. Madi et
al’' have implemented the SWAP operation using an
INEPT-type sequence, with non-selective rf pulses and
J-evolution. It is interesting to note that the logical
SWAP operation can be achieved by selectively inter-
changing the populations of the zero quantum levels.
Since these levels are not connected by single-quantum
transitions, the population exchange will have to be
achieved indirectly. A pulse sequence to implement this
uses transition selective pulses on regressively con-
nected single-quantum transitions, after the creation of a
non-equilibrium population distribution®”. The 1D im-
plementation of the logical SWAP operation achieved
by a selective manipulation of the zero-quantum is
shown in Figure 5 on the two-spin system of coumarin.
The 2D implementation of the SWAP gate is especially
interesting and is shown in Figure 6. As discussed ear-
lier, the 1D spectrum of homo-nuclear spins after the
execution of a SWAP operation is indistinguishable
from that of an equilibrium spectrum and a one-
dimensional demonstration of the SWAP gate begins

CURRENT SCIENCE, VOL. 79, NO. 10, 25 NOVEMBER 2000
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with the creation of a non-equilibrium state. The 2D
method begins with both qubits in the equilibrium state
and yields a spectrum characteristic of the SWAP gate.

The 1D implementation of various portmanteau gates
on a thermal initial state is shown in Figure 7 for the
two-spin system of coumarin. The same pulse schemes
will implement the desired logic operations on other
initial states (for instance, a pseudo-pure or a coherent
superposition of states) as well, without requiring prior
knowledge of the state of the system. The implementa-
tion of an XOR gate (with the output on the first qubit),
followed by a SWAP operation and then a NOT gate on
the first qubit can be experimentally achieved by transi-
tion-selective 7 pulses applied consecutively on two
progressively connected transitions. Reversing the order
of the pulses corresponds to an XNOR + SWAP + NOT
gate, with the output on the second qubit. These opera-
tions do not commute, so the order in which the pulses
are applied is important and its reversal leads to differ-
ent logical operations. The implementation of a NOT
gate followed by a logical SWAP operation (or vice
versa, since these operations commute) is achieved by a
cascade of transition-selective @ pulses on two progres-
sively connected transitions. This tantamounts to a se-
lective inversion of populations of the double-quantum
levels.

11

T T \ T T T T
76 74 72 10 68 6.6 [ppm]
Figure 5. 1D implementation of the logical SWAP operation on the
two-spin system of coumarin. The result of the application of a =
pulse on one of the X transitions, followed by a @ pulse on the
regressively connected A transition is shown, which is equivalent to
inverting zero quantum using [A]z[Xi]z[A1]z (SWAP operation)
preceded by a [A{]: pulse to create non-equilibrium population dis-
tribution. Without this pulse, the 1D spectrum will be indistinguish-
able from the equilibrium spectrum. A small angle (10°) read pulse
has been used. See Figure 7 for the 1D spectrum of coumarin.
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Figure 6. 2D implementation of the logical SWAP operation on the
three-spin system of 2,3-dibromo propionic acid, using the pulse
scheme of Figure 4. A cascade of non-commuting rectangu-
lar/Gaussian transition selective © pulses (110 <> 111, 010 < 011,
101 & 111, 001 & 011, 110 & 111, 010 < 011; see Figure 2 for
these transitions) were applied during the computation period. Unlike
the 1D case SWAP gate in 2D has been implemented on the equilib-
rium state, yielding a spectrum characteristic of the SWAP gate.

The 2D implementation of these quantum logic gates
on two computation qubits (using an extra observer
qubit) is experimentally demonstrated on 2,3-dibromo
propionic acid (Figure 8). A complete set (24) of one-
to-one reversible 2-qubit gates using two-dimensional
NMR on a three-spin system has been carried out®.
Figure 9 shows several 3-qubit gates implemented on a
4-spin system, using selective pulses. Once again, No
OPeration during computation period yields NOP gate
and inverting spin I; yields the NOT (I;) gate. The more
interesting ones are Toffoli gate (or AND/NAND gate)
and OR/NOR gate. The operations of Toffoli and
OR/NOR gates (13, 15) are respectively,

|s,t,u) =] s @ (t Au),tu), (8)
and
| s,t,u) —=| s D (¢vu),t,uy, 9

where @ = addition modulo 2, A= AND, v =OR and s,
t, u are the states of the control spin /; and the input
spins I, and ;. The Toffoli gate is a universal gate for
reversible computation.

The 1D pulse schemes for the implementation of
gates are useful and easy to implement. The advantage
of the two-dimensional method is that it correlates the
input and output states and thus the readout of the com-
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putation is graphic. However, the 2D method requires
an extra qubit to encode the computation.

The Deutsch—Jozsa quantum algorithm

The DJ algorithm determines whether an unknown func-
tion f(x) is constant or balanced®®. The algorithm af-
fords the simplest demonstration of the power of a
quantum computer over its classical counterpart. In
general, consider an n-bit binary string x; a Boolean
function f can be defined on this »-bit domain space to a
1-bit range space, with the restriction that either the
output is the same for all inputs (the function is con-
stant) or the output is O for half the inputs and 1 for the
other half (the function is balanced). All the 2" possible
input strings are valid inputs for the function
(filx)=10,1}). In quantum computation, these n-bit
logical strings are in one-to-one correspondence with
the eigenstates of n-qubits, and one can hence label the
logical string x by the eigenstate |x). Classically, for an
n-bit domain space, one needs to compute the function

* X; X,

M .

1

76 74 12 10 68 66 [ppm]
Figure 7. 1D implementation of various portmanteau gates on a
two-qubit system. @, Reference spectrum of coumarin at thermal
equilibrium. This corresponds to the NOP gate. b, Implementation of
an XOR + NOT + SWAP (by the pulse cascade [A]z[X2]z, where A,
and X, refer to progressively connected transitions of spins A and X,
respectively). ¢, Implementation of an XNOR + NOT + SWAP
([X2]z[A1]x)- d, Implementation of a NOT + SWAP ([A1]:[X:]z[A1]z)-
The state of the spin system is read by a small (10°) angle pulse in
each case.
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at least 2”2 + 1 times in order to determine whether it is
constant or balanced. The DJ algorithm achieves this on
a quantum computer using only a single function call.

The usual implementation of the DJ algorithm (the
Cleve version™) for n bits requires n + 1 qubits, the
function f being encoded through an f~dependent unitary
transformation,

|5 st | e 1D it [ @ S Dpsger (10)
where @ denotes addition modulo 2. As shown in Fig-
ure 10, the implementation of the unitary transformation
Uy, along with the Hadamard transformation, then suf-
fices to distinguish the function as constant or bal-
anced”®”. A Hadamard transformation on one qubit
mixes the eigenstates maximally,

|0)—"— (1 00+ 1)) L1
PR s H=H '=— . (1D
|D—">5(0-[D) V21 -1

The Hadamard transformation for n-qubits is the tensor
product of the one-qubit transformation (H"=H ® H ®
H ... ® H), its action on the n-qubit eigen states being

2" -1

H" |x) = Z(—I)(Bzf’”y" 22 (12)
y=0

where x; and y; are the jth entries of the n-bit strings x
and y.

The four possible functions for the one-bit DJ algo-
rithm (encoded using one extra qubit) are categorized as
shown in Table 2.

The unitary transformations corresponding to the four
possible propagators Uy are easily constructed:

o O O =
oS O = O
(= =
oS O = O
o O o =
- o O O
o = O O

S
Il

(13)

o o o =
SO O = O
- o O O
SO O = O
o O O
o = O O
- o O O

We have implemented the DJ algorithm in a 1D and a
2D fashion, using spin-selective and transition-selective
7 pulses. The experiment begins with both qubits being
. . |0 £ |1 .

in a coherent superposition of states (—==). This has
been achieved by a non-selective [71/2], pulse on both
spins. After application of the propagators U, the first
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Figure 8. Implementation of a complete set of 24 one-to-one reversible 2D quantum gates on a three-
spin system using one observer and two work qubits. @, 2,3-dibromo propionic acid; b, 1D 'H NMR
spectrum of (&) dissolved in CDCl;, recorded on a Bruker DRX-500 spectrometer at 300 K; ¢, 2D
spectrum of observer spin ([p), corresponding to various gates implemented using spin- and transi-
tion-selective pulses. The computation pulses for each of these gates are given in ref. 68. Low-power
rectangular/Gaussian pulses were utilized for various gates. Spin-selective pulses were 10 ms long and
the transition-selective pulses were 100-300 ms long. The phase of the computation pulses were cy-
cled through (x, —x) to suppress the distortions due to pulse imperfections. All experiments were car-
ried out in the time domain with 256 # values and 256 complex data points along ¢, and with 2 scans
for each # point. Zero filling to 512 x 512 complex data points was done prior to the 2D Fourier trans-

formation. All plots are shown in magnitude mode.

qubit (the ‘control’ qubit) remains in the superposition
state, while the desired result (f{0) @ f(1)) is encoded as
the appearance or disappearance of the lines of the tar-
get qubit. The U, transformation corresponds to the
unity operation or ‘do nothing’, while the U, transform
is achieved by a spin-selective [t], pulse on the control
qubit. The U; and U, transformations are implemented
by selective @ pulses on the |[10) —|11) and the
|00) — |01) transitions, respectively.

In a single measurement, one can distinguish between
constant and balanced functions on the basis of the dis-
appearance of the lines of the target qubit in the spec-

CURRENT SCIENCE, VOL. 79, NO. 10, 25 NOVEMBER 2000

trum. These predictions are borne out by the
experimental spectra in Figure 11. The phase of the
transition-selective pulse (used to implement the U; and
U, transformations) has been stepped through (x, —x,
¥, —y) to suppress phase distortions and leads to the total
suppression of the target qubit lines and the retention of
only one line of the control qubits. The implementation
of the algorithm does not require pure initial states,
since similar results can be read out from the spectrum
if one starts with thermal initial states instead. The 2D
implementation of the DJ algorithm on the same system
is shown in Figure 12 (ref. 68).
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Figure 9. Implementation of 3-qubit 2D gates using "F and
'"H NMR. a, 2,3-difluoro-6-nitrophenol. b, YF and '"H NMR spectra
of (a) dissolved in CDCl; (with one drop of D,O to induce the ex-
change of the hydroxy proton and hence to suppress its coupling to
fluorine nuclei) recorded on a Bruker DRX-500 spectrometer at
300 K. ¢, "°F 2D spectra of observer spin I, corresponding to various
gates. The spin-selective pulses were 1 ms long and the transition-
selective pulses were 200 ms long. The NOP gate requires no compu-
tation pulse, while the NOT (I;) uses a selective @ pulse on [;. The
Toffoli gate uses a pair of transition selective ® pulses to invert
the control spin transitions 011 and 111. The OR/NOR gate uses
a spin selective @ pulse on the control spin and then a pair of transi-
tion selective © pulses on 010 and 110 transitions of the control
spin.

ly EB= F(x))1-qubit

|y>1—qubit

Uy

|w>n—qubi£ |m>rrL—qubit

Figure 10. Function call mechanism for the DJ algorithm for »
qubits, using n + 1 input qubits.
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Table 2. Four possible functions for the one-bit DJ algorithm

Constant Balanced
x i fa f fa
0 0 1 0 1
1 0 1 1 0
balanced k @
balanced \ A 3)
constant )
constant 6

655 650 645 640 635 630 625 [ppm]

Figure 11. 1D selective pulse implementation of the DJ quantum
algorithm on a two-qubit system 5-nitro furaldehyde, at room tem-
perature on a 400 MHz spectrometer. The results after applying the
unitary transformations Ui, U,, Us and U, on a coherent superposi-
tion are shown in (1), (2), (3) and (4), respectively.

A modified scheme can be designed to solve the n bit
Deutsch problem, using n qubits alone®. In this scheme,
for every function f a unitary transformation is con-
structed, such that its action on the eigenstates of n-
qubits is

U
| %) bt —f>(_1)f(x) | XD bit -

(14)

Consider n qubits, all in the state |0); a Hadamard trans-
formation H" converts this state to a linear superposition
of all 2" eigenstates with equal amplitudes and no phase
differences. The unitary transformation Uy (defined in
eq. (14)) acting on this state, introduces an f~dependent
phase factor in each eigenstate in the superposition. At
this juncture, all information about f is encoded in the
quantum state of the n qubits. A Hadamard transforma-
tion H" is once again applied in order to extract the
function’s constant or balanced nature.

CURRENT SCIENCE, VOL. 79, NO. 10, 25 NOVEMBER 2000
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Figure 12. 2D implementation of the DJ algorithm on 5-

nitrouraldehyde in C¢Dg on a Bruker DRX-500 spectrometer at
300 K. The 'H spectrum is shown in (&) and the structure of the
compound in (h).

|0) n—qubit Const. Bal.
0] [A]
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Figure 13. Block diagram for the modified DJ algorithm.

271 27—
n U n
10— Y n—) )0 L
x=0 x=0
271 2"-1

TR MRS (15)

x=0 y=0

The final expression for the output state in eq. (15)
clearly has an amplitude 1 for the state |0, for a con-
stant function and an amplitude O for a balanced func-

CURRENT SCIENCE, VOL. 79, NO. 10, 25 NOVEMBER 2000

tion. This categorization of the function as constant or
balanced through a single function call using n qubits, is
shown pictorially in Figure 13. The number of functions
for the n-bit Deutsch problem is NCN/2 +2 (where
N=2").

The NMR implementation of the modified DI algo-
rithm for one, two and three qubits, would require the
implementation of unitary transformations correspond-
ing to 4, 8 and 72 functions, respectively. This imple-
mentation of the DJ algorithm does not require the
initial preparation of the spins in a pseudo-pure state,
since the thermal equilibrium state serves equally well
as a good initial state. The observable spectral result is
the same in both cases, though beginning with a pseudo-
pure state creates some (undetectable) multiple-quantum
coherence. We have implemented the unitary transfor-
mations using composite-z pulses, spin-selective pulses
and evolution under the scalar J-coupling. We discov-
ered that it is only at the level of three or more input
qubits that entangling transformations are essential®.
The three-qubit DJ algorithm thus affords the simplest
example where quantum entanglement plays a definitive
role in the computation.

Concluding remarks

This article seeks to give a short account of the state-of-
the-art in NMR quantum computing, by demonstrating
experimentally various selective pulse and multi-
dimensional implementations of pseudo-pure states,
novel quantum logic gates and quantum algorithms. In
conclusion, we would like to reiterate that NMR is a
promising technique to illustrate and explore ideas in
quantum computation. The ease with which quantum
circuits can be implemented in multi-pulse FTNMR
experiments and the facility with which spin dynamics
can be manipulated using a variety of techniques is a
major advantage. However, one of the challenges for
NMR spectroscopists at the moment is to increase the
number of qubits available for computation. Efforts are
on in this direction, using liquid crystal solvents, la-
belled nuclei in hetero-nuclear systems, quadrupolar
nuclei and even solid-state NMR techniques. We hope
NMR will be able to better address current problems in
quantum computing such as implementing quantum al-
gorithms with a greater number of qubits, constructing
error correcting circuits for fault-tolerant computing,
and performing large-scale quantum simulations.
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