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A brief introduction to stock options and the theory of
its pricing is given. Important concepts like hedging
strategies, complete markets are explained via an
illustrative example. These notions are formalized in
the setting of a discrete model of underlying stock
prices.

THE topic of option pricing has attracted a lot of attention
internationally since Scholes and Merton were awarded
the Nobel Prize for Economics in 1997. It has been in
news in India recently as option trading has been allowed
in Indian markets and the trading in options is about to
begin in Indian stock markets. In this article, T will
attempt to give an introduction to options, the theory of its
pricing and its interplay with probability theory. The
important ideas will be presented via an example and then
these will be formalized in the context of a discrete
model. I will conclude with a discussion on continuous
time models. For proofs of results stated here as well as
further discussion, historical perspective and other refe-
rences, one can refer to Kallianpur and Karandikar'.

European call option

We will first discuss European call options. A European
call option is a one-way contract between the seller (of
option) and the buyer — it specifies shares of a specific
company, a terminal time 7, a strike price K and it entitles
the buyer to buy one share of the specified company at the
terminal time 7 at the strike price K, irrespective of the
prevailing price in the market at that time.

The option entitles the buyer to buy the share, but there
is no obligation to buy. On the other hand, the seller of
option is obliged to sell if the buyer so desires. It is clear
that buyer would exercise the option if the market price is
above K, while the buyer would not exercise the option if
the market price is less than K.

What should be the price of the option? Obviously, the
answer would depend upon the available information
about the shares of the company in question, which should
be translated into a mathematical model for the share
prices. Obviously, the only realistic mathematical model
that can be considered is a stochastic model.
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We will be considering an ideal situation with two
simplifying assumptions: (1) There are no transaction
costs (in buying or selling shares); (2) The rate of interest
on investments is same as that on loans. These two assum-
ptions are not true is practice, but are approximately
correct when one is considering transactions between two
large brokers/mutual funds.

Example

We will now consider a concrete example and use it to
illustrate the ideas that play an important role in option
pricing. This is an artificial example. Its role is only to
explain the notions such as no arbitrage, hedging strategy,
complete markets, etc.

To avoid technicalities, we will consider a discrete
model. We will consider a company whose shares are
trading at the initial time (1 =0) @ S, (in rupees) per
share. We assume that no trading is allowed in the share
for a period of one year, at the end of which the price is
S1. Again, no trading is allowed for another year when the
price becomes .55.

Let the stochastic model for (Sy, Si, S>) be given by

P(S, = 4000) = 1, )
P(S, = 4950) = 0.5, @)
P(S; = 3850) = 0.5, 3)
P(S, = 9680 | S; = 4950) = 0.1, (4)
P(S; = 8470 | S; = 4950) = 0.4, (5)
P(S, = 3630 | S, = 4950) = 0.5, (6)
P(S; = 6655 | S; = 3850) = 0.5, 7
P(S, = 3630 | S, = 3850) = 0.5. (8)

Let us assume that the common rate of interest for loans
as well as deposits is 10% per year.

Suppose that also selling in the market is European call
option on these shares, with terminal time 7 =2 years,
stike price K = 6050. At what price should this option be
traded in a market in equilibrium (which means enough
buyers and sellers will be there in the market at this
price)?

At a first glance it would appear, at least to readers
familiar with probability theory, that the option price must
be the expected return. In this case, if at the end of two
years, S, is more than 6050, the gain is (S, — 6050) (an
investor who has bought the option can buy a share @
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Rs 6050 and sell it at S,); whereas if S, < 6050, the gain is
0 (the buyer of the option need not buy the share at all).
Thus the gain is

max(S; — 6050, 0).

This gain is due at the end of 2 years. Its worth at time
zero (with rate of interest 10%) is

max(S; — 6050, 0)/1.21.
Thus the expected gain is
g = E(max (S, — 6050, 0)/1.21).

Here, P(S,=9680)=0.05, P(S,=8470)=0.2, P(S;=
6655) = 0.25, P(S; =3630)=0.5. This leads to g =675.
Can the price of the option be Rs 6757 Suppose that
options are trading @ Rs 675.

An investor 4 decides to buy 100 options by investing
Rs 67500. Another investor B also decides to invest
Rs 67500 (= x;) at time 0; buy m, = 75 shares @ Rs 4000
by borrowing the shortfall. At the end of the year, if the
price is S| = 4950, he sells 10 shares to bring down his
holding to 7;; = 65, using the proceeds to settle part of
this loan. If §) =3850, he sells 50 shares to bring his
holding to 7}, = 25, again paying off loan with the money
received. Denoting the net deposit by the investor at
time 0 by &, and at time 1 by &;; if §;=4950; &, if
S| = 3850 (negative & means loan), &s are determined by

Eo = xp— T % 4000, ©)
&1 = (4950m, + 1.1&) — 4950, (10)
&1, = (3850m, + 1.1&;) — 3850m,,. (11)

For the investor B, xy= 67500, my=75, m;, =65, W), =
25 and egs (9)—(11) give & =— 232500, &, = — 206250,
&1, = — 63250.

Before proceeding further, let us note that a trading
strategy is determined by x,, T, 7;;, T which in turn
determine &, &1, &».

Table 1 shows the net worth of the holdings of 4, B in
each of the five possible outcomes of (S, S;): (4’s assets
are 100 options and no liabilities; B’s assets are ;; (7T;,)
shares and a deposit of &, (§,) made at time 1 if S| =
4950 (S| = 3850)).

Note that while both 4 and B made the same initial
investment, namely Rs 67500, B has done better than 4 in
each possible outcome of the stock prices. So whatever 4
was buying is overpriced. Thus option price must be less
than Rs 675!

Table 1. Net worth of the holdings
Outcome A’s holding B’s holding
(1, 52) (Rs) (Rs)
(4950, 9680) 363000 402325
(4950, 8470) 242000 323675
(4950, 3630) 0 9075
(3850, 6655) 60500 96800
(3850, 3630) 0 21175

CURRENT SCIENCE, VOL. 80, NO. 9, 10 MAY 2001

To see this more clearly, assume that options are priced
at Rs 675 and there are enough buyers and sellers at this
price.

An investor C devises a strategy as follows: Sell 100
options @ Rs 675 per option to collect Rs 67500 and then
follow the strategy of B: xo= 67500, wy =75, 7w =65,
T = 25.

Then the net worth of C’s holding is given by the
difference of the 3rd column and 2nd column in Table 1
(see Table 2).

Thus, C would make a profit in each of the five
outcomes without making any initial investment. Clearly,
every investor would like to follow this strategy and make
money without taking any risk. This in turn would disturb
the equilibrium and soon there would be no buyers for
the option.

The strategy of C is an example of an Arbitrage
opportunity.

Arbitrage opportunity is a strategy that involves no
initial investment and for which the net worth of holdings
(at some time in future) is non-negative for each possible
outcome and strictly positive for at least one possible
outcome.

As explained above, if an Arbitrage opportunity exists,
it would disturb the equilibrium, as all investors would
like to replicate the same. Thus, in a market in equi-
librium, Arbitrage opportunities do not exist. This is
known as the principle of no arbitrage abbreviated as NA.
In this example we can conclude

NA = p < 675,

(where p is the price of the option).
Now, let us consider another investor D’s strategy: x, =
30000, my =50, m; =45, w,=15. Equations (9)—(11)
yield: &, =- 170000, &;; = - 162250 &, = -52250. In each

of the outcomes, the net worth of D’s holding is given in
Table 3.

Table 2. Net worth of C’s holding
Outcome C’s holding
(S1, $2) (Rs)

(4950, 9680) 39325
(4950, 8470) 81675
(4950, 3630) 9075

(3850, 6655) 26300
(3850, 3630) 21175

Table 3. Net worth of D’s holding

QOutcome

(S1, $2) D’s holding

(4950, 9680)
(4950, 8470)
(4950, 3630)
(3850, 6655)
(3850, 3630)

96807, + 1.1&;; = 257125
8470 + 1.1&1 = 202675
3630w + 1.1&;; = 15125
6655m11 + 1.1E12 = 42350
3630w, + 1.1&1, = - 3025

1177



SPECIAL SECTION: STATISTICS

Note that for each outcome, D’s holdings are worth less
than 100 options. As a consequence, the price of 100
options is more than the investment at time zero that is
needed for D’s strategy, namely 30000. Thus, one option
is worth more than 300.

If indeed option price is Rs 300 or less, then the
strategy consisting of buying 100 options and ©t, = — 5071,
=—45, n;; = — 15 would be an arbitrage opportunity (note
that the ns are (— 1) times the corresponding @ in D’s
strategy. Thus

NA = p > 300.

Can we narrow the interval (300, 675) for the option price
any further?

It is clear from the preceding discussion that if for a
trading strategy (xo, T, T11, T1o) (with &g, &1, &> given by

egs (9)—(11)

96807, + 1.1&;, = 363000, (12)
8470w, + 1.1&;, > 242000, (13)
36307, + 1.1&;, >0, (14)
66557, + 1.1&,, > 60500, (15)
36307, + 1.1€, >0, (16)

then 100p <x, and if any of the eqs (12)-(16) is a strict
inequality, p < Xg. Likewise, if (XO, Mo, 1o, 7512), (&0, &11,
£,) satisfy eqs (9)—(11) and

9680, + 1.1&,, < 363000, (17)
8470w, + 1.1€,, < 242000, (18)
3630w, + 1.1&;, <0, (19)
6655T,, + 1.1€,, < 60500, (20)
3630m;, + 1.1, <0, (21)

then xp<p and if any of eqs (17)-(21) is a strict
inequality, x, < 100p.

Thus, the optimum value x” for the linear programming
problem (I)

minimize xg
subject to eqs (9)-(16)

is an upper bound for 100p; and if for the optimum
solution, even one of the eqs (12)—(16) is strict inequality,
then 100p < x".

The optimum value x for the linear programming
problem (II)

maximize xg

subject to eqs (9)—(11) and eqs (17)—(21)

is a lower bound for p; and if for the optimum solution,
even one of the eqs (17)—(21) is strict inequality, then x~
< 100p.

The optimum solution to the problem (I) is x, = 50000,
T, = 80, 71 = 60, Ty, = 20, & = — 270000, &, = — 198000,
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&1, = — 66000 with eq. (13) being a strict inequality. Thus
100p < 50000.

The optimum solution to the problem (II) is x, = 42500,
Ty =65, m;; =50, ®,=-66000 with eq. (17) being a
strict inequality. Thus 100p > 42500, hence we conclude
that

425 < p < 500.

Let us explore an alternate scenario. Suppose that instead
of eqs (4) and (5) one has

P(S, = 9680 | S, = 4950) = 0.5.

In this case, the upper bound x™ is solution to the prob-
lem III:

minimize xo

subject to eqs (9)—(12) and (14)-(16).

In this case the optimum is attained by the same strategy
that optimized problem I, with x, = 50,000. The lower
bound x is given by solution to problem IV

maximize X

subject to eqs (9)—(11), eq. (17) and eqs (19)-(21).

Again, the optimum solution is the same as the one for
problem IIT with x¢ = 50,000.

Thus x~ = 50000, x" = 50000. It follows that the option
price must be 500.

In both problems III and IV, all constrains are
equalities for the optimum solution. Thus, with initial
investment x; = 50000, there exists a strategy: 7, = 80,
711 =60 and 7w, =20 for which the net worth of the
holdings at the end of 2 years is exactly the same as the
worth of 100 options for all possible outcomes of the
share prices. Such a strategy is called a hedging strategy
for the options.

Likewise, if instead of eqs (4) and (5) one has

P(S; =8470 15, =4950)=10.5, (22)

then again, the upper and lower bounds agree and a
hedging strategy exists: the strategy that was solution to
problem II with x, = 42500. Thus in this case, the option
price is p = 425.

Note that in both these cases where a hedging strategy
exists, the option price did not depend upon the proba-
bilities of the various outcomes, but it depended upon the
set of possible outcomes. This is so because we are
matching the returns for each outcome and so it does not
matter as to with what probability an outcome occurs
Thus expected value of the (discounted) gain can be more
or less than the option price.

So what went wrong with the reasoning price=
expected gain? The reason is that along with the option,
another commodity, namely the shares of the same com-
pany, is also available in the market and of course, the
shares are correlated with the option — and thus we need
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to valuate the option in terms of a basket consisting of
money and shares.

If the shares of the company were not being traded but
only the options were being sold, then perhaps the
expected (discounted) gain can be taken as the price (if
the utility is taken as linear).

Let us return to the example. Now suppose that eqs (4)
and (6) are replaced by

P(S; = 9680 | S; = 4950) = 0.6, (23)

(the main point being, if S| = 4950, there are only two
possibilities: S, = 9680 or S, =8470). In this case, the
upper bound x ™ is solution to problem V:

minimize xg

subject to eqs (9)—(13), eqgs (15) and (16),

and it can be seen that x* = — . The lower bound x is
solution to problem VI:

maximize xg
subject to eqs (9)—(11), eqs (17) and (18), eqs (20)
and (21),

and here x = oo. Thus no price is feasible, i.e. irrespective
of the price of the option, there will be arbitrage
opportunities. The reason is that arbitrage opportunities
exist even without bringing in options. The strategy x, = 0,
m, =0, m;; =100, ®; =0 is an arbitrage opportunity!
Thus, if we are to adopt NA as a basis for pricing options,
we must rule out options in the market consisting only of
shares. How do we do this?

We will now examine these issues and questions such
as: Do hedging strategies exist for the call option and the
put option?

General discrete model

In this section, we will consider a discrete model for the
share price of a company and discuss arbitrage opportu-
nities, hedging strategies and option pricing.

To keep technicalities to a minimum, we assume that
trading takes place at multiples of a fixed time period, say
days; that we are considering a finite horizon — N days
and that the share price S; on the kth day is a random
variable that takes only finitely many values (with S,
being a constant).

Without loss of generality, we can (and do) assume that
the random variables are defined on the probability space
Q consisting of all possible outcomes of (Sy, S, . ... Sk
... Sy). Thus, Q is a finite subset of [0, oo)NH. The points
w of Q are denoted by

w= (S()a Sty e ooy SN)'

The probability P on Q is a function from Q — [0, 1]
such that P({w}) >0 for all we Q (as Q consists of
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all possible outcomes). The random variables S, are
defined by

Si(w) = s;, where w = (sg, . . ., Sy)-

As we saw in the example, it is possible that a model for
share prices may admit arbitrage opportunities. We must
rule out such models. To do this, we need to define what
an arbitrage opportunity is and for that we need to define
a trading strategy.

As in the example, we will only consider self-financing
trading strategies — where the only investment is at time
zero and at any subsequent time, there is no investment or
consumption.

We will assume that we are considering frictionless
market: (i) there are no transaction costs, and (ii) the rate
of interest on loans is the same as that on investments, say
r per day.

A (self-financing) trading strategy is described by
initial investment z and (W, . . ., Ty_;), where T, denotes
the number of shares the investor decides to posses on kth
day. If m,_, <7, he/she buys (Tfk — Tfk,l), while if t;, <7,
he/she sells (., — ;) shares. In the first case, he/she
borrows an additional amount (7, — 7, )S; and in the
second case investing the amount realized from the sale:
(T 1—T0) Sk

Clearly, an investor can choose T, ..., T, ..., Ty
On kth day while deciding upon 7, he/she can use the
information available then, namely the history of the share
prices till then: S, . . ., S;. T; cannot be allowed to depend
on Sitq, - . ., Sy A strategy such as w; = 1000, if Si < S
and 7, = 0, if S| = S is not admissible as the investor on
kth day does not know if the next day, the share price will
go up or down. So 7, should be a function of (Sy, . . . Sy).
To make this precise, for 0 <k < N, let

Hk{(S(), Slo v v uy Sk): P(S():SO, S1 =81y u ey Sk:Sk) > 0}

A trading strategy is (z, T), where z is the initial invest-
ment, T = (T, . . ., Ty_1), T; is a function from H into R.

Note that since the strategy is self-financing, the
investment (or loan) &, at time & can be determined from
X, Moy« v oy Ty Sop - - -y Sk

With a little bit of algebra, it can be shown that worth
V. of the holdings of the investor following the strategy
(x, m) on the kth day (before buying or selling on kth day)
is given by

k=1
Vilx, ®) (w) = (1 + r)k{x—i- ZTEJ-(SO(W),..., S (w)) %

j=0

S S, (W)
a+n" a+ry’ ||
It is convenient to express share prices and value in terms

of discounted prices: Thus let V (x, ) = Vi(x, @) (1 + r)’k,
S =81+ ) *. Then one has
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~ k-1
Vi) (w)=x + Y 1 (Sy(w), . . ., Si(w) x
j=0

(5 (W)= 5, (). (24)
Definition: An arbitrage opportunity (in the market con-
sisting of shares of this company) is a trading strategy
(0, ) such that

Ve(0,m) (W)20 Vwe Q, (25)

and

I7N (0,m) (W) >0 forsomew € Q. (26)

The following result gives a necessary and sufficient
condition for no arbitrage. For its proof see [1].

Theorem: The following are equivalent:

(i) There does not exist an arbitrage opportunity (in the
market consisting of shares of this company);

(ii) Foreach &, 0 <k < N; (s, . . ., 8p) € Hy.

P(Sxr1 Z(L+7)Se| So=s50,--,Sc=s)=1

= PSxr1=(1+r) S, | So=50,--8=sp)=1,
and

P (1 + 1Sk So=50,..,5=sp=1

= PSxr1=(1+7r) S| So=5¢ .- S,=sp=1.

If the share price model {S,} satisfies (i) in the theorem
above, then we say that model satisfies NA.

There is an alternate characterization of NA, via Mar-
tingales. Recall that a process {Z; =k > 0} is said to be a
Martingale if E(Zg+ | Zo, . - ., Zp) = Z; for all k.

Theorem: The share price model satisfies NA if and
only if there exists a probability measure Q on Q such
that O({w})>0 for all we Q and {Sp: 0<k<N} is a
Martingale on (€2, 0).

A measure Q as in the theorem stated above if it exists,
is called an Equivalent Martingale Measure (EMM).

In the rest of the section, we assume that NA is true.
We also fix an EMM Q.

We now come to the question of pricing of an option.
Consider a European call option with terminal time N and
strike price K. Let 4™ be the set of x such that there exists
a strategy T satisfying

Vy (x, (W) = (Sy(w) - K)" Vwe Q. 27
The right side of eq. (27) represents the gain from an
option. Thus if (x, ) satisfies eq. (27), the option cannot
be priced at a price above x (for then the strategy: sell
one option and then follow the strategy ® would be an
arbitrage opportunity in the market consisting of the
shares and the option.) Thus
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x'=inf A"
is an upper bound for the price p of the option. Similarly,
x =sup A" is a lower bound for p, where 4™ is the set of
all y such that there exists a strategy T satisfying
YV, ©) (W) < (Sy(w) —K)" Vwe Q. (28)
Standard results from Martingale theory imply that
if S, is a Martingale, then V, is a O-Martingale and so

Eg (V, (x, M) = x. (29)
This implies
N
x<Ey By =K (30)

a+r)"

showing that the bounds x and x™ are consistent (provided
NA holds).

A strategy (x, 7) is said to be a hedging strategy for the
option (under consideration) if

Vi (x, ©) (W) = (Sy (W) —K)" forall w e Q.

In this case, x€ A" and x€ 4~ and so x > x"and x < x_.
This and eq. (30) give

1+

Thus, if a hedging strategy exists, the price is the initial
investment required in the hedging strategy. The price
also equals the expected discounted return, where the
expectation is taken with respect to an EMM.

Let g: Q — [0, «<]. A broker is selling a contract that
pays an amount g(Sy, . . ., Sy) at time N, where Sy, . . ., Sy
are observed values of share prices. Such a contract is
called a contingency claim.

When g(w) = (Sy(w) — K), it is the European call option
and when g(w)= (K —Sy(w))", it is the European put
option. It entitles the buyer of the put option to sell one
share at price K at time N. Let us briefly discuss as to
how to price such a claim without introducing arbitrage
opportunities.

Let A” (g) be defined as in the case of call option, with
g(w) in place of (Sy (w) — K)"in the right hand sides of eqs
(27) and (28) and let x" (g) = inf A7 (g), x (g) = sup 4™ (g).
There are the upper and lower bounds for the price of the
contingent claim g. One also has

x () SEo (gw) (1 + 1) <x"(g).

A strategy (x, T) is said to be a hedging strategy for
g 1if
Pv(x,m) (w)y=gw) Vwe Q,
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and in this case, x=Ey (g) (1 + #)”" must be the price
of g.

The market consisting of shares of a company {Sg} is
said to be complete if every contingent claim admits a
hedging strategy.

In a complete market, the price of every contingent
claim is uniquely determined. The following results tell us
when a market is complete.

Theorem:
evolving a {Sy} is complete iff for all (s, . .
0<k<N.

The market consisting of shares of a company
“y Sk) € HL,

# {SZP(SK+1:S|S0,. . .,Sk:Sk)>0} =1or2.
Theorem: Assume that NA holds. The market consisting
of shares of a company evolving as {S;} is complete iff it
admits a unique EMM.

American options

Till now, we have discussed European options. These can
be exercised by the buyer at the terminal time — so in case
of call option, the buyer of the option contract can buy
one share at price K at time N. Likewise a buyer of a put
option can sell one share at price K at time N.

These options are actually traded in European markets.
The options that are traded in American markets differ
on a crucial point —they can be exercised at any time
between buying the contract and the terminal time.

Clearly, an investor can decide to exercise his/her
option at a time k(k < N) based on information available
to him/her till then, namely Sy, Si, . . ., Si. The investor is
not allowed to foresee the future. Thus,

T = first time the share price exceeds 1000 is allowed.

c=1t-1, ift>1,
=0 ift=0,

is not allowed (in practice, an investor can implement the
strategy T, but cannot implement the strategy 6: At time 5,
say an investor has observed S, = 890, S, =870, S, = 930,
S; =915, 5§, =965, §; =980. Then T > 5 and the investor
knows that he must continue. However, since S¢ has not
been observed, the investor cannot decide between the
alternatives: 6 =5 or 6 > 5.

If (So, Si, ..., Sp) denote the observations at time £,
then a random variable 7 is said to be a stopping time, if
the event {t =4k} is a function of S, ..., Si having
observed Sy (w), ..., Si(w); the investor can decide if
{t(w) =k} or {T (W)>k}.

Thus, the time at which an investor can exercise his/her
option must be a stopping time.

The theory of pricing of American options has strong
connections with the theory of optimal stopping times.
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Upper and lower bounds for the price of an American
option can be defined as in the case of European options
with suitable modifications.

In case the underlying model satisfies NA and is com-
plete, the upper and lower bounds coincide and the American
option price is also uniquely determined.

It can be shown that the American call option price is
the same as the corresponding European call option price:

o[y =5"
Y N |
a+r)
where K is the strike price, N is the terminal time and Q is
the EMM.
However, for the American put option, the price is

strictly higher than that of the corresponding European
put option: the American option price is

s Ep {w} ,

: (1+7)°

where the supremum is taken over all stopping times,
while the price of European put option is

(K-Sy)*
EQ[ (1+r)™ ]

Option pricing in continuous time models

We will now consider a more realistic scenario: where the
stock prices are allowed to change continuously, and where
an investor can buy or sell shares at any time. We will
continue to assume that the market is frictionless.

Let {S;: t > 0} denote the shares price at time ¢. Let » be
the instantaneous rate of return, so that an investment of
Rs 1 is worth Rs e” at time .

Let S,=Se ™ denote the discounted price of the share
at time ¢.

We will first consider simple strategies, where an inves-
tor engages in trading at finitely many time points, say at
to <t; <...<t, Let a; denote the number of shares the
strategy requires the investor to hold during (¢, #,4), 1 <1,
(over [0, #;] for i =0). The trading strategy {m,} is then
represented as

m—=1

T, :aol[o,zl](t)JrZail(tf,tf+1)‘ G
=l

While deciding on the number a; of shares to be kept
during (¢, t41), the investor would have observed {S,:
u < t;} and thus a; can be a function of {S,: u <t;}. Thus,
7, is a function of {S,: u <t} for every t. This is expressed
as: {m,} is adapted to {S,: u <t} in the stochastic process
literature. For the simple trading strategy {m} given by
eq. (31) and initial investment x, the worth of the holdings
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at time ¢, V4x, 7) and its discounted value 17,(x, n=e"
V(x, m) are given by

V(emy=x+ Y a(S, -S,)

i St

+ XS = 5, M (32)
which can be formally written as
i~ L ~
V,(x.m)=x+ |z, dS,. (33)
0

A simple trading strategy 7 is an arbitrage opportunity, if
P(V (a,m)20)=1,

and P(I7T (a,m)>0) > 0. Note that in this framework, the
number of outcomes can be infinite and thus for
all outcomes and for some outcomes are replaced by
‘with probability one’ and ‘with positive probability’,
respectively.

Here, it can be easily shown that if there exists a
probability measure Q such that P and @ are mutually
absolutely continuous and such that S, is a O-Martingale,
(such a Q is an EMM), then arbitrage opportunities do not
exist in the class of simple strategies.

The converse however is not true. It is true after we
make some technical modifications.

Thus, one assumes the Nexistence of an EMM, Q. This,
in turn, implies that S, S, are P-semi Martingales. We
can then consider limits of simple strategies as (idealized)
trading strategies. The (discounted) value is still given by
eq. (33) where the integral is the stochastic integral.

For further discussion of hedging strategies, upper—
lower bounds, American options, etc. we would need the
heavy machinery of stochastic calculus.

We hope that the discussion presented here would
entice a few readers to read the relevant portion of
stochastic calculus and then pursue this area of option
pricing in the context of Indian markets.

1. Kallainpur, G. and Karandikar, R. L., 4n Introduction to Option
Pricing Theory, Birkhauser, Boston, 2000.
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