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In this article I describe the elasticity associated with
liquid crystalline structures. The deviations from a
spatially constant ground state of configurations of
liquid crystals often arise due to imposition of
boundary conditions, from external fields, or from
thermal fluctuations. Since the characteristic
distances involved in these phenomena are large
compared to molecular dimensions, liquid crystals
are assumed to be continuum with a set of elastic
constants. I also discuss a microscopic theory involv-
ing the molecular parameters for the elastic
constants. This theory which is based on the density-
functional formalism, leads to expressions for the
elastic constants of any system with continuous
broken symmetry and are expressed in terms of the
order parameters characterizing the degree and type
of ordering and the pair correlation functions of an
effective isotropic phase.

THE liquid crystals are systems in which a liquid-like
positional order or more appropriately, disorder exists
at least in one direction of space and in which some
degree of long range ordering in orientation of mole-
cules or aggregates formed by association of molecules
is present. The liquid crystalline phases therefore pos-
sess many of the mechanical properties of a liquid, i.e.
high fluidity, inability to support shear, formation of
droplets, etc. At the same time, these phases are similar
to crystals in that they exhibit anisotropy in their opti-
cal, electrical, magnetic and even in some mechanical
properties. The liquid crystalline phases successively
break the continuous symmetries of the isotropic liquid
phase and have symmetries that lie intermediate
between the highest symmetry liquid phase and lowest
symmetry crystal phase. For example, the nematic phase
in which molecules on the average, align along a par-
ticular direction, breaks the continuous orientational
symmetry of the isotropic liquid phase and a smectic
phase'” breaks the translational symmetry along one
direction in addition to orientational symmetry. Sponta-
neous symmetry breaking is ubiquitous and is accompa-
nied by important phenomena: acquisition of rigidity,
the existence of low energy excitations, and the possi-
bility of topological defects™*.

There are two broad classes of liquid crystals: (i)
Thermotropic and (ii) Lyotropic. Thermotropic systems
are usually formed from a simple chemical compound
and the mesomorphic phases appear primarily as a func-
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tion of temperature. In contrast, lyotropic systems are
not pure substances but solutions of unlike molecules in
which one is a normal or mesogenic liquid and the other
is an amphiphilic compound or surface active agent
(surfactant). In the case of lyotropic liquid crystals, the
concentration plays the role that temperature does in
thermotropic liquid crystals; the transition from one
phase to another can be accomplished by changing the
concentration. In this article we concentrate only on the
thermotropic liquid crystals.

In an ideal (or ground) state, a liquid crystal has a
uniform structure characterized by position independent
order parameters. When constraints are imposed on the
sample by limiting its surfaces (e.g. walls of a con-
tainer) and by external fields (magnetic, electric, etc.)
acting on the molecules, the liquid crystal structure gets
deformed. Since deformations cost energy, they are
accompanied by restoring forces which oppose the
deformations. The constant of proportionality between a
deformation and the corresponding restoring force is
known as elastic constant. In a crystalline solid, as is
well known, the material undergoes homogeneous strain
under deformation and restoring force arises to oppose
the change in distance between neighbouring points.
This restoring force, however, cannot exist in a posi-
tionally disordered material (e.g. liquids). But, if the
material is orientationally ordered (e.g. nematic liquid
crystals) restoring torques may arise to oppose the ori-
entational deformations (curvatures). In those phases of
liquid crystals which have both the (partial) positional
and orientational orders, the restoring force and torque
may arise simultaneously. The phenomena which liquid
crystals exhibit under the influence of external fields
are usually distinguished by two characteristics: (i) the
energy involved per molecule in producing these effects
is small compared to the strength of intermolecular
interaction, and (ii) the characteristic distances involved
in these phenomena are large compared to molecular
dimensions. In describing these long-length phenomena,
it is convenient to regard the liquid crystal as a contin-
uum with a set of elastic constants than on a molecular
basis.

The understanding of the elastic constants of liquid
crystals is important for a number of reasons. In the first
place they appear in the description of virtually all
phenomena where the variation of the director (i.e. a
unit vector along the direction of alignment of mole-

CURRENT SCIENCE, VOL. 80, NO. 8§, 25 APRIL 2001



SPECIAL SECTION: SOFT CONDENSED MATTER

cules) is manipulated by external fields (display de-
vices)’. Secondly, they provide unusually sensitive
probes of the microscopic structure of the ordered state.
Valuable information regarding the nature and impor-
tance of various anisotropies of the intermolecular po-
tentials and of the spatial and angular correlation
functions can be derived from the study of the elastic
constants. Knowledge of the elasticity of the liquid
crystals is also needed in the study of the order parame-
ter fluctuations and defect stability in them®. Because of
these reasons the study of the elastic constants has
drawn considerable interest in recent years®.

Liquid crystalline phases and order parameters

A liquid crystalline phase is characterized by the spatial
and orientational configurations of molecules. At the
phase transition point these configurations undergo a
modification, i.e. abrupt change may take place in the
symmetries of the system. The molecular configurations
of most ordered phases are adequately described by the
single particle density distribution p(x). p(x) provides
us with a convenient variational quantity to specify an
arbitrary state of a system. One may consider a varia-
tional thermodynamic potential W(T, P,[p(x)]) as a
functional of p(x). The equilibrium state of the system
at a given 7T and P is described by the density p(7, P, x)
corresponding to the minimum of W with respect to
p(x). This forms the basis of the density-functional
theory’ to be discussed later.

For an ordered phase p(x) can be expressed in Fourier
series and Wigner rotation matrices®.

P =PE2)=pg Y Y 0 (G)exp(Gr)D,,, (), (1)
G

Imn

where the expansion coefficients
21 +1 "
O (@)= = [ dr [ a2p (r ) exp(~iG) D], (@)

are the order parameters, G the reciprocal lattice vector
and py the mean number density of the system. In sim-
ple cases Q;,,,(G) attains the following forms;

Qooo(0) = 1

O00o(G) = g = % j dr j dQp (r, Q) exp(—iG.r)

Quun(®) = (21+1(D}) =222 [ar [dp (r. ) D, ()
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O100(G) = (21 + Dty

211:; 1 jdrjdgp (r,Q)F) (cos6 ) exp(—iG.r). (2)

Here ug for G # 0 measure the degree of order in the
distribution of centers of mass of molecules and are
called positional order parameters whereas (D,l:n>
measure the degree of order in the orientation of mole-
cules and are called orientational order parameters.
There can be up to (2/ +1)* order parameters of rank /
for a given G. 7,5 for [ # 0 and G # 0 measure the cou-
pling between the orientational and translational order.

When the symmetries of the phase and of the con-
stituent molecules are taken into account, the number of
order parameters needed to describe the phase reduce to
few. For example, for a cylindrically symmetric liquid
crystal composed of cylindrically symmetric molecules,
m =n = 0. Therefore the number of orientational order
parameters for a given [ is just one, i.e.

(Dgo) =(P(cos8))y =F,.

It is often enough to use one orientational order
parameter P, (in some cases one may need two P, and
P,) to describe a uniaxial phase made of cylindrically
symmetric molecules. However, many mesogenic mole-
cules do not possess cylindrical symmetry but may have
two mirror planes that contain molecular symmetry axis
and are mutually perpendicular. A prolate ellipsoid or a
rectangular parallelopiped are examples of such a
molecular model. For this case the orientational order
parameters for / = 2 are

— " 1
pP= (Dg()) = E(3cosze -1,

3 1/2
n=(D& =[§] (sin?0 cos20) = (Dy_,). (3)

While the order parameters F, measure the degree of
alignment of molecular axis along the director
(z-direction), the other order parameter measure the
difference in the degree of alignment of a and b
molecular axis along z-direction.

As another example let us consider a mesophase
having symmetry of three mutually orthogonal mirror
planes with inversion symmetry through their intersec-
tion. This is an example of biaxial ordering. If the
constituent molecules also have the same symmetry as
that of the mesophase one needs four order parameters
at /=2 level to describe the orientational ordering.
They are

P, =(D,(Q)% = (P, (cos8))
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3 1/2
N =(D5H(Q)* = [gj (sin?0 cos2y),

3 1/2
£ =(D%(Q)" = [gj (sin’0 cos20)

c= <D222 Q)" = %((1+cose)2(cos 20 cos 2y @)

—sin 20 sin 2y)).

Wahile the first two order parameters, i.e. Fz and n have
the same physical meaning as in the case of a uniaxial
phase. The other two order parameters & and { are the
measure of the biaxial ordering in the system.

For the smectic phase with positional order in one
dimension only (e.g. SmA4 and SmC) we can restrict the
series (1) to

PV =ppY Y 04 (G)exp(iG.2)D,, ). (5)

G Imn

where G, = G.Z is parallel to the layer normal. Again,
eq. (5) can be simplified by using the symmetry of the
constituent molecules and the mesophase. For example,
for a phase having symmetry D.;, X 7(2) X Z and com-
posed of cylindrically symmetric molecules, the singlet
orientational distribution has to depend only on the
angle 6 between the director and the molecular symme-
try axis. Accordingly we have

p.¥)=p, Y 0, cos(2ngz/ d)P,(cosh), (6)
q=0

where G, = 2ngz/d, d being the average interlayer spac-
ing. The prime on the sum indicates the condition that
[ is even. Again Q. = u, represents the positional,
Ono(0) = (21 + 1) B, the orientational order parameters,
respectively. The Q.= (2/+ 1)1, the mixed order
parameter.

In SmA phase the director is normal to the smectic
layer and is therefore uniaxial. It is described by order
parameters u,, ?Z and T;,. The SmC in which the direc-
tor makes a finite angle with the normal to the layer is
biaxial with point group symmetry C,;. To describe the
ordered structure of SmC phase we therefore need the
orientational order parameters of biaxial phase (see
eq. (4)) and corresponding mixed order parameters in
addition to ygs. The chiral SmC (SmC*) phase has struc-
ture which is modulated at scale dimension of the order
of 1 um and larger. The modulated (helical) structure
occurs as a result of a precession of the director tilt
about an axis perpendicular to the layers plane. The tilt
direction is rotated through an azimuthal angle ¢ on
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moving from one layer to the next. In this phase the mirror
plane (of SmC) is lost but the C, axis is present. The C,
axis is a polar axis and because of this SmC* admits the
existence of a spontaneous polarization along it.

The hexatic smectic phases (SmB;, Sml and SmF)
have bond-orientational (BO) order in smectic layers.
One may discuss quantitatively the BO ordering by
defining 6(7) to be an angle between the bond direction
at position 7 and some reference axis. In a plane with
the 6-fold rotational symmetry BO order parameter is
defined as

We(rL) = exp(i60(rL)),

where the angular bracket indicates the coarse-grained
average. The position vector r, is confined in a
2-dimensional space.

In a columnar phase, molecules are arranged in
(liquid) columns and these columns in turn form a
two-dimensional lattice. A number of invariants of this
structure is found'. They differ from each other in
2-dimensional lattice structure, angles between the
director and the axis of columns and the arrangement of
centre of mass of discotic molecules in a column.

Elastic continuum theory

Since the free energy of a system with broken continu-
ous symmetry is invariant with respect to spatially uni-
form displacements that take the system from one point
in a ground state manifold to another, the free energy
density is expanded in terms of the spatial derivatives of
the order parameter fields. The elastic continuum theory
deals only with small spatial derivatives. Consequently,
only the lowest order terms in the expansion are taken
into account. The contribution to f{r) due to deforma-
tion is called elastic free energy density f,(r), which by
definition, is function of the spatial derivatives of the
order parameter fields.

In addition to f;(r) we may have contributions to f{r)
due to external fields (if any) on the sample. Thus, in
general

) = fo + Ja(r) + felr)s (7

where f, and f.(r), represent, respectively, the free
energy density of a spatially uniform state and contribu-
tion due to external fields. Since the liquid crystal
molecules are generally diamagnetic, electrically
polarizable and anisotropic in their magnetic and elec-
tric properties, the application of a field usually help to
align molecules and oppose the distortion. Therefore,
fo(r) is opposite in sign to that of fy(r). Often due to
competition between the alignment favoured by the
field, deformed structures are created. Experimentally,
it is possible to fix the orientation of the molecules at a
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boundary by surface treatment of the container walls and
therefore to generate desired deformations with outside
external field. This ability of creating controlled defor-
mations has put liquid crystals to practical use’.

Elastic free energy density of nematics and
cholesterics phases

A system of a nematic or cholesteric liquid crystal is a
macroscopic medium with broken rotation symmetries.
A uniaxial nematic liquid crystal is visualized as a sys-
tem consisting of rotationally symmetric ellipsoids, the
orientational order of which is denoted by a unit vector
(director) n. The biaxiality of the nematic system can be
thought of as a breaking of rotational symmetry of the
ellipsoids around n. Thus the biaxial nematic phase can
be visualized as a system that breaks all the three rota-
tional symmetries but none of the translational ones and
consists of oriented ellipsoids with different axes, or
equivalently of oriented bricks. Depending on the
discrete symmetries these systems can vary widely. In
principle, all familiar symmetry groups, orthorhombic,
triclinic, hexagonal, cubic, etc. are admissible. We,
therefore, need to derive a general expression for the
free energy without any a priori symmetry considera-
tion. Such an expression has been derived by Stalings
and Vertogen®.

A general expression for the elastic free energy den-
sity of a medium with broken orientational symmetries
is derived assuming that the magnitude of the order
parameter field remains constant independent of position,
only the orientation of the local coordinate frame chosen
to define the orientation of the director field rotates
slightly (weak deformation) in going from one point to
the other and the spatial derivatives of these orthonormal
vectors are small. The resulting expression is

1

where Sy = Sju = da(RiDj + RjcDy) and ky, Kyu and
L, are elastic constants. R,, is the transformation
matrix which makes the local body-fixed frame to
coincide with the space-fixed frame and is described in
terms of Euler angles. D, are rotational invariants
formed by transformation matrix. Thus

1
Dlj = EgjklRiO(RkB aaRlB N

where g, is the Levi-Civita symbol. The elastic con-
stants satisfy the relations: Ky = Ky and Ly = L.

The first term of eq. (8) represents the contribution to
the elastic free energy density due to the linear first-
order terms in the expansion of free energy density in
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terms of the spatial derivatives of the order parameter
fields and contains three surface terms. The second
arises due to contributions from the quadratic first-order
terms and the linear second-order terms and contains six
surface terms which are due to quadratic first-order
terms. The last term of eq. (8) has 18 surface terms that
are due to linear second-order terms.

The number of independent elastic constants reduce,
often drastically when symmetry requirements of a
given system are imposed. Under the symmetry opera-
tions elastic constants do not change. This means that,
in mathematical terms, number of systems of local basis
vectors connected by symmetry operations lead to the
same elastic constants, i.e.

ij 0 ijk

where constants with prime are for new rotated frame
connected with the previous one by symmetry opera-
tions.

For example, for a uniaxial system with basis vector n
along the axis of continuous rotation symmetry, the
following constraints should be satisfied for a system of
D, symmetry: (i) f{7) must be invariant in the continu-
ous group of rotation about the local n(r), and (ii) fA»)
must be even in n(r) as the state n(r) and —n(r) are
indistinguishable.

These requirements lead to the following well known
Frank expression for the chiral uniaxial nematics

fd(r):k(n.V><n)+%K1(V-“)2
1 2 1 2
+5K2(n.V><n) +5K3(n><V><n)

+%K4V.[(n.V)n—n(V~ll)]

+%K5V.[(n.V)n +n(Vn)]. )

This equation has four bulk and two surface elastic
constants. Since surface terms do not, in general,
contribute to bulk properties, they are dropped. They,
however, play important role in surface properties of
liquid crystals and are attracting lot of attention in re-
cent years9. Information about anchoring energy can be
derived from their measurements. The cholesteric liquid
crystals have continuous symmetry group of D, and
exhibit helical ordering on a macroscopic scale. Taking
qo = k/K, the (bulk) free energy density for a cholesteric
phase can be written as

) = fo () + £ (),
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where

fo= 1o (r)—%qué

and

Py = %[Kl(v.n)2 +K,(n.Vxn—gq,)* +K;(nxVxn)?].

(10)

Thus the state of lowest free energy density has a finite
twist

n.V xn = g,

while other deformations are zero. This twist has full
pitch of 2m/q, but since n(r) and —n(r) are physically
indistinguishable, the physical period of repetition is
T/qo. The twist term in f;b) (r) can be considered to be
a contribution due to deformation from this uniform
helical structure.

For a uniaxial nematic phase of D., symmetry k=0
and

()= %Kl (Vn)? +%K2 (n.Vxn)* +%K3 (nxVxn)*.
(11)

This is standard expression for the elastic free energy
density associated with distortion of the director field
n(r) for a nematic liquid crystal in the absence of chiral
or polar effects. The term (V.n)* called splay,
(n.V x n)* twist and n x V x n) bend.

A biaxial nematic phase has two-fold (rotation or
inversion) in three mutually perpendicular direction.
The point groups of an orthorhombic system corre-
sponds to D, or (222), Cyy or (mm2) and Dy, or (mmm).
When eq. (8) is simplified with this requirement, one
gets expression for the elastic free energy density which
has three chiral elastic constants, twelve quadratic first-
order bulk elastic constants, three quadratic first-order
surface elastic constants and three linear second-order
surface elastic constants. The three chiral terms vanish
for point group symmetry D,;,. We, therefore, need 12
bulk elastic constants to describe biaxial nematics of
D5, point group symmetry within the framework of the
elastic continuum theory.

Since f; must be positive in order to give stability for
the uniformly aligned state, all the K’s must be positive.
Their values can be obtained from a theory which links
the continuum theory with a microscopic theory including
the molecular parameters. From the experimental data'® of
the Frank elastic constants one finds that for rod-shaped
molecules K is always the smallest of the three;

K K
05<=2<3.0, 0.5<—2<0.8.
1 Kl
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But for the discotic nematic, K, is the largest and Kj;
smallest, i.e. K, > K; > K;. The value of these constants
is found to depend on the molecular length-to-width
ratio but not on dipole moment, if any, of constituent
molecules. For nematics that show a smectic phase at
lower temperature a presmectic stiffening of K, and Kj
is observed.

Smectics

Smectics have liquid-like structure along the plane of
the layers and respond like solids to a force perpendicu-
lar to the layers. These features of smectics impose
certain restrictions on the types of deformations that can
be created in them. As a result, the continuum theory of
smectics becomes more complicated compared to that
of nematics discussed above. One may, however, take a
simpler view and distinguish between two essentially
different situations: one is when the thickness of the
layers is strictly invariable, but they may have any cur-
vature. The other is when their curvature is small and
relaxed by the variation in thickness of layers.

An undeformed smectics has parallel and equidistant
layers. When some small amplitude long-wavelength
distortions are imposed on this ideal state, layers may
get displaced and curved. Let u(x,y,z) represent
displacements of the layers normal to their planes. A
layer at z; before displacement is now at

z(x, ¥) = zo + u(x, y, 2).

One can easily see that a uniform displacement provides
a uniform # and this does not change the energy.
Furthermore, any spatial distortion of u that corresponds
to a rigid rotation of the layers must have zero energy.
It is easy to realize that the first-order derivatives paral-
lel to the smectic layers, i.e. du/dx and du/dy correspond
to the rigid rotation of the layers. The second-order
derivatives of u which correspond to a curvature of the
planes contribute to distortion free energy.

Wahile the elasticity of smectic (Sm) 4 in the limit of
weak deformations is adequately described in terms of
displacement field u(x, y, z), the other smectic phase
may need additional variables.

Sm A

In Sm A the director n is normal to the layers. Since, as
stated above du/dx and du/dy correspond to a simple
rotation of the smectic layers, it follows to second-order

Ju Ju
n,=——/1+—|,
ox oz

du du
n,=——I|1+—1,
7 dy oz
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1 2
n,=1-—(V u)",
z 2( J_)

where
u
ox
Viu= u
oy

This equation simply states that at each point in the
sample n is normal to the layers which leads to the
interesting consequence that n.V xn=90. Thus, the
twist deformation that was allowed in nematics becomes
forbidden in Sm A. Though bend deformation in Sm A4 is
not strictly prohibited, its role is negligible. For most
practical purposes, the elastic properties of Sm A4 is
described by two constants K and B,

2
fd(r):%K(V.n)z +13[8—”] . (12)

2 |oz

The first term of this equation represents the splay
deformation as in a nematic phase and the second
compression (dilation) of the layers. Since B has the
dimension of (energy)/(length)’ and K has dimension of
energy/length, it, therefore, useful to associate a length
parameter A defined as A = (K/B)"*. A is comparable to
the layer thickness. In the vicinity of Sm A4 to nematic
transition, B tends to zero and therefore A infinity.
Eq. (12) can be generalized to d dimensions by allowing
V. be derivative in the (d—1) dimensional space perpen-
dicular to n.

Sm C

The director n in Sm C is tilted with respect to the layer
normal. Its projection on the smectic plane, director ¢
may rotate independent of displacement u, without
changing the free energy. The knowledge of the rotation
of the director ¢ is needed to specify the state of Sm C.
We therefore have two variables: (i) the displacement of
layers normal to their planes u(x, y, z) (as used in Sm A)
and (ii) a rotation Q, about the normal to layers which
specify the location of director ¢ in the smectic plane.
We choose a space-fixed coordinate frame such that
z-axis is along the normal to the unperturbed smectic
layers. The system is described by (i) The angle Q, of
director ¢ with respect to ox-axis, and (ii) the vertical
displacement u of the layers whose derivatives

Q. :a_u and Q, =
dy

_a_u
ox

represent small angles of rotation about x- and y-axis,
respectively.
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The elastic free energy density must be function of
the derivatives of Q, since as argued in the case of Sm
A, a rotation of a whole must not cost energy. On the
other hand, because of symmetry of Sm C, the free
energy density must be invariant of the simultaneous
transformations x - —x, y - —y and z — —z (due to
centre of symmetry) and by the transformation y — -y,
the vertical xoz being a plane of symmetry. This leads
to’

S = M+ faOH)+f O+ 40),

where

1 1
Jac(r)= 531 (Qz,x)z + EBz (Qz,y)z

1
+EBB (Slz,z)2 + BI3QZ,JCQZ,Z >

1 1 1
faoo=5A@an+5449%gz+5@mﬂﬁﬂ%

fdck (l") = Clgx,xQz,x + CZQx,sz,y ?

mvhém? (13)

Here v = du/dz describes the variations in the thickness
of layers and &, = dQ,/dx;. f,. represents the contribu-
tion arising due to distortion of director ¢ while fy is
associated with curvatures of layers. f,. represents the
contribution arising due to coupling of different
deformation modes and fj; represents the contribution
due to variation in layer thickness as in Sm A. The
expressions for f;., fu and fy. given above can be
derived using the formalism of orientational elasticity
discussed above.

Sm C*

Since Sm C* has no inversion symmetry, its elastic free
energy density has linear terms. In terms of the Q vector
field

1
f; )(r):DIQz,x +DZQx,x+DBQz,z'

Out of the three terms, the term D; is most important as
it corresponds to simple twist of director ¢. The term
D, corresponds to bend of director ¢ while the D, tends
to transform a flat layer into a twisted ribbon. The terms
D, and D, are expected to be insignificant compared to
Ds term.

If qo = —(D3/B;) where B; is defined in eq. (13) the
contribution to f,.(r) for Sm C* is modified to
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1 1
Jac(r) = 531 (Qz,x)z +EBZ(Qz,y)2

] (14)
+ EBB (Qz,z + qO)z + BI3QZ,JCQZ,Z

while other terms of eq. (13) remain same. Thus the
ground state of a Sm C* has a helical structure.

Sm B

Sm B, are characterized by six-fold modulation of the
density—density correlation function in the layer direc-
tion. One can rotate the six-fold modulation pattern (i.e.
bond-order) independent of a layer displacement u
around normal to the layer. Therefore we need two
variables u and Qz to describe the elastic theory of
Sm B;. Thus

] 2. ¥ (oo Y| 1 (oo}
K z 22y el A aaE
Ja(r) 5 J_[ax]"’_[ay] 3 [82]

2 2 2V
+lB a_u +1KJ_ a_u+a_u X
2 82 2 axz ayz

The expression for the elastic free energy density for
Sm F, Sm [ and Sm K are similar to that of Sm C as the
symmetry of these phases are exactly that of Sm C.
Difference can only be quantitative.

(15)

Columnar phase

In a columnar phase, molecules are arranged in columns
and these columns in turn form a two-dimensional
lattice. The two basic deformations which contribute to
elastic free energy of this phase are (i) the curvature
deformation (or bending) of the columns without distor-
tion of lattice, and (ii) lattice dilation (compression) and
shear without column curvature.

Deformations (ii) are the usual modes of deformation
of a two-dimensional lattice. The coupling between (i)
and (ii) can be adsorbed into the bend term by rescaling
the bend elastic constant and therefore, the elastic free
energy density for a columnar phase can be written as

1 0%u ER ’ 1 —{Ou. ou :
F 0 Ty o 2 I e 2 I B e S
2 oz 2 | dx oy

Jz
ou, ¥ ou, ¥
LG O [ O (g
2 ox dy dy  ox
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where B and D are the elastic constants for the defor-
mations of a two-dimensional lattice (In the notation of
the standard crystal elastic theory, BT:%(C11 +C),) and
Dz%(C11 —C},)). K; is the Frank constant for the
curvature deformation (bending) of the columns.

The experimental procedures used to measure the
elastic constants of liquid crystals are rather delicate
and involved. As a result, most of the efforts made so
far are confined to simple phases, namely, uniaxial
nematic and Sm A4 phases. Even for these systems the
results reported by different workers do not agree with
each other.

The experimental methods used to measure the Frank
elastic constants are based on (i) Freedericksz transi-
tion, (ii) light scattering, (iii) alignment—inversion walls
and (iv) cholesteric—nematic transition'". Any of the
anisotropic properties, such as the birefringence, dielec-
tric permitivity or the electrical or thermal conductivity
can be used to measure the average state of the director
in the sample. The simplest but perhaps most basic
experiment for Sm A consists in imposing a stress on
one of the boundaries of a Sm 4 homeotropic sample
and measuring how it is transmitted to the other bound-
ary. It is, however, more convenient to impose a
displacement'? 8d. The strain ou/dz is simply given by
8d/d) and the transmitted stress by B (8d/d). This
experiment thus provides a direct measure of elastic
constant B . As has been emphasized above, in Sm C we
have extra variable €, in expansion of elastic free
energy. The free-standing film geometry is particularly
well suited for singling out this variable'” and measur-
ing corresponding elastic constants.

The value of the elastic constants can be obtained
from a theory which links the continuum theory with a
microscopic theory involving the molecular parameters.
Such a theory has been developed using the formalism
of density functional theory®'* which I now describe.

Density-functional theory for elastic constants

The elastic free energy density is derived from the
excess Helmholtz free energy arising due to intermo-
lecular interactions'®. In the density functional formula-
tion the free energy of a system is expressed in terms of
the direct correlation function of the medium®. Taking a
reference system characterized by the singlet distribu-
tion p,(x) the excess free energy of a system of singlet
distribution p(x) is expressed as'"

BAALp1= BAlp1-BAlp, 1= BAdlp, 1~ [dxiAp(x,)

1
jdsc(l) (x;5[sp, 1) - jdxljdxzp (xAp(x,)
0
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1 1
j dss j ds'e® (x;,%,53[sp (x1.5H]) (17)
0 0

where
BAlp]= B4, [p]1+ BAA[P]

and
P4, [p]= jdxp (x){In(p(x)A) - 1}.

Here PA,[p] is the free energy of an ideal gas of density
distribution p(x) and A is the cube of thermal wave-
length associated with a molecule.

p(x,5)=p,(x)+5Ap(x),

where Ap(x) = p(x) — p,(x).

The function ¢ and ¢ appearing in eq. (17) are,
respectively, the one- and two-particle direct correlation
functions of the medium. For a nonuniform system they
are functional of p(x) which we, whenever essential,
indicate by square brackets. The parameter s (and s”)
characterizes a path in the density space along which
integration is performed. Because of the existence of
functional A[p], the result is independent of path of
integration.

If the reference density p(x) is taken zero everywhere,
we find from eq. (17)

padrp] = [ax, [axp(xpeo)c ), (19)

where
1 1
cx1,%,) = [dss [dse® (x,, 53055, 1)
0 0

Note that eqs (17) and (18) are exact but need the val-
ues of ¢!V and ¢. Assuming that one can calculate the
values of ¢® for any density along the path of integra-
tion, any one of the above equations provides a useful
way for calculating PAA. It is, however, only for a uni-
form fluid that ¢® is found either by solving the inte-
gral equation theories of the liquid state or by computer
simulations. It is therefore, necessary that these equa-
tions be written in terms of correlation functions of a
uniform fluid. This is done in two ways; in one of the
methods we choose pAx)=ps the density of an iso-
tropic liquid which has chemical potential equal to that
of the ordered phase and perform the functional Taylor
expansion of ¢ and ¢® functions in the ascending
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powers of Ap(x) = p(x) — p;- The expansion coefficients
are the higher-order direct correlation functions of the
isotropic fluid. Using the symmetry of the system and
neglecting the terms which involve c(”)(pf) with n > 3,
the following expression for the deformation free en-
ergy is obtained

PA4,[p]=P(A4p]-AAd[p,])

1
= —Ejdxljdxz[Pd(X1)Pd(Xz)

—Po(x)Po(X2)]ey (X1,X25P /),

(19)

where AA[pe] and po(x) are, respectively, the excess
free energy and singlet distribution of the undistorted
ordered phase.

In an alternative approach one uses eq. (18) to calcu-
late the excess free energy of a nonuniform system and
replaces the unknown function ¢® by the direct pair
correlation function of an effective isotropic reference
fluid. In a scheme which is an extension of the scheme
of Denton and Ashcroft'® proposed for atomic system to
the molecular system, one gets17

1 _
PLp1=—— [ax [ dxsp (xp)p (xa ) (x1, 323,

where po is the averaged density of the ordered phase
and o is a weight factor. p[p] is viewed here as a func-
tional of p(x). To ensure that the approximation becomes
exact in the limit of a uniform system, the weight factor
o must satisfy the normalization condition

jdxzw(xl,xz; p)=1.
Requiring that o satisfy

. 87(BAd)
e . =1 Snlo \SAfe Y
¢ (X1:%2; Po) 'y Op (x)8p (x,)

exactly, one finds

1
2Ad(P)

_ . 1_ ,_
X[B 1c<2>(x1,x2;p)+7pAa (p)}

—O(X),X55p) =
(20)

where Aa(p) is the excess free energy per particle and
primes on it denote derivatives with respect to density.
The expression of deformation free energy found on this
way is
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1
BAd, 01 = [dx, [axalp(x)pa ()

- Po(X1)Po(Xz)]C(2)(X19Xz; p).

€3y

The elastic constants are defined by the second-order
term of the expansion of the free energy of the
deformed state around the free energy of the equilib-
rium (undeformed) state in the ascending powers of a
parameter, which measures the deformation. The first
term of this expansion is balanced by the equilibrium
‘stresses’ of the undeformed state one defines the elastic
free energy per unit volume as

E 1
7f’=7{AAd[p]+P(Vd—V)]},

where ¥, is the value of the deformed sample and P the
isotropic pressure.

In the limit of long-wavelength distortion the magni-
tudes of the order parameters are assumed to remain
unchanged. The changes occur in the direction of the
directors making them position dependent and on the
reciprocal lattice vector GG. The reciprocal lattice vector
G, of the strained structure is related to G of the un-
strained structure as

G,=(1+¢)'G,

where € is a strain matrix which governs the change in
position. Thus for a deformed state

Pa()=p0 Y Y O (G)eXpG 4 1)D}, (2,).

G Imn

All angles without subscript d refer to a space fixed
(SF) frame (see Figure 1). Let the molecule 1 be at r,
from the origin where the principal director n(r,) makes

R*AR
A
- )
' 4 ninR) , (
‘n““ ‘ ’ _.'n}»rQJ
ey - -
Y S v
. P ff“?.z- - - -
T - #
e . r
N, - X
. 2
7+ T >
Z 8
o -
i ! 2
A f ¢
- / 2d
t/
l _ bh > Y
» m

Figure 1. Deviation angle for director triad at r, with respect to
director triad at r;.
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an angle y with the SF Z-axis and molecule 2 at dis-
tance r, from the origin, where n(r,) represents the
direction of the local principal director. The rotational
property of generalized spherical harmonics may be
used to express D,l,m (,) in terms of the angle Q with
respect to the SF frame and Ay which is the angle be-
tween the principal directors at r; and r,.

As shown in ref. 18, the harmonics Df,m (Ay) can be
expressed in terms of elastic variables which also
appear in expressions of continuum theory discussed
above. By comparing the resulting expressions with the
corresponding expression of the continuum theory,
expressions for elastic constants of different ordered
phases can be obtained'®'?. These expressions for the
elastic constants contain order parameters which specify
the nature and amount of ordering in the given phase and
the structural parameters which involve the direct pair
correlation functions of an effective isotropic liquid.

Discussions

We now have a microscopic theory involving the
molecular parameters for elastic constants of any
ordered phase including plastic crystals, liquid crystals
and crystalline solids. However, to obtain the numerical
values of the elastic constants, we should know the
relevant order parameters of the phase and direct pair
correlation functions of an effective liquid consisting
the molecules of the system. These quantities appear in
the theory as input information.

The values of the direct pair correlation functions as a
function of intermolecular separations and orientations
at a given temperature and pressure are found either by
computer simulations or by semi-analytic approximate
methods®. In the latter approach one solves the
Ornstein—Zernike (OZ) equation

h(1,2)—c(L2)=y(L2)=p, jc(l,3)[y (2,3)+¢(2,3)]dx 5,

where i = x; with suitable closure relations such as the
Percus—Yevick (PY) equation, hyper-netted chain
(HNC) equation, mean spherical approximation, etc.
Approximations are introduced in the theory through
these closure relations. Note that these equations are
highly nonlinear and solutions are often difficult. The
method commonly adopted involves expansion of the
pair correlation functions in a series of suitably chosen
angle dependent basis functions. When such expansions
are substituted in the OZ equation, it reduces to a set of
algebraically coupled equations relating the harmonic
coefficients of the direct and total correlation functions.
These equations include one variable (» or k) instead of
the five or more variables appearing in the original OZ
equation.
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It may, however, be noted that in any numerical
calculation one can handle only a finite number of the
expansion (harmonic) coefficients, for each orientation
dependent function. The accuracy of the result depends
on this number. As the anisotropy in the shape of mole-
cules (or in interactions) and value of the fluid density
increase, more harmonics are needed to get proper
convergence. Unfortunately the error arising due to
truncation affect the values of correlations near the
contact point which contribute significantly to the elas-
tic properties.

The other difficulty which arises in applying the
theory to real systems is related to the potential energy
of interaction between mesogenic molecules. The
mesogenic molecules are large and have groups of
atoms with their own local features. One way to con-
struct the potential energy of interaction between two
polyatomic molecules is to sum the interatomic or site—
site potentials between atoms or between interaction
sites. However, for mesogenic molecules there are too
many terms in this sum to be practical. Moreover, the
dependence of interactions on molecular orientations in
this expression is implicit so that it is difficult to use it
in calculation of angular correlations which give rise to
liquid crystals.

In another and more convenient approach, one uses
rigid molecule approximation in which it is assumed
that the intermolecular potential energy depends only on
the position of the centre of mass and on their orienta-
tions. This means that the vibrational coordinates of the
molecules are dynamically and statistically independent
of the centre of mass and orientation coordinates and
that internal rotations are either absent or independent
of the position and orientation coordinates of molecules.
Therefore, this kind of approach ignores the flexibility
of molecular structure which plays an important role in
the stability of many liquid crystalline phases.

In view of various complexities in intermolecular
interactions, one is often forced to use a phenomenol-
ogical description, either as a straightforward model
unrelated to any particular physical system, or as a basis
for describing by means of adjustable parameters fitted
to experimental data for interaction between two mole-
cules. Most commonly used models are hard-ellipsoids
of revolution, hard-spherocylinders, cut-sphere, Kihara

core model, Berne—Pechukas and Gay—Berne models.
The future direction of works in this area are likely to
focus on using more realistic potential models.

Before 1 end I would like to mention that the theory
discussed above is for systems consisting of short
length (~30-100 A) mesogenic molecules. The wave-
lengths associated with the distortions are assumed to
be much larger than the molecular lengths. As a result
the elastic constants became wave-vector independent.
However, in polymeric liquid crystals the molecular
length (~1000 A) is of the order of the size of the
wavelength of distortions. One therefore needs for this
case a nonlocal theory of elasticity21 which is yet to be
fully developed.
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