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Quantitative traits in humans are generally deter-
mined jointly by interacting genetic and environ-
mental factors. For many traits that are highly
heritable, environmental factors are generally found
to be relatively unimportant. Genes underlying such
traits may vary from one to a few, which explains most
of the variance in trait values. Such genes are known
as ‘major genes’. It is of interest and importance to
determine the locations of such major genes on chro-
mosomes. This is done by statistical analysis of data on
members of families or on sib-pairs. The data on each
individual belonging to such sets of relatives comprise
measurement of the value of the quantitative trait and
genotypes at one or more marker loci whose chromo-
somal locations are known a priori. Various statistical
approaches have been developed for this purpose. This
paper provides a brief overview of some of these
approaches and presents relevant extensions to more
complex, but more realistic scenarios. The perfor-
mance of the proposed methods has been examined
using computer simulations and it has been shown that
the proposed approaches perform efficiently under a
wide variety of scenarios.

MANY human quantitative traits such as blood pressure,
are known to be determined primarily, though not exclu-
sively, by inherited genetic factors. Early biometrical
geneticists considered that such traits were determined by
‘blending inheritance’. However Fisher' showed that the
inheritance of such characters can be modelled under the
Mendelian paradigm of discrete genes. Thoday” first
clearly laid the conceptual foundation of locating on
chromosomes, the gene(s) that may be involved in the
determination of quantitative traits. Considerable deve-
lopments have taken place in mapping quantitative trait
loci (QTL mapping). All methods rely on identifying
cosegregation of alleles or associations between allelic
differences at a genetic marker locus (whose chromo-
somal location is known a priori) and of alleles at a
putative trait locus or differences among individuals in
phenotype. The methods vary in statistical approach, for
example, likelihood vs variance components, or in data
requirement, for example, observations on pairs of rela-
tives or on all members of nuclear or extended families. A
key parameter used in linkage analysis’ —the class of
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statistical techniques used for localization of genes on
chromosomes —is the recombination fraction between a
putative QTL and the marker locus. The recombination
fraction is a function of the physical distance (measured in
number of base pairs on DNA) separating the putative
QTL and the marker locus. A reliable estimate of the
recombination fraction provides the basic evidence
needed to map a QTL. Although statistical methodologies
for mapping genes determining dichotomous qualitative
characters in humans are well-developed, the develop-
ment of such methodologies, especially those that are
statistically and computationally efficient, for human
quantitative traits is an active area of current research in
human genetics. It has been emphasized that many traits
that have traditionally been treated as qualitative are
inherently quantitative in nature. Often for ease of ana-
lysis, quantitative data are dichotomized using a threshold.
This results in loss of information and is statistically
undesirable. An example is hypertension/normotension
which is a dichotomized trait on underlying quantitative
traits (systolic and diastolic blood pressures).

Experimental studies on quantitative characters in
plants*, dairy cattle’’, etc. have revealed that quantitative
traits may often be determined by multiple loci. There is
also increasing evidence® ' that alleles at a locus determin-
ing a quantitative trait may exhibit dominance over other
alleles within that locus and may interact epistatically
with alleles at other loci controlling that trait. Although, a
quantitative trait may be determined by multiple loci,
often the effects of the loci on the trait are highly variable,
so that it may suffice to consider only those loci which
have large effects, which are generally few in number, and
are, therefore, more easily mapped than those loci with
small effects. Such factors (dominance, epistasis, etc.) are
often ignored'” to simplify statistical analysis. However,
in view of the experimental observations cited above, it is
necessary to consider multiple loci and the possibility of
epistatic interactions among the loci. In this paper, we
propose two computationally simple statistical techniques,
by extending some traditional techniques, for mapping
QTLs when the trait is actually determined by a set of
unlinked, autosomal, epistatically interacting loci. The
two methodologies pertain to two different types of
data; nuclear families and sib-pairs. We also elaborately
examine the performance of these modified and extended
methodologies from various statistical considerations which
results in insights on the performances of these methodo-
logies under various scenarios.
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We first consider parental and offspring data separately
on families in which only one parent is heterozygous at
the marker locus and those in which both parents are
heterozygous and suitably modify the estimator proposed
by Jayakar® based on variance components. We show,
based primarily on the widths of confidence intervals, that
for a wide range of parameter values the proposed esti-
mator is quite efficient. Additionally, we suggest a non-
parametric procedure for testing null hypotheses regarding
0 and show that the power function of the test has
desirable statistical properties. We also show that ana-
lyses of data ignoring epistatic interactions, when in fact
these are present, may lead to grossly inaccurate infer-
ences about linkage. However, the variance of the
proposed estimator is found to be larger than that of the
maximum likelihood estimator (m.Le.). Our results provide
statistical insights on the major reasons why Jayakar’s"
estimators may not perform well in practice.

Our second data type includes quantitative trait values
of sib-pairs and their estimated identity-by-descent (i.b.d.)
scores at the marker locus. A pair of related individuals
shares an allele i.b.d. if that allele has a common ancestral
source. For sib-pairs, the common ancestors are their
parents. One of the popular statistical techniques to ana-
lyse such data is based on the regression of squared
difference in trait values of sib-pairs on their estimated
marker i.b.d. scores. Under a very general set-up, even in
the presence of dominance and epistatic effects, Tiwari
and Elston'* have extended the classical regression method
for QTL mapping when the trait is controlled by two
unlinked, autosomal, biallelic loci. Since this general model
involves too many parameters, insights into effects of
variation of individual parameters on the performance of
the method were difficult to obtain. We, therefore, examine
the performance of the method under the specific digenic
interaction model'’. We also extend the method to the case
of a quantitative trait that is controlled by multiple unlinked
loci. The competing strategies of analysing the data by
simultaneous, as opposed to sequential, consideration of
the markers are quantitatively assessed using simulation
studies. As is intuitively expected, the simultaneous
strategy is found to be more optimal and cost-effective.

Nuclear family data

Based on observations on members of nuclear families,
i.e. observations on parents and their offspring, Jayakar'
derived an estimator of O, the recombination fraction
between the putative trait locus (a single locus is assumed
to determine the quantitative trait) and a marker locus,
as a function of the variances of the quantitative trait in
the population and among offspring of specified marker
genotypes within and across various parental mating types.
Jayakar assumed that a quantitative character Y is con-
trolled by an autosomal biallelic locus with alleles 4, and
a;. The allele frequencies are p, and g, =1—p;, res-

1146

pectively and the population is in Hardy—Weinberg
equilibrium. Suppose the probability density function of ¥
for the trait genotypes 4,4, 4,a; and a,a, are f, f; and f;,
respectively, where fis are independent of 6. Let the
expectation of ¥ given the trait genotypes be a, B and — «,
respectively and the variance of Y given any trait geno-
type be 67, which includes the environmental variance. It
is assumed that the trait locus is in linkage equilibrium
with an autosomal, biallelic, codominant marker locus
with alleles M; and m;.

To ensure informativeness for linkage, it is necessary to
only consider matings for which at least one parent is
heterozygous at the marker locus. Jayakar distinguished,
at the marker locus, the two types of families, backcross
(MM, x Mym)) and intercross (M ;m; X Mm,). It is obvious
that m;m; x Mym; families can be handled in the same
manner as MM, x Mim, families by relabelling alleles.
Families in which neither parent is heterozygous at the
marker locus are excluded from analyses.

The probability distribution of offspring genotypes at
the (4, a;) locus for various backcross parental genotypic
matings is provided in Table 1.

For any particular parental genotypic mating g (= 1, 2,
..., 11), let m, and Y, denote the probability and value
of the quantitative trait, respectively, for an offspring
of type i; i=1=A4 A MM, i=2=AaMM, i=3=

Table 1. Trait locus mating types among MM x Mm, {(backcross)
parents, mating probabilities and probabilities of trait locus
genotypes among offspring with marker genotype MM

Tg
g Mating type Probability A4, Aay aiai
1 A4 x A4, ot 1 0 0
2
2 A4 % da, Pips %(179) %9 0
3 A4, x a4, pip2 %9 %(1 _g) O
4 414 % aja 20303 0 1 0
aja) x 414, 2
5 Adja x 414, 2pip: 1 1 0
ady; x A14, 4 4
2 2
6 Ajar x 4ia 2pip: %(1,9) % %9
ardy x Aya,
7 A xaid, 2pip3 %9 % Lae
ardy x a14,
8  Adia x aia 2p1p3 0 1 1
ai1d; X aja 4 4
9 aja X Ada i 0 1 1
5 (1-6) 5 0
3
0 1 1
10 aiar x a1, pip; 5 7 (1-6)
11 aja) X aa) p% 0 0 1
2

Probabilities of trait locus genotypes among offspring with marker
genotype M m can be obtained by replacing 6 by (1 — 6) in this table.
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alalMlMl, i=4 :AlAlMlml, i=5 :AlalMlml and i=6
:alalMlml.
Let,

T,=Var {Y,1, Yy, . . ., Yy} = Variance of trait values
among all offspring;

Vo1 = Var {Y,1, Y, Y.} = Variance of trait values
among offspring of marker genotype M, M;;

Vor = Var {Y,s, Y5, Yt = Variance of trait value

among offspring of marker genotype M my;
Vg = Vgl + ng; and

V,= Variance of the trait value Y in the whole
population.

If T=E,T,) and V = E(V,) , then Jayakar showed that:
1

0=—|1-
2

the estimator of O being obtained by plugging in observed
values of 7, ¥, ¥, and G°.

When the family is an intercross (Mim; x Mim,), the
probabilities of different offspring types for various
parental genotypic matings are given in Table 2. As in the
case of backcross, let, for any particular genotypic mating
g(=12,...,10), n, and Y, denote the probability and

Table 2.

quantitative trait value, respectively, for an offspring
of type i; i=1=AA MM, i=2=A4aMM,..
9 =aiaymim.

Let,

B I=

Vgl = Var {Ygla Yg2a Yg3}
Ver = Var {¥,,
Ves = Var {¥,7, Y, Yoo}

3 YgSa YgG}

If Vl = Eg(Vgl)a V2 =
Jayakar showed that:

E,(Vy) and V3 = E(V,3), then

In this section, we modify Jayakar’s estimator of 6 to the
case of a quantitative trait being determined by multiple,
unlinked, epistatically interacting loci. We also examine
the statistical properties of the modified estimator.

We assume that a quantitative trait Y is controlled by L
autosomal biallelic loci. Let 4; and a; denote the alleles at
the /th locus, /=1, 2, ..., L. We assume that the loci are
mutually unlinked and that the population is in Hardy—
Weinberg equilibrium in respect of each of these loci. Let
the allele frequencies at the /th locus be denoted as p; and
q; = 1 —p;. Let the expectation, E£(Y), of the quantitative
character, Y, given the genotypes of the /th locus be oy, 0

Trait locus mating types among M m; x Mm (intercross) parents, mating probabilities and probabilities of trait locus genotypes among

offspring with marker genotypes MM and M m,

(M M) Tg(Mim,)
g Mating type Probability A4, Ara; aiai A4, Aay aia)
1 Ay % A4 1 1 0 0 1 0 0
4 2
2 Ay x Ara 2ip La_ e Lo 0 1 1 0
Aray x 414, 4 4 4 4
3
3 A4y x a4, 2pip2 le l(l—e) 0 1 1 0
a1 x 4141 4 4 4
4 A X awa Wm0 1 0 0 1 0
aja; x 414, 4 2
22
> Aancdan per La-e) Lo 1o Leoa -9 Li2ea-01 Lea-e
22
6 Adian x a4, 2pip2 Lo 1 _ Lo _ Lo _ 0(1-96) 1 _
e Le(1-0) L[1-200-0)] +601-8) L[1-200-0) - [1-20(1 - 9)]
7 aja; X Aia; 2p1pg 0 l(l —9) 1 0 1 1
Aia) X aray 4 4 4 4
22
8 aidixai4 1 52 1 1 2 1 1 1
141 % a1, P Lo Loa o) 7(1-98) 5 8(1-9) S 1-2601-6)] —6(1-6)
9  aia; x aid; 2p1pg 0 1y l(lfe) 0 1 1
a1 X aia; 4 4 A4 1
10 aja) X aja pg 0 0 1 0 0 1
4 2

Probabilites of trait locus genotypes among offspring with marker genotype mm can be obtained by replacing 6 by (1 — 8) in the block correspond-

ing to the genotype M M| in this table.
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and — o, for 4;4;, A;a; and a,a,, respectively, i.e. there is no
dominance at any of the QTLs. We assume that the
variance of Y within each single-locus genotype is the
same. For the /th locus, let this variance be denoted as G;.
In the absence of epistatic interactions, effects of the loci
on E(X) are assumed to be additive. Thus for example,
E(Y | 414\ Ax4, . .. A ) = T 00 E(Y|4,4,454, .. . A7
Arjazar) = Zfz‘lloci —a,, etc. when epistatic interactions
are absent. Since the trait loci are assumed to be unlinked,
the variance of the trait among individuals of any multi-
locus genotype is the same, o’= (5@2 + Gé, where (5@2 =
ZZLZIZG% and Gézenvironmental variance. We use a
simple model of additive epistatic interaction at the dif-
ferent trait loci. This model is prompted by experimental
observations on some plants and animals'® and has been
termed as the digenic interaction model” when L = 2. We
assume that there are epistatic interactions only among
homozygotes between pairs of loci. Between loci i and j
(G#j =1,2,...,L), epistatic interaction effects are
assumed to be: for 4,4,4,4; and a,a;,a;a; the effect is Ay,
for A;4,a;a; and a;a;4,4; the effect is — A;;; the effect for all
other two-locus genotypes is 0. Thus, for example, under
additive epistatic effects,

L L L
EY | ddidody .. Ad) = Y o +Y Y A,
i=1

i=1 j>1
E(Y | 4414245 .. Ap A azar) =
-1 -1 -1 -1
Yo —a, +Y YA =Y A, et
i=1 =l j>1 i=1

For clarity, and to fix ideas, we provide, in Table 3, the
genotypes (), their population frequencies and expecta-
tion of the quantitative trait given genotype [E£(Y | G)], for
L=2.

Table 3. Genotypes (G) of individuals at two autosomal, unlinked,
epistatically interacting biallelic loci, relative frequencies of these
genotypes in the population and expected values of quantitative
trait ¥ corresponding to these genotypes under the digenic
interaction model

G Relative frequency E(Y|G)
A1d 424, pips o+ o+ A
A1414raz 217%}72‘]2 01

Adazan p%q% o) — 02 —Ap
Aaidr4> 2171}7%!]1 (073

AarAran 4p1p2q142 0

Aaazar 2171!]1!]% -0

araidrA4» p%q% - T o —Ap
aja14raz 21721]%1]2 -

aiaiaraz q%q% -0 -0 T A
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We assume, without loss of generality, that the trait
locus (44, a;) is linked to an autosomal biallelic codomi-
nant marker locus with alleles M, and m;. These two loci
are assumed to be in linkage equilibrium. Let the recom-
bination fraction between the loci be denoted as 6. Our
purpose is to estimate O from observations on the
quantitative trait and the genotypes at the marker locus on
members of families.

Since only the (4, @;) locus is linked to (M|, m),
information on 0 is contained only in two locus gameto-
types obtainable upon joint consideration of these two
loci only.

For a backcross family, we define 7, V and V, as in
Jayakar’s derivation. For the model considered, we can
show that:

2T -V
v,-T

S P el (1)
2 V,-T

The estimate of 0 is obtained from eq. (1) by plugging in
observed values of 7, ¥ and ¥,. We note that although eq.
(1) is independent of the parameters underlying the model
governing the trait and marker loci (i.e. as, As, c? and
allele frequencies), the sampling distribution of the pro-
posed estimator of 6 is a function of these parameters.

Similarly for an intercross family, we define V1, V5, V3
and V), as before.

We can show that:

(1-206)°=

2, = +73)
2V, ~7>)

(1-206)=

(2

Before proceeding further, we wish to note that these
computationally simple estimators are analogous, but not
identical, to the estimators obtained by Jayakar'’. The
equations corresponding to eqs (1) and (2) derived by
Jayakar for a single quantitative trait locus, has in the
denominator the term Vp—cf. These equations fail to
hold when o7 is replaced by ZILZIG%, if there are L trait
loci, even in the absence of any interactions.

Test procedure and evaluation of power

Having estimated O, one is obviously interested in testing
the null hypothesis 6 = 0.5. We suggest a non-parametric
test procedure that is analogous to the permutation test.
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For the observed values of the marginal totals of off-
spring, one can generate simulated data under the null
hypothesis 6 = 0.5. Based on the simulated data on a
number of offspring (NOFF), one obtains an estimate of ©
by eqs (1) or (2). When the simulation is replicated a
large number of times (NREP), an empirical probability
distribution of © can be obtained and empirical cut-off
point(s), for a predetermined level of significance, deter-
mined. An inspection of whether the observed value of ©
is outside the interval determined by the empirical cut-off
point(s) provides the decision on rejection of the null
hypothesis.

For obtaining the power at 0 =06,, the simulation is
carried out with 6 = 6, and at each replication, a check is
made whether the estimated value of 0 lies outside of the
interval defined by the empirical cut-off points deter-
mined earlier (using 6 = 6, = 0.5, say). If the number of
replications is n;, then the power at 0, is a/n;, where a is
the number of replications for which 6 =0, is rejected.
For every set of parameter values, these evaluations are
performed with NOFF = 1000 and NREP = 10000. We
emphasize that NOFF is the total number of offspring in
the pooled data set of a particular mating type (backcross
or intercross). If each family comprises 4 offspring, we
are in effect dealing with 250 families.

Mean and variance of ©

To examine the behaviour 6 of the estimators in respect
of variations of values of the underlying parameters

(1, p2, Oy, On, Ap, (52), we perform simulations for
different sets of values of the parameters and evaluate the
means and variances of0 . These results are given in
Table 4. It is seen from this table that the mean values of
& for both backcross and intercross matings deviate more
from the true value of 6 and the variances of O increase
with increase in the value of tlle interaction parameter A,.
Similar deviations in Mean(6 ) and similar increases in
Var(0 ) are observed when (a) the variance 6> of the
quantitative trait increases; (b) the expected value of the
quantitative trait given the genotype at the second trait
locus, o, increases; and (c) when p, deviates frorq 0.5.
Variation in p, has virtually no effect on Mean(6 ) or
Var(0 ). Although for brevity, results for only a selected
number of sets of parameter values are provided in Table 4,
we have verified the above facts for a large number of sets
of parameter values.

Power function

The power functions for different values of 0, separately
for backcross and intercross cases, are depicted in Figures
1 and 2, respectively, for a single set of parameter values
p1=05,p,=05 0,=5 c,=1,A,=1and 6>=1. Tt is
seen from Figures 1 and 2 that the power functions are
very well-behaved for values of 6 in the range 0 <0 <0.5.
For =0 or 0.5, the powers are rather high even for
values of 6 quite close to that specified under the null
hypothesis. However, from a practical viewpoint, this
undesirable fact for the two extreme values of 6 may not

Table 4. Means and variances of estimated values of recombination fraction, 8, each based on 10,000 replications of data simulated at given sets
of values of underlying parameters for backcross and intercross families
Backcross Intercross
2 A A A A
G} Pi 2 o o2 Ap c Mean(6 ) Var(6 ) Mean(6 ) Var(0 )
0.00 0.50 0.50 5.00 1.00 1.00 1.00 0.0121 0.00027 0.0180 0.00049
0.00 0.50 0.50 5.00 1.00 2.00 1.00 0.0122 0.00028 0.0186 0.00058
0.00 0.50 0.50 5.00 1.00 3.00 1.00 0.0128 0.00032 0.0214 0.00080
0.00 0.50 0.50 5.00 1.00 4.00 1.00 0.0132 0.00037 0.0251 0.00114
0.00 0.50 0.50 5.00 1.00 5.00 1.00 0.0136 0.00040 0.0301 0.00169
0.00 0.50 0.50 5.00 1.00 1.00 1.00 0.0121 0.00027 0.0180 0.00049
0.00 0.50 0.50 5.00 1.00 1.00 5.00 0.0139 0.00040 0.0236 0.00097
0.00 0.50 0.50 5.00 1.00 1.00 10.00 0.0158 0.00055 0.0326 0.00196
0.00 0.50 0.50 5.00 1.00 1.00 1.00 0.0121 0.00027 0.0180 0.00049
0.00 0.50 0.50 5.00 5.00 1.00 1.00 0.0165 0.00062 0.0332 0.00213
0.00 0.50 0.50 5.00 10.00 1.00 1.00 0.0214 0.00131 0.0811 0.01463
0.00 0.50 0.10 5.00 1.00 1.00 1.00 0.0121 0.00027 0.0175 0.00050
0.00 0.50 0.20 5.00 1.00 1.00 1.00 0.0123 0.00029 0.0181 0.00051
0.00 0.50 0.30 5.00 1.00 1.00 1.00 0.0122 0.00028 0.0183 0.00053
0.00 0.50 0.40 5.00 1.00 1.00 1.00 0.0117 0.00026 0.0179 0.00050
0.00 0.50 0.50 5.00 1.00 1.00 1.00 0.0121 0.00027 0.0180 0.00049
0.00 0.10 0.50 5.00 1.00 1.00 1.00 0.0178 0.00053 0.0300 0.00119
0.00 0.20 0.50 5.00 1.00 1.00 1.00 0.0135 0.00033 0.0215 0.00067
0.00 0.30 0.50 5.00 1.00 1.00 1.00 0.0124 0.00029 0.0184 0.00051
0.00 0.40 0.50 5.00 1.00 1.00 1.00 0.0120 0.00026 0.0182 0.00049
0.00 0.50 0.50 5.00 1.00 1.00 1.00 0.0121 0.00027 0.0180 0.00049
0.10 0.50 0.50 5.00 1.00 1.00 1.00 0.0983 0.00081 0.1028 0.00166
0.30 0.50 0.50 5.00 1.00 1.00 1.00 0.2888 0.00084 0.2982 0.00582
0.50 0.50 0.50 5.00 1.00 1.00 1.00 0.4228 0.00072 0.4135 0.00750
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imply a serious limitation of the test procedure. As we
have already noted in an earlier subsection, for both back-
cross and intercross matings, at these two extreme values
of 0, in the vast majority of replications the estimated 6
is quite close to the true 6. We have evaluated the power
functions for many other sets of parameter values; the
results are not provided for brevity, since the general fea-
ture described above is true for the other sets of values also.

Effect of ignoring epistatic interactions

We investigate the effect of ignoring epistatic interactions
when in fact these are present, using the following stra-
tegy. For a set of parameter values 0, p;, p,, O, O, o’
and A, = 0, we first obtain, based on 10,000 simulation
replications, the 95% confidence interval of 0 using the
procedure outlined earlier. Then, for the same fixed values
of 0, p1, pa, Gy, 0, and G2, but with A, = Ag#0, we
generate 1000 simulated data sets. For each such simu-
lated data set, we estimate © using eq. (1) or eq. (2), as
appropriate and check whether 0 is included in the confi-
dence interval obtained earlier (with A, = 0). Inclusion of
0 in the confidence interval implies that the estimate of 6
is not significantly adversely affected in spite of ignoring
the effect of epistatic interaction, when in fact it is present.
For several sets of parameter values, we find, using this
procedure, that for most sets of parameter values, the

percentage of inclusion of 0 in the appropriate confi-
dence interval varies from about 40% to about 60%. For
example, for backcross families with p; =0.5, p, =0.5,
=5 0,=1, A, =1 and 6° =1, this value is 47.3%.
Thus, there is a strong adverse effect of ignoring epistatic
interactions for estimating ©, when in fact such inter-
actions are present.

Comparison with the maximum likelihood estimator

Since the character Y is controlled by L trait loci, the
number of possible trait genotypes of an individual is 3”.
Let the probability density function of Y given these
trait genotypes be fi, f5, ..., fit, respectively. Then the
likelihood of the offspring data given the parental data is:

LO)=TTr@)m;.
=1

where # is the number of observations, ftakes values f, f,
... f3r and 7; is the probability of the quantitative trait.

We note that, since the only trait locus linked to the
marker is (4, a;), T; can be interpreted as the probability
of the quantitative trait with respect to this locus only. As
mentioned earlier, f(Y;) is independent of © and thus the
m.l.e. of 0 turns out to be a simple function of the number
of observations in those genotypic classes for which 7; is
not independent of 6.
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Figure 1.

Power functions of the proposed test procedure for backcross families {(with NOFF = 1000} at simulation parameter values p; = p» = 0.5,

a1=50=1,A,=1,6°=1and(a) 9=0, ()8 =0.1, (c) & = 0.3 and (d) 6 = 0.5.
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We compare the efficiency of the proposed variance
method in a two trait loci set-up with that of the maximum
likelihood approach through simulation studies. We per-
formed simulations for parameter values of o} = 5; o, = 1;
6’=1;A,=1;p,=0.5,03,0.1; p,=0.5and 6 =10, 0.1,
0.3, 0.5 separately for backcross and intercross matings.
The results are given in Table 5. It is seen that the m.l.e.
of 8 has more precision than the modified-Jayakar estima-
tor in terms of variance of@ . At the boundary values of 6,
i.e. 0 =0 and 6 = 0.5, the mean of the m.Le. is also closer
to the true value of 6 than the modified-Jayakar estimator.
We note that the m.l.e. of © is independent of the trait
values of individuals, while Jayakar’s estimator is not.
However, in spite of using the additional information
on trait values, the relative efficiency of the modified-
Jayakar estimator is much lower than the m.l.e.

Sib-pair data

Haseman and Elston'’ proposed a regression-based QTL
mapping method using sib-pair data. Their mapping pro-
cedure was based on squared difference in quantitative
trait values of sib-pairs (Y) and their estimated marker
i.b.d. scores (7, ). They obtained the regression equation:

E(Y|t,)=0+pL,,
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Figure 2.

where there is no dominance in the trait and P is a one-to-
one function of the recombination fraction 0, between the
QTL and the marker locus. The test for no linkage (i.e.
0 = 0.5) is equivalent to testing p = 0.

We start with the simple digenic-interaction model
described earlier and in Table 3, where the QT is deter-
mined by two unlinked, autosomal, epistatically inter-
acting biallelic loci, and then extend it further to multiple
QT loci. We note that for two loci, our model is a special
case of the more general model considered by Tiwari and
Elston'*. They assumed that the QT is controlled by two
autosomal, unlinked, epistatically interacting loci with domi-
nance present as each locus. In their model, the epistatic
interaction between loci which are both homozygous is
identical to that in the digenic-interaction model. More-
over, they assumed epistatic interaction to be present
between other pairs of loci as well. They showed that:

E(Y |TEm1’ TEmz’ f19f2) o+ Blﬁml + BZTEmz
+ terms involving f; and f; + cross-product terms of

Tfml ’TEmz’ flafZa
where %, and T,, are the estimated i.b.d. scores at
two marker loci which are assumed to be in linkage
equilibrium with the two QTLs, respectively, and f;=
P(%m; =% |%m);j=1, 2. However, as mentioned earlier,
our model of epistasis is prompted by experimental
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Power functions of the proposed test procedure for intercross families {(with NOFF = 1000} at simulation parameter values p; = p» = 0.5,

ar=50=1,A,=1,6°=1and(a) 9=0, ()8 =0.1, (c) & = 0.3 and (d) 6 = 0.5.
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observations. The small number of parameters in our
model enables clearer evaluation of the marginal effects
of different trait and linkage parameters on the sample
size requirement to detect linkage.

In our derivations, we have suppressed the suffix |, and
have denoted A, as A. We assume that the trait locus
(4, ap) is linked to an autosomal, biallelic codominant
marker locus with alleles M; and m;; [ =1, 2. The loci (4,,
a;) and (M;, m;) are assumed to be in linkage equilibrium.
Our aim is to make inferences on 6,, the recombination
fraction between (4, ;) and (M, m;); =1, 2, based on
data on the quantitative trait values of sib-pairs. Suppose
O, Yp): j=1,2,...,n are the observed values of the
quantitative trait of » independent sib-pairs. We assume
that (v;1, y»)s are distributed with an identical covariance
structure given by

Let m;; and 7, be the proportions of alleles shared i.b.d. at
the loci (4, a;) and (4,, a,), respectively, for the jth sib-
pair. These proportions can assume values 0,%, 1. The
conditional probabilities of genotypes of sib-pairs with
respect to the locus (4,, a;) given m;; are provided in table
1 in Haseman and Elston'’. As the loci (4,, a)) and (4,,
a,) are unlinked, the joint conditional probability of
the trait locus genotypes given the trait i.b.d. scores is
the product of the marginal conditional probability of
each trait locus genotype given the corresponding trait
i.b.d. score. For example, P(Sib 1 = 4,4,4,4, and Sib 2 =
A A A4y | Ty =5, = 1) :P?Pg-

Define Y; = (¥;; - sz)z, j=12,...,mn; ie. Y, denotes
the squared pair difference in the trait values for the jth
sib-pair. Note that V(¥ —Y;,) =20°(1-p)=0°, Vj=
1,2,...,n

Table 5.

The regression equation

Let @, and 7, denote the proportions of alleles shared
i.b.d. at the marker loci (M;, m)) and (M,, m,) respectively
for the jth sib-pair. Let f j(l-l) denote the probability that the
Jjth sib-pair has i alleles shared i.b.d. at the marker locus
(M, mp), i=0,1,2; =1, 2. Then the estimator of 7, is
given by 1, = j(é)+%fj(ll); /=1,2. Haseman and
Elston'’ have explicitly calculated f j(l-l) for different

mating types and in the case of missing parental infor-
mation, they have suggested an algorithm considering
phenosets'®.

Suppose now we are interested in evaluating E(Y; | 7€ Jmy s
7j,,). Combining the different values of 7;, and %;,,, we
obtain the relation:

E(Yj |Tfjm1, Tfjmz) = BO + Blﬁjml + B2Tfjm2,
where:
Bo =07 + 4p1gi {07 + A(p3 + ¢3) + 200 A(ps — g2)} ¢
(1 -20, +207) + 4prga {0ty + A*(pi + q1)
+ 200A(1 — q1)}(1 - 26, + 263);

Bi=—4pigi{ai + A’(p3 + q3) + 204A(p; — g2)} X
(1-20)%

By = — 4paga{s + AX(p1 + 1) + 20LA(P) — q1)} X
(1-20,)% )

This provides the motivation to set up the linear model:
Yi=Bo+ BITEjm1 + Bszjm2+ e, j=1,2,...,n

where e;s are 1.i.d. N(0, ).

Comparison between means and variances of estimated values of recombination fraction, 8, each based on 10,000

replications of data simulated at parameter values o = 5, 62 =1 for backcross and intercross families in the two trait loci
set-up using Jayakar’s approach and maximum likelihood approach

Backcross Intercross
A A A A A A A A
o P M) 7(8,) M(6u1) L0 M6y 7(8,) MO Vi{®u)
0 0.50 0.0121 0.00027 0.00003 0.00001 0.0180 0.00049 0.00003 0.00001
0.30 0.0122 0.00028 0.0001 0.00002 0.0186 0.00058 0.0001 0.00002
0.10 0.0128 0.00032 0.0001 0.00004 0.0214 0.00080 0.0001 0.00004
0.10 0.50 0.0983 0.00081 0.0997 0.00005 0.1028 0.00166 0.1248 0.00004
0.30 0.1029 0.00105 0.0994 0.00012 0.1041 0.00210 0.1165 0.00007
0.10 0.1045 0.00117 0.1013 0.00016 0.1056 0.00229 0.1187 0.00009
0.30 0.50 0.2888 0.00084 0.3001 0.00012 0.2984 0.00582 0.3312 0.00008
0.30 0.3101 0.00118 0.3013 0.00023 0.2970 0.00639 0.3282 0.00011
0.10 0.3138 0.00142 0.3067 0.00049 0.3026 0.00725 0.3304 0.00015
0.50 0.50 0.4228 0.00072 0.04953 0.00005 0.4135 0.00750 0.4964 0.00003
0.30 0.4183 0.00154 0.04929 0.00006 0.4102 0.00848 0.4951 0.00005
0.10 0.4117 0.00202 0.04908 0.00008 0.4036 0.00971 0.4926 0.00006

A
0, refers to Jayakar’s estimator and 9 s refers to maximum likelihood estimator.
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We now note that for /[=1,2; f,=0& 0,=0.5 and P,
<0<, < 0.5 as P; is an increasing 1-1 function of 0,
Thus, a test for linkage at the /th locus (i.e. Hy: ©6,= 0.5 vs
Hi: 0,<0.5), is equivalent to testing for Hy: P;=0 vs
H,:B; <0 in the above linear model. The test statistic is
given by

~

_ B
se.(B;)
where 61 is the least squares estimator of B;. In order to

compute the standard error of P;, consider the design
matrix X given by:

T

Tr’lml nlmz 1

a
>
—

T
nm nim,

Let § = (X'X). Then

’ 52
T SR
S'e'(Bl): I’l—; >

where s”f (S Yy and AR% =residual sum of squares =
(Y - Bo—Birt)m, — Bszjmz)z. Under Hop, 7; follows a
t-distribution with (7 — 3) degrees of freedom. Thus the
critical region for a level o test is given by: 7} <1#,3 1_q.

If n is sufficiently large, by the central limit theorem
(CLT), we can approximate the critical region by: 7; <z,
where z, is the (1 —p)th quantile of a standard normal
variate. Using CLT the power function can be expres-
sed as:

P(Bz):q’{zka_%},
2.(B,

where @ is the c.d.f. of N(0, 1).

Determination of sample size required to detect
linkage

Having derived the power function of the proposed test,
one is obviously interested in determining the minimum
sample size required to detect linkage at the /th locus;
[=1,2. In order for the test to have a power B at [,
(which is a 1 — I increasing function of 6,), we require the
condition:
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B
= “la noe b
Ry
"1_3
2 0 p2
Zi o — Zi_ s“R
:>n,_(” ‘f‘) 0 43 (4)

Thus the required sample size to detect linkage at both the
loci is given by n = max(ny, n,). In order to examine the
effects of different trait parameters and linkage para-
meters on sample size requirement, we prove the follow-
ing proposition.

Proposition: The sample size (n;) required to detect
linkage at the /th locus is: (i) an increasing function of 6
(ii) an increasing function of py; (iii) a decreasing function
of p;, i#l; (iv) a decreasing function of o (v) a
decreasing function of A; (vi) independent of o, i#/;
(vii) independent of 6> and p.

Proof:  Equation (3) implies that P, is an increasing
function of 0; and p; and a decreasing function of «;, A
and p; (i # ). Now, ;< 0 < B/ is a decreasing function of
f;. Considering eq. (4), points (i)—(v) follow immediately.

Again, eqs (3) and (4) are both independent of «
(i # 1), 6% and p. Thus, points (vi) and (vii) are obviously
true.

Hence, as intuitively expected, if the strength of linkage
between a trait locus and a marker locus is higher, a
smaller sample size suffices to detect linkage. Moreover,
if a locus is controlled by several loci with comparable
effects, then the sample size required for mapping the
QTL with the highest level of heterozygosity is the
smallest. Further, if among several QTLs, the marginal
effect of one QTL increases, then smaller sample sizes are
required to map that locus. Thus, among several QTLs,
the QTLs with major effects are easiest to map. More-
over, if two QTLs have equal effects, then smaller sample
sizes are required to map them if they epistatically
interact, than if they do not. A similar result holds if there
are multiple loci even with unequal effects.

Simultaneous detection vs. sequential detection as
strategies to reduce sample size

One interesting question that may arise in the determina-
tion of sample size to detect linkage at both the loci is
whether it is more optimal to analyse the data by con-
sidering both the markers simultaneously (as illustrated in
the previous subsection) or by considering them sequen-
tially, one by one. In order to resolve this problem, let us
first obtain expressions for E(Y;|% , ), =1, 2. Using
similar arguments as in the previous subsection, we can
easily show that:
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EQ [ )= Bo + Bt oy 1= 1,2,

We find that B; is a 1 — 1 increasing function of 6, and
B;=0<6,=0.5, while p;<0<6,<0.5. Thus, as dis-
cussed in the previous section, in order to detect linkage
at the Ith locus, we use a test statistic which follows a
t-distribution with (7 — 2) degrees of freedom under the
null hypothesis of no linkage at the /th locus. The mini-
mum sample size to detect linkage at the /th locus (i.e. to
attain a power of B at ;) is given by:

" s,

(21 _21—[3)2 Zj=1(yj_BO_Blnjm/)

- 2 noa -
B/ (n=2)Y" (@, ~7,,)°

N,

Thus the minimum sample size to detect linkage at both
the loci is given by N = max(N,, N,). Though N (as given
above) and n (as determined in the previous section)
cannot be compared analytically, we show through simu-
lation studies that # is, in general, smaller than N, i.e., we
require a smaller sample size to detect linkage at both the
loci if we analyse the data by considering both the markers
simultaneously as opposed to considering them sequen-
tially, one by one.

We note here that since the two QTLs are unidenti-
fiable, in the sequential strategy, evidence of linkage
would imply that the chosen marker locus is linked to one
of the two trait loci. As the chosen markers are themselves
unlinked, evidence of linkage for two different markers
would indicate that we are able to map both the QTLs.
Moreover the sequential analysis of markers is equivalent
to analysing the data under the misspecified model of a
single QTL. We thus observe that under this misspecified
model, linkage of the chosen marker locus with the QTL
can be correctly detected, but it requires a larger sample
to map that QTL.

Extension of the regression procedure when the
quantitative trait is controlled by more than two loci

The regression procedure described above can be easily
extended when the quantitative trait Y is controlled by %
autosomal, biallelic, unlinked loci (4, a;), (4, as), . . .,
(4, a). The generalized epistatic interaction model
considered in the case of multiple loci has been described
earlier.

Suppose the trait locus (4, a;) is in linkage equilibrium
with an autosomal, biallelic, codominant marker locus
M, mp, 1=1,2,..., k and the recombination fraction
between these two loci is 6, Our aim is to make infe-
rences on 0; based on observations on the quantitative
trait of n sib-pairs given by {(yj1, y2):j = 1, 2, ..., n}.

Suppose T, : [=1,2,...,k denote the estimated
proportions of alleles shared i.b.d. at the /th marker locus
1My, my): 1=1,2,...,k}. Defining Y;= (Y- sz)z, we
can show that:

1154

k
E(Yj“fjm,’ R Tejmk) = BO+ZBZﬁjmla
1=l

where B, is a 1—1 increasing function of 6, and 6,=
0.5<:>[31:0and91<0.5<:>[31<0.

Thus, as in the two-loci set-up, we can test for linkage
based on the linear model:

k
Yj:BOJrZBlejm,Jreja j:1,2,...,7’l,
1=l

where e;s are 1.1.d. N(0, ).

Simulation results

In order to assess the performance of our proposed regres-
sion strategy, we generate data on trait values of sib-pairs
and estimated marker i.b.d. scores for different parameter
values. Having generated the required data on 100 sib-
pairs, we regress the squared difference in trait values on
the different estimated marker i.b.d. scores. Based on the
regression coefficients obtained, we evaluate the sample
size requirements for detecting linkage for different values
of recombination fractions. We perform the regression
analysis both by considering the two markers simul-
taneously as well as sequentially, one by one. In each case
we determine the sample size requirement (i.e. n and N)
and compare them by an ‘efficiency’ ratio £ = N/n.

In our simulation examples, we assume the quantitative
trait to be controlled by two autosomal loci and thus con-
sider two marker loci which are in linkage equilibrium
with the trait loci. Table 6 provides the results of the
regression of squared difference in trait values on the two
estimated marker i.b.d. scores and Tables 7 and 8 provide
the sample sizes necessary to detect linkage at the two
trait loci for simulation parameter values of o, =5, o, =
1,A=1, o6’ =1 and different parameter values of pi, p»,
p, 6, and 0,. We perform the tests of linkage at 5% level
of significance and determine the sample size require-
ments to attain a power of 0.9 for each test.

In both cases, we find that the regression procedure
detects linkage quite efficiently and the sample size
requirements are in accordance with our proposition stated
in an earlier subsection, [i.e. »; increases with p; and
decreases with oy, A and p; (i #/)]. The significance of
the regression coefficients [§1 and [§2 (i.e. the extent of
linkage at the two loci) depends not only on 6, and 6,, but
also on a; and o, (i.e. on the effect of each trait locus on
the quantitative trait). When this effect is small, the
corresponding regression coefficient tends to be less
significant even if the trait locus is actually tightly linked
to the marker locus. Similarly when the effect is large, the
corresponding regression coefficient tends to be less
insignificant even if the trait locus is actually unlinked to
the marker locus.
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Table 6. Regression and multiple correlation coefficients in the two types of regression analyses (simultaneous and
sequential) for different sets of trait parameter values
Bo B B2
Type of analysis R’ Est S.E. t-val Est S.E. t-val Est S.E. t-val
Parameter values: p; =09, p»=09,p=0.8,0;=0.1 and 8, =0.1
Simult. 0.94 10.19 4.05 251 -14.67 763 -192" —404 228 -—1.70"
Seq. using:
Marker 1 0.74 12.18 6.69 182 -1673 806 —2.07 .
Marker 2 0.63 11.74 5.06 2.32 -7.83 436 -1.80
Parameter values: p; =0.5, p,=0.5,p=0.1,8,=0.5and 6, =0.5
Simult. 0.24 11.07 6.24 1.77 -270 8.5 -032 -196 8.69 -0.23
Seq. using:
Marker 1 0.12 13.43 7.00 1.92 -3.61 583 -0.63
Marker 2 0.08 14.08 8.72 1.62 -236 695 -0.34

*Significant at 5% level.

Table 7. Efficiency of the simultaneous strategy over the sequential
strategy for simulation parameter values p; = 0.9, p» = 0.9, 6, = 0.1,

Table 8. Efficiency of the simultaneous strategy over the sequential
strategy for simulation parameter values p; = 0.5, p» = 0.5, 8, = 0.5,

9,=0.1 0,=0.5
0 0> ny n Ny N> E 0 0 ni ny Ny N> E
0 0.0 63 68 72 76 1.12 0 0.0 27 30 36 38 1.27
0.1 65 123 72 143 1.16 0.1 28 75 36 84 1.12
0.2 64 176 72 205 1.16 0.2 30 107 36 120 1.12
0.3 68 254 72 293 1.15 03 30 158 36 185 1.17
0.4 68 298 72 351 1.18 0.4 32 199 36 232 1.17
0.1 0.0 112 70 124 76 1.11 0.1 0.0 72 32 78 38 1.09
0.1 114 126 124 143 1.14 0.1 74 77 78 84 1.09
0.2 117 173 124 205 1.18 0.2 74 109 78 120 1.10
0.3 115 258 124 293 1.14 03 73 159 78 185 1.16
0.4 120 303 124 351 1.16 0.4 75 203 78 232 1.14
0.2 0.0 176 70 187 76 1.06 0.2 0.0 104 34 112 38 1.08
0.1 178 128 187 143 1.05 0.1 103 77 112 84 1.09
0.2 176 181 187 205 1.13 0.2 105 111 112 120 1.08
0.3 180 260 187 293 1.13 03 107 162 112 185 1.14
0.4 179 305 187 351 1.15 0.4 109 208 112 232 1.12
0.3 0.0 251 72 262 76 1.04 03 0.0 159 35 168 38 1.06
0.1 254 131 262 143 1.03 0.1 161 79 168 84 1.04
0.2 253 185 262 205 1.04 0.2 162 114 168 120 1.04
0.3 256 264 262 293 1.11 03 164 167 168 185 1.11
0.4 259 312 262 351 1.13 0.4 165 210 168 232 1.10
0.4 0.0 310 73 326 76 1.05 0.5 0.0 200 36 211 38 1.06
0.1 312 135 326 143 1.04 0.1 198 81 211 84 1.07
0.2 308 188 326 205 1.06 0.2 202 117 211 120 1.04
0.3 311 267 326 293 1.05 03 203 170 211 185 1.04
0.4 313 316 326 351 1.11 0.4 205 214 211 232 1.08

We assess the nature of sample size requirements under
various scenarios assuming that the QT is controlled by
two loci. First, in the absence of epistatic interaction
(A = 0), if both loci have equal effects (¢ = o, = o), then
the sample size required to map the first (or the second)
trait locus decreases as heterozygosity at that locus
increases (Figure 3). The rate of decrease, however, is
greater when the locus has a smaller effect on the QT.
Second, in the absence of epistatic interaction (A = 0), the
sample size required to map the locus which has a greater
effect on the QT decreases as its relative effect increases
(Figure 4 a). However although the rate of decrease in

CURRENT SCIENCE, VOL. 80, NO. 9, 10 MAY 2001

sample size depends largely on the heterozygosity of the
locus with the greater effect, it also varies with the hetero
zygosity of the second locus. For example, we find that
while the sample size requirement to map the first locus in
the case p, =p,=0.75, is more than in the case p, =
p2 = 0.5 when the marginal effects of the two loci do not
differ significantly, it requires a smaller sample to do so
in the case p; = p, = 0.75, if the marginal effect of the first
locus is quite large compared to that of the second locus.
Moreover, while it requires a smaller sample to detect
linkage at the first trait locus for p, =p,=0.5, p,=p,=
0.75 and p; = 0.5, p, = 0.75 whenever the marginal effect
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of the first locus is higher, the sample size requirement in
the case p; =0.75, p, = 0.5 is more for the first locus, if
the marginal effects of the two loci do not differ signi-
ficantly, but is less if the marginal effect of the first locus
is very large compared to that of the second locus (Figure
4 b). Next, we find that the sample size required to map
either of the two loci decreases as the degree of epistatic
interaction (A) between the two loci increases (Figures
5-7). Moreover in the presence of epistatic interaction, it
requires a smaller sample to map the locus with a greater
marginal effect on the QT (Figures 5 b, 6 b, 7 b).

Comparing the simultaneous strategy with the sequen-
tial strategy (the results are presented in Tables 7 and §),
we find that the sample size requirement is, in general,
less when we analyse the data by considering the two
markers simultaneously. The ‘efficiency’ ratio £ (defined
earlier in this subsection) is found to be greater than 1 in
all our simulation studies.

Comparison with the Tiwari—Elston method

As we noted earlier, the digenic interaction model is a
special case of the more general epistasis model assumed
by Tiwari and Elston'*, in which the epistasis parameters
can vary arbitrarily. However, as their model involves a
larger number of regressors, the tests for linkage (i.e. Hy:

0;=0.5 vs Hy: 6, <0.5) are much more conservative. We
compare the powers of the two procedures under our
proposed model using simulated data. We generate data
sets with simulation parameter values of o, =5, o, =1,
A=1, 6*=1, 6,=0.5 and different values of p1, pa, 6,
for varying sample sizes. We perform 100 replications of
regression using each set of parameter values and evaluate
the power of the test Hy: 6, =0.5 vs H;:6,<0.5 at 0, =
0.1. The average power of the 100 replications for each
set of parameter values is presented in Table 9. If our
model is indeed true, we find that the tests for linkage
under their regression set-up are less powerful, especially
if the sample size is small. Moreover, in that case, their
regression equation is a gross overfit to our model.

Some recently developed sib-pair methods

Multipoint mapping techniques (i.e. in which information
on more than one marker is incorporated simultaneously
to detect linkage with the putative trait locus) have been
proved to be much more powerful than two-point linkage
analyses (i.e. in which information on a single marker is
used at a time; multipoint extension of Haseman—Elston'’,
non-parametric technique®’, QLOD score’’, maximum
likelihood binomial method®®). We have recently deve-
loped a robust, two-stage, semi-parametric method of
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p1=0.5, p» = 0.5 and squares to p; = 0.5, p» =0.75.
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Figure 6. Sample size requirement to map (a) the first trait locus and (b) both the trait loci for simulation parameter

values o) =5 and oy = 1. Triangles correspond to p;=0.75, p» = 0.5, diamonds to p; = 0.75, p» = 0.75, circles to

p1=0.5, p» = 0.5 and squares to p; = 0.5, p» = 0.75.

Table 9. Comparison of the powers of the digenic interaction model
and the Tiwari—Elston model at 8; = 0.1 for simulated parameter
value of 8| = 0.5 and different values of pi, p2, 82 and number
of sib-pairs » = 50, 100, 200

n =750 n =100 n =200

o o 6 & Pp Pre Ppy Pre Por Pre

0.7 05 05 00 075 0.67 0.83 0.80 091 090
07 09 05 0.1 0.81 0.74 088 085 095 094
09 09 05 03 0.72 0.64 0.81 0.79 0.88 0.88
05 05 05 05 0.78 0.72 0.85 0.82 090 0.89

Pp; and Prg denote the powers of the digenic interaction model and the
Tiwari—Elston model at 6, = 0.1.

mapping QTLs based on genome-wide scan data (i.e.
where a chromosome is saturated with a large number of
markers and the interval location(s) of the QTL(s) are
inferred) on sib-pairs™. In the first-stage, we use a sta-
tistic based on Spearman’s rank correlation®® between
squared difference (Y)) in trait values of each sib-pair and
its estimated i.b.d. score at each marker locus (% 4,s),
while in the second stage, we use a non-parametric regres-
sion of ¥; on %,,,s with kernel smoothing™.

One of the major current challenges in genetic epi-
demiology is to unravel genetic architectures of complex
traits. Quantitative variables, possibly correlated, generally
underlie complex traits. A heritable multivariate quanti-
tative phenotype comprises several correlated component
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phenotypes that are usually pleiotropically controlled by
multiple loci and environmental factors. One approach to
decipher the genetic architecture of a multivariate pheno-
type, in particular, to map the underlying loci, is to reduce
the dimensionality of the data by a data-reduction tech-
nique, such as principal component analysis. The extracted
principal components can then be analysed in conjunction
with marker data to map the underlying loci. We have
used our proposed two-stage semi-parametric method on
the extracted principal components of the multivariate
phenotype of the sib-pairs and their identity-by-descent
scores on several marker loci®® to map the QTLs
controlling the phenotype. We have found that if princi-
pal components are extracted without consideration
of the underlying correlation structure of the multivariate
phenotype, mapping the loci controlling the phenotype
cannot be done efficiently and may require huge sample
sizes.

Discussion

Since there is increasing evidence of epistatic interactions
among the loci determining a quantitative trait®'"'® we
have attempted to devise an efficient estimator of the
recombination fraction, 0, between a quantitative trait
locus and a marker locus in the presence of such inter-
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actions. We have used a simple model of interaction
among homozygotes at the different trait loci. This model
is one of the basic models used in the study of epistatic
interactions'* and is helpful for capturing some essential
features and complexities that underline QTL mapping in
presence of epistatic interactions. Using an approach ori-
ginally proposed by Jayakar", we have proposed sepa-
rate, computationally simple, estimators for families in
which only one parent is heterozygous at the marker locus
(backcross type families) and those in which both parents
are heterozygous (intercross type families). We have
studied the efficiencies of these estimators when there are
two trait loci and have shown that for a wide range of
parameter values the estimators are quite efficient. We
have proposed a non-parametric procedure for testing null
hypotheses regarding 6 and have shown that the power
function of the test has desirable properties. We have also
shown that analyses of data ignoring epistatic interactions,
when in fact these are present may lead to grossly inaccu-
rate inferences about linkage. Although most of our
results pertain to the case of the marker locus being
biallelic, we have theoretically shown that extension to a
multiallelic marker locus is straightforward. However, we
have found that the estimators obtained by this approach,
although simple to use in practice, are not as efficient as
the maximum likelihood estimator. We also note that our
procedure does not provide simultaneous estimates of
recombination and other parameters (i.e. quantitative trait
locus effects, epistatic interaction effects, etc.). Indepen-
dent estimates of these other parameters have to be

obtained to estimate the recombination fraction and test
hypotheses concerning this parameter. The upshot is that
although the modified-Jayakar estimator proposed by us is
computationally simple and enjoys some desirable statisti-
cal properties, in practice it is preferable to use the
maximum likelihood estimator in view of its superior
performance over a wider range of scenarios and para-
meter values.

For sib-pair data, we have extended the regression
procedure proposed by Haseman and Elston'’ to map a
single QTL, to the case of mapping two unlinked QTLs in
the presence of epistatic interactions. Our proposed
procedure provides a test for detecting linkage between a
trait locus and a marker locus but fails to provide, as in
the Haseman—Elston approach, an estimate of the recom-
bination fraction between the two loci. We have derived
expressions for the sample size requirement to map the
two QTLs. The marginal effects of the different trait and
linkage parameters on the sample size requirement have
been analysed theoretically. In particular, we have shown
that the sample size requirement for mapping a QTL is
smaller if its marginal effect and heterozygosity are larger.
Moreover, the presence of epistatic interactions reduces
the sample size requirement compared to the situation in
which the marginal effects are same, but epistatic inter-
actions are absent. We have also assessed the nature of
dependence of sample size requirements on different trait
parameters considered simultaneously. We have shown
through simulation studies that the simultaneous analysis
of markers reduces the sample size requirements and thus
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Figure 7. Sample size requirement to map (a) the first trait locus and () both the trait loci for

simulation parameter values o =10 and oy = 1. Triangles correspond to p;=0.75, p>=0.5,
diamonds to p| = 0.75, p» = 0.75, circles to p; = 0.5, p» = 0.5 and squares to p; = 0.5, p» = 0.75.
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is more cost-effective compared to the sequential analysis.
This equivalently implies that under a misspecified model
of a single QTL, we would require a larger sample to map
the QTL. The proposed regression approach has been
extended to the case of multiple QTLs with a typical
epistatic interaction structure. The results are similar to
the case of two QTLs with digenic epistatic interaction.
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