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This paper gives several examples of the application of
probability models and statistical analysis in assessing
the cost of production of electricity. A typical power-
generating system usually consists of a diverse mix of
generators with varying capacities, reliability char-
acteristics and costs. Because electricity cannot be
stored, the particular set of units used to supply power
at any given time depends upon the magnitude of the
demand and the availability of the generators, both
random quantities. The cost of electric power pro-
duction is thus a random variable. Computation of the
basic parameters of its distribution is difficult because
of the large state space associated with a typical power-
generating system. The paper mentions these difficul-
ties and outlines several approximation schemes for
estimating these quantities. A Monte Carlo simulation
study carried out to explore whether an accurate
temperature forecast will improve the accuracy in the
estimation of production costs is summarized. Finally,
the paper describes how the production costing models
can be used to estimate marginal costs which are
essential in predicting market clearing prices when
electricity is deregulated.

ONE of the characteristics of large-scale electric power
production is that it cannot be stored. Thus at every
moment there should be sufficient production to meet the
demand (or load). If there is a sudden spurt of demand or
a unit that produces electricity cheaply fails, more expen-
sive units need to be pressed into service. The demand for
electric power and the failure—repair cycles of electric
power-generating units are often characterized by stochas-
tic processes. The cost of electric power production
during a given time interval is a random variable because
of its dependence on these two factors. Probability models
and statistical analysis play an important role in assessing
the cost of electric power production. This paper is an
attempt to review the author’s work in this area. One of
the special features of this particular application of
stochastic modelling is that the state space associated with
a typical electric power-generation system can be very
large. This makes the computation of seemingly ordinary
quantities such as the mean and variance of the production
costs quite difficult.
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Applications of statistics in industry in areas such as
quality control and design of experiments are well known.
But it appears that both the statistics and engineering
communities may not be fully aware of the potential
usefulness of statistical models in the electric power
industry. Electricity is a crucial commodity and the cost
of electric power production is of great interest to the
public. The descriptions given in this paper are represen-
tative of the electric utility industry in the United States,
although here the picture is changing at a very fast pace.
Until recently the electric power industry in this country
was regulated. Under regulation, the electric utility com-
panies are obligated to supply power to their customers at
a price that is fixed by the public regulatory commissions.
This price is based on the projected cost of the utility
company to which is added a guaranteed rate of return. It
has thus been of great interest to these companies to
forecast accurate estimates of production cost. Presently
the electric power industry is in the process of being
deregulated. This implies that both buyers and sellers of
electricity will be able to trade electricity at the price
prevailing in the market. As we will see, this change to
deregulation will not make the production costing models
that were developed in the context of regulation irrelevant
in the upcoming market-oriented environment.

We begin this paper with a short overview of an elec-
tric utility company in the current regulated set-up. The
role and development of production costing models is
given next. Analytical expressions for the mean and vari-
ance of production cost and several approximate methods
for their computation are then outlined. The next section
briefly describes a case study with actual data in which
the effect of temperature on the production costs was
analysed. The last section describes one possible appli-
cation of these models in a deregulated environment.

The electric utility companies solve the problem of
providing power from electricity-generating units to widely
scattered demand points through a three-tiered system.
Elements of this system are: power generation system,
transmission system and distribution system. In the power
generation system, electric power is produced from a
number of different types of generating units of varying
capacities and sizes. Transmission systems carry large
amounts of power for a long distance at a high voltage
level. From the transmission sources, distribution systems
carry the load to a service area by forming a fine network.
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Under the regulated set-up, a given electric utility com-
pany that is responsible for supplying power over a
specified geographical area and has direct relationships
with customers usually owns these three subsystems. Under
deregulation electricity will be traded like any other com-
modity and the producers and the consumers will have the
option to buy and sell power in a marketplace created to
provide competition. A given company may now own
only a part of the power system. In this paper we will
confine ourselves to a discussion of the role of the pro-
duction costing models only insofar as the power
generation system is concerned.

Production costing models

In describing a power generation system one needs to
consider both the demand which it needs to meet and the
supply which is obtained from the generating units that
constitute the system. Electric power consumption varies
with the time of the day, the day of the week, and the
season. In order to run the electric power generation sys-
tem economically so as to meet the demand, it is thus
necessary to turn the machines on and off at appropriate
times. But the generating units cannot be turned on and
off in a haphazard manner. Besides the start-up and shut-
down costs, one also needs to consider certain operating
constraints that dictate how frequently and in what manner
the units can be shut-off or switched on. They are, for
example: minimum capacity, maximum capacity, mini-
mum up-time, minimum down-time, ramping rate, etc.’.
Given a profile for the electricity demand during a
specified time interval, the optimization problem whose
solution gives the sequence in which the units belonging
to a utility company should be turned on and off so as to
meet the demand and not violate any of the operating
constraints is known as the unit commitment problem. It
is solved in conjunction with the economic dispatch
problem that determines the quantity of power that each
committed unit should produce so as to minimize pro-
duction costs. In the traditional formulation of the unit
commitment and economic dispatch problems the demand
is regarded as deterministic and the generators are assumed
to be available with certainty.

A discussion of the unit commitment and the economic
dispatch problems is relevant for estimating the produc-
tion costs of electricity, because the solution of these two
problems yields the optimal production costs for a genera-
ting system which needs to generate enough power to
meet the demand of its customers. The unit commitment
problem is considered to be a particularly difficult com-
binatorial optimization problem. Solution procedures for
this problem when the load and the availability of the
generators are considered as stochastic quantities are not
yet well developed. A second model for production costs
into which it is relatively easy to incorporate the sto-

1184

chastic aspects of the load and the generator availabilities
is often used in the electric power industry. In this model
the unit commitment constraints that incorporate the
history of operation of the generating units are ignored
and it is postulated that a strict merit-order loading
prevails, according to which the individual generators are
dispatched to meet the demand. This order is often
determined based on the variable costs (the direct cost to
generate one unit of electricity) of the units. This implies
that for a given level of demand, the unit with the cheapest
operating cost is dispatched first to meet the prevailing
load, followed by the next cheapest unit and so on. The
model was first introduced by Baleriaux ef al.>. Ryan and
Mazumdar have enlarged its scope by introducing sto-
chastic processes in its formulation. The subsequent
discussions given in this section pertain to this model.

In this model it is assumed that the costs are being
calculated for a power generation system consisting of N
units during the interval [0, 7]. The following assump-
tions are also made:

1. The generators are dispatched in a fixed, predeter-
mined loading order and the actual set of units being used
at any given time depend upon the magnitude of the load,
the loading order and the set of available units.

2. The jth unit in the loading order has capacity c;
variable energy cost d; ($/MWH). The unit operates
between two states, up and down, in accordance with an

alternating renewal process Y;(¢) which is in steady state:

1 if the unit jis up at time ¢,

Yj(t):{o

The steady state unavailability index for this unit, i.e.
lim, ,., P[Y,(f) = 0] is denoted by p; The relation E[Y(?)]
=1 - p; bolds for all values of 7 in the study interval.

3. The load at time ¢, which is denoted by u(¢), is a
stochastic process also in the steady state. The load has a
certain amount of predictable variation depending on the
time of the day, season, etc. but on top of it, there is
random variation.

4. For all values of i #j, Y{t) and Y,(s) are statistically
independent for all values of ¢ and s. Also, each Yi(¢) is
independent of u(#) for all values of ¢.

5. The up and down process of a generating unit conti-
nues whether or not it is in use. This assumption is made
to ensure that the steady state assumption for the genera-
ting units holds.

if the unit j is down at time ¢.

Let e,(#)dt and Z(T) denote, respectively, the energy
produced by unit i during the time intervals [¢, ¢ + df], and
[0, T, respectively. From the above assumptions it follows
that

e, (t) =min[u(t), ¢; 1Y, (),
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e;(t) =min {max [u(t) - iz_ickYk , 0], cl-} Y. (1),

k=1
i=2,3,...,N,

T
Z,(T) = [e,(t)dr. M
0

Let finally K(7) denote the cost of production for the
generation system. Then,

N
K(1)=Y,d,Z,(T). @
i=1

In many applications the cost resulting from being unable
to serve the demand (cost of unserved energy) is added to
this expression. This is not considered here.

Mean and variance of production costs

From eq. (1) we see that when unit 1 is considered, we
may write

T

T
E[Z(T)]= E{je1 (r)dr} = [ Ele, (1)1t
0

0
T
= [ Elmin(u(1), ¢,)Y; (1)]dt.
0

Now define

Lif u(t) 2 x,

It x) = {Oif w(t) < x.

Thus we can express
q

min(u(t), ¢;) = [ 1(t; x)dx.
0

Because of the assumed independence of Y,(¢) and u(?),

Tq
ELZy(O] = [ | ELI(t; %)Y, (#))dxdt
00
ol

= (1- p)| [ P{u(t) > x}drdx €)
00
=T(1- p)) [ Gy (x)dx,
0

where Gr(x) is the average probability that the load is
greater than x, the average being taken over the interval
[0, 77, i.e.

T
Gp(x)= %J.P{u(t) > x}dt.
0
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When the load u(f) is a deterministic time-varying func-
tion, P{u(¢) 2x} =I(t; x), i.e. Gi(x) now measures the
proportion of the time that the load exceeds or equals x in
the time interval [0, 7]. This quantity is known as the
load-duration curve in the power systems literature'.
Similarly, proceeding in the same fashion®, it can be
shown that

G i—1
E[Zi(T)]:T(l—pi)jE[GT[x+ Y.y, ﬂ dr, 4)
0 j=1

where the Y are independently distributed Bernoulli
random variables with P{Y; =0} =p; and P{Y¥;= 1} =
1 — p;. The integrand in eq. (4) is equivalent to

1 T i-1
?J.P{u(t) - z;chj = x} dr.
0 Jj=

If we now define a random variable U whose survivor
function is given by Gg(.), then eq. (4) can also be
expressed as

E[Z,-(T)]=T(l—p,-)fP{U—fchj Zx}dx, (5)
Jj=l

0

The expected cost of production is then given by

EIK()] =Y. d,E[Z,(T)].
i=1

An important question centres on how best to compute eq.
(5) when the distribution function of U and the p;s is
specified. Examining eq. (5) we observe that there is little
hope for obtaining a closed form expression for the value
of the integrand. For a given value of x, when the ¢;s and
p;s are all different, a large number of arithmetic opera-
tions will be necessary for an exact computation of
eq. (5). The number of such operations grows exponen-
tially with i. For a large system, the amount of com-
putation may be prohibitive. Mazumdar’ has compared
the accuracy obtained from applying two approximation
formulas to evaluating eq. (5) and determining the
expected production costs for a given large system. The
results show that both the Edgeworth and Esscher’s large-
deviation formulas are capable of providing accurate
estimates of eq. (5) in an acceptable amount of computer
time.

The computation of the variance of K[7] is a much
more difficult proposition. In order to appreciate the
sources of difficulty, consider eq. (2). The variance of the
production cost is given by

VarK (T')] = i i dd ; cov(Z,(1),Z,;(T)).
i=l j=1

However, the computation of the above covariance terms
is not an easy proposition. To appreciate the reasons,
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consider a typical covariance term. From the definition of
Z(T)

TT
cov(Z,(1), Z (1)) = [ [cov(e,(¢), e, (s)dsdp), (6)
00
where

e;(t) = min {max [u(t) - iz_ickYk (t),O] , cll Y.(1),

k=1

e;(s)= mjn{max[u(s) - jilckYk(s),OJ , cJ]Yj(s).

k=1

Although Yi(f) and Y(s) are assumed to be independent
for k=, it will not be correct to assume that Y,(¢) and
Yi(s), the random variables that refer to the operating
status of the generating unit & at times ¢ and s, will be
uncorrelated. (Intuitively, if a unit is up at a certain time,
we will expect it to remain up a short interval thereafter.)
In the expressions for e (t) and e¢,(s) above, suppose that
i<j. Then in the expression for e;f) we have terms
involving Y,(?), Y(?), . . ., Y;_;(f) and in the expression for
efs), we have Y(s),..., Y2(s),..., Yi(s), ..., Yi(s).
Thus for computing the variance of K[7], the covariance
of e(f) and e(s) needs to be evaluated for each ¢ and
s for each pair of units i and j, by taking into account
the contribution of each common covariance term
cov(Yx(t), Yi(s)). This appears to be a particularly daunt-
ing task.

Several procedures for computing the variance have
been outlined in the recent literature. In these papers it
has been assumed that each Yi(r) follows a continuous
time Markov chain with known transition rates. With
load being considered deterministic, Mazumdar et al.’
provided a systematic scheme for computing the vari-
ance. This procedure can be illustrated by considering
the term Var[Z;(7T)]. From the definition of ef) it is
seen that

e, (1) = min(max(u(t) — ¢y, 0), ¢2) 11 ()Y, (1)
+min(u(?), ¢2)(1= 1 (1)1, (1),
7
e, (s) = min(max(u(s) - ¢y, 0), ¢3)¥, ()T, (s)
+min(u(?), ¢,)(1= Y (s)Y5(5).

When the transition rates of the two-state Markov chain
for Y,(¢) are given by A, and p, it is well known’ that

cov(¥, (1), Y, (s)) = Pk%e_(xﬁuk = ) (3
where
A
pr=7—"—=1—g. )
e+ 1y
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When A, refers to the transition from the up to the down
state (failure rate) and i refers to the repair rate, p, is the
steady state unavailability index for the kth unit. Thus the
task now is to compute cov(es(f), es(s)) based on eq. (8).
For a given k, the number of terms in the expression
for ey (t) will be 25! The computational effort for the
cov(ed?), e(s)) terms thus rises at an exponential rate with
increased j and k. Also after these covariance terms have
been computed, they need to be entered into the double
integral expression in eq. (6) for evaluating cov(Zg(T),
Z(1)). The entire process can become very time-consuming
indeed.

Because of the lengthiness of the exact computation for
the variance, several approximation schemes have been
advanced for reducing the computational effort. Ryan and
Mazumdar’ have shown how the double integral can be
approximated by a single integral when the transition
rates are large. Lee ef al.’® have simplified the com-
putations first by breaking the interval [0, 7] into T
subintervals and replacing the integrals by sums. This can
be justified since most of the data on demand and supply
are reported in hourly intervals. They have developed a
recursive scheme for carrying out the computations based
on the assumption that the capacities of the individual
units have a largest common divisor greater than one.
This work appears quite useful for routine computations
by the industry. The formulas given by the authors how-
ever have one error that has been pointed out and correc-
ted by Kapoor and Mazumdar’, who have also proposed
another approximation scheme for the computation of the
variance using the bivariate Gram—Charlier series formu-
las. Shih ez al.'® have recently proposed a recursive scheme
for this computation. This procedure uses the properties
of the fundamental matrix of a discrete time, finite Markov
chain and uses the asymptotic formulas given by Kemeny
and Snell'' for the mean and variance of a function
defined on the state space of a Markov chain.

Monte Carlo computation of production costs

In view of the difficulties associated with the analytical
computations, Monte Carlo simulation becomes an attractive
alternative for estimating the quantities of interest in
electric power production costing models. Writing the
simulation code based on the model given in the section
on ‘Production costing models’ is reasonably straight-
forward. Numerical examples giving the results of such
simulation can be found in Mazumdar and Kapoorlz. Two
other recent papers have explored the possibility of
developing variance reduction procedures, whereby the
simulation estimates can be obtained at a given level of
precision with fewer total number of Monte Carlo runs,
than that which will be necessary with the direct Monte
Carlo method. One proposed procedure for variance reduc-
tion can be explained with reference to eq. (5). Note that
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the expected value of the energy produced by the ith unit
depends on the marginal probability distributions of Y;
and U. It is not necessary to use the stochastic processes
associated with the unit up and down times to estimate the
expected value of the production costs. Mazumdar" and
Mazumdar and Kapoor'* have shown that by introducing
two-state continuous time Markov chains with suitably
chosen transition rates A; and L1, to capture the transitions
between the up and down states for each unit i, we can
reduce the variance of the Monte Carlo estimate of eq.
(5). These transition rates need to be chosen such that
eq. (9) holds. Mazumdar and Kapoor'* have also des-
cribed a variance reduction method using the control
variate technique for estimating the variance.

A recent papelr15 has combined statistical analysis of
two years’ hourly load data with Monte Carlo simulation
to answer several questions related to the variance of pro-
duction costs. It is clear from the discussion given above
that there are two major components for the variance of
production cost: load and generator failures. A natural
question is which of these two components is a more
important contributor? Also it is well known that in the
United States one of the variables on which the load
depends is the ambient temperature. Thus a question that
arises in this connection is as follows: if an accurate
temperature forecast is available, can it be used to make
the corresponding forecast of the production cost more
accurate? There is not much hope for an answer to these
questions being obtained by using analytical formulas.
Therefore Monte Carlo simulation is used. Because the
load for different seasons demonstrates different patterns
and also there is much difference between the magnitude
of loads between weekdays and weekends, we select the
data pertaining to weekdays for the summer season only.
When the hourly load data were analysed, it is found that
correcting for periodicities, an AR(3) model fits the data
well. The fitted model, an ARIMA (3, 0, 0) x (0, 1, 0)5 is:

u(f) = —2.49 + 1.103 [u(-1) — u(t — 121)]
+0.00007024[u(t — 2) — u(t — 122)]
—0.1412 [u(t - 3) — u(t — 123)]

+u(t —120) + z(¢). (10)

Here, z(?) is a Gaussian white noise process with mean 0
and variance (?3 =990.04. Next for the same data set, the
values of hourly temperatures are considered, in addition
to the hourly load values. The plots of the load u(?) vs
temperature T, (°F) for each hour ¢ show that the following
regression equation (the coefficients are given in ref. 15)
is appropriate for representing these data:

u (=B, +B1,T B, (1,693 (¢, 1x(1).
where 8(7) is defined as:

0 if T, <65,

o(t,)= ,
) {1 if T, > 65,
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and

(1) = x(t — 120) + 0.879[x(+-1) — x(t — 121)] + z(¢),
(11)

where similar to eq. (10), z(f) is a Gaussian white noise
with mean 0 and estimated variance (93 = 2032.55. This
equation captures the feature that the electricity demand is
high at low as well as high temperatures and relatively
low at moderate temperatures. It also shows that when the
influence of temperature is taken out from the load data,
the time series for the particular data set could be repre-
sented by an AR(1) process.

Having first considered the demand side of the power-
generating system the supply side is next considered. A
representative system consisting of 17 generators compa-
tible with the load is chosen. The characteristics of these
units listed in their loading order are given in Table 1.

The design of the simulation is as follows. A 24-h
period for which an accurate temperature forecast for each
hour is considered available. Then a random sample of the
hourly load for this period is separately generated using
eqs (10) and (11). This operation was repeated L times.
For each such 24-hourly load sequences generated, Q
sequences of successive up-times and down-times for each
unit for the 24-h period from the information given in
Table 1 are next generated from their respective exponen-
tial distributions. Finally, using the loading order and
matching the hourly load with the hourly available capa-
city of each generator, the energy produced by each unit
during the 24-h period and the corresponding production
cost are computed We have in hand a total of L x Q
observations in all, O values of cost nested within each
24-h load sample. The data were analysed using a one-
factor random effects model in which the treatment
corresponds to the load and within load variation is the
result of variability of the generator up- and down-times
during the 24 h period. Specifically we assumed that the
cost Cj; is given as

Cy=n+lLi+g;, (=1,2,..,L;j=12,...,0),
(12)
where [l is a constant, /; are independent and identically

distributed i.i.d. normal random variables with mean zero
. 2 .. .
and variance G i, and g;; are i.i.d. normal random variables

Table 1. A generation system
Capacity Mean time Mean time to Energy cost
Units (MW) to failure 1/A repair 1/ $/MWH
1-2 400 1100 150 6.00
3 350 1150 100 11.40
4-7 150 960 40 11.40
8-9 150 1960 40 14.40
10-12 200 950 50 22.08
13-15 100 1200 50 23.00
16 50 2940 60 27.60
17 100 450 50 43.50
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with mean zero and variance © é. It is assumed that the
random variables /; and g; are all independent. We denote
the mean square between loads and the mean square
within loads by MSL and MSG, respectively. It is well
known'® that

E[MSL]=0+0c[; E[MSG]=0_.

Thus the estimates of ¢ é and ¢ 12 are

MSL-MSG
S;=MSG; §/=—"—"

; $P=S/+S¢.

§* is an estimate of G, the variance of the production
cost. It has two components, Sé and S7. The former
measures the variability of the production cost due to the
generator up- and down-times and the latter, due to load.
The results of simulation using L = 300 and Q =300 for a
total of 90,000 observations has been reported in Valen-
zuela and Mazumdar'” using the load models of both eqs
(10) and (11) and the generation system given in Table 1.
The results of this experiment showed that the load
component amounted to about 80% of the total variance
of production costs. Also, eq. (11) leads to a considerably
lower variance in the estimated value of S, suggesting
that inclusion of temperature in the equation would result
in much better estimates of production costs compared to
that obtained from eq. (10). If these conclusions are borne
out by confirmatory studies, then an obvious conclusion
will be that more effort should be made towards a better
prediction of hourly loads by considering a more refined
regression equation for load vs temperature and additional
factors beyond temperature, that are known to influence
loads.

Estimation of marginal costs

The production costing models can also be used to
estimate marginal cost at any given hour. In the context of
electricity production the marginal cost, i.e. the cost of
producing an additional unit of electricity for a generation
system, can be regarded to be the variable cost of the last
unit used to supply power to meet the demand. Thus the
marginal cost varies from hour to hour because of the
variation in the hourly demand. It also depends on the mix
of generators used to supply the demand at any given
hour. It is a random variable because of reasons similar to
those for the production cost. Shih and Mazumdar'’ have
used this formulation to provide a procedure for compu-
ting the mean and variance of the average marginal cost
during a certain time period. The estimation of the mean
and variance of the marginal costs will be of much
importance in the near future in the United States because
of the upcoming deregulation of electric power. In addi-
tion to producing power from its generating units, each
electric power-generating company then will have the
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option of buying from or selling power to pools or markets
specifically created to provide open competition. It is
assumed that the producer will be a price taker, i.e. its
actions will not affect the market price. According to
economic theory the market-clearing price at any given
hour will be equivalent to the marginal cost.

Using this model for market-clearing prices, Valenzuela
and Mazumdar'” have recently provided a solution to the
unit commitment problem (see section on ‘Production
costing models’) for the deregulated environment. The
objective function is now to maximize profit for each
generator. They have first shown that in order to solve
this problem, it is enough to consider each generating unit
individually, one at a time. To model the market-clearing
price, they assume that the generators participating in the
market are brought into operation in an economic merit-
order of loading similar to the model given in the section
on ‘Production costing models’. The ith unit in the
loading order has a capacity ¢; (MW), variable energy
cost d; ($/MWH), and a forced outage rate g;. The market-
clearing price at a specific hour ¢, m, is equal to the
operating cost ($/MWH) of the last unit used to meet
the load prevailing at this hour. This unit is called the
marginal unit and is denoted by J(¢). Thus m;, is equal to
dyy. A different formulation in which the information on
m, is obtained from the time series analysis of load and
market price is given by Allan and Ilic'®. The values of
J(#) and dj; depend on the prevailing aggregate load and
the operating states of the generating units in the loading
order. One needs to consider two decision variables, P,
and v,, for determining an optimum commitment schedule.
The first variable denotes the amount of power to be
generated by the unit under question at time ¢, and the
latter is a control variable whose value is 1, if the genera-
ting unit is committed at time ¢ and 0, if otherwise. The
optimization problem in this situation in the deterministic
case can be written as

Maxi C
profit | = ML AP ) ~CRR) = S(x)l1=via v,
(13)

=]

subject to the operating constraints for the particular unit:
capacity limits, minimum up-time, and minimum down-
time. Here, CF(p) is a known cost function that gives the
cost incurred for producing p units of power. Usually,
this is assumed to be a quadratic function of the form:
CF(p)=a + bp + cp®. The variable x, gives the consecu-
tive time that the unit has been on (+) or off (—) at the end
of hour ¢ and S(x,) gives the start-up cost function that
depends on the value of x,.

The maximum profit over the period 7 eq. (13) is a
random variable because the marginal unit J(¢) at an hour
t is a random variable. It is assumed that at the time of the
decision, hour zero, the marginal unit and the load for all
the hours before hour zero are known. Denoting the
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marginal unit at time zero by j,, the sub-problem is solved
by maximizing the conditional expected profit over the
period 7. The optimization problem is now expressed as

r
Max E[profit| j,]= MaxZ{P,E[dj(,) | Jol

Veolt 41

—CF(F)=S(x)A=v,)iv,  (14)

subject to the same operating constraints for the unit. The
solution to this problem has been given by Valenzuela and
Mazumdar'® using probabilistic dynamic programming. In
order to calculate the conditional expectation in eq. (14),
the conditional probability distribution of J(f) given J(0)
needs to be calculated. Because

Pr[J(f) = j and J(0) = jg] ,
Pr[J(0) = j,]

this implies that the probability distribution of J(¢) and
J(0) as well as the marginal probability distribution of
J(0) are required to be evaluated in these computations.
For the calculation of these probabilities the authors have
used the production costing model given in the section on
‘Production costing models’, by considering the overall
market to be a system consisting of N generating units
under the supervision of an Independent System Operator
(ISO) which controls the dispatch of generation. They
have argued that this model captures the fundamental
stochastic characteristics of the market.

In order to evaluate the probability expressions given in
eq. (15) they have pointed out that the events J(f) > j and

(15)

PHLI (1) = 1 (0) = jo 1=

J
u(t)—z c;Y,(1)>0,
i=l
are equivalent. Thus,

Pt[J(1) > j=Pr |:u(t)—2j: oY, (1) > 0}. : (16)

=1

The marginal probability distribution of J(f) can be
evaluated by computing the probability expression given
in the right hand side of eq. (16), which is seen to be very
similar to eq. (5). As regards the numerator of eq. (15),
they have noted that
Pr[J(r) = m and J(¥) = u]
=Pr[J(r)>m—1and J(t) > n - 1]

—Pr[J(r) > mand J(¢) > n — 1]

—Pr[J(r) > m — 1 and J(¢) > n]

+ Pr[J() > m and J(¥) > n].

Since the two events
{u(r) - ZciYi (r)>0and u(?)- Zcin—(t) > 0}
i=] i=1
and {J(r) > m and J(¢) > n},
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are equivalent, the following equality holds:

Pr[J(¥) > m and J(¥) > n]
=Pr u(r)icl—Yi(r) >0 and u() —zn:ciYi(t) >0 (17)
i=1 i=l

Computational procedures for approximating the proba-
bility expressions given in eqs (16) and (17) have been
investigated at length by Valenzuela®®, who has based his
investigation on the earlier work by Mazumdar’, Mazumdar
and Kapoor'’, and Iyengar and Mazumdar’'. The three
analytical approximation schemes considered by him are:
normal approximation, Edgeworth series expansion, and
the large-deviation approximation. He has compared these
approximations with an extensive Monte Carlo simulation
which he has used as a benchmark. His conclusions have
been that for a generating system consisting of a large
number of generating units with typical characteristics,
the normal and Edgeworth approximations provide reasona-
bly accurate results. The large-deviation approximation
which gives surprisingly accurate results for small sys-
tems becomes computationally very time-consuming for
large systems and is thus not competitive with the other
two methods.

In the numerical example given by Valenzuela and
Mazumdar'®, they have considered a system of 150 units
representing the market for which information similar to
that given in Table 1 was available. The model for the
load is similar to that given in eq. (11), and it is assumed
that the temperature forecast for the 24-h period for which
the unit commitment decision is being made is accurate.
They consider solving the commitment problem for a
single unit by solving the optimization problem given in
eq. (14). For this purpose, they compute the conditional
probabilities using the normal and Edgeworth approxi-
mations, and Monte Carlo simulation using 200,000 repli-
cates. The optimum schedule is found to be the same for
each method with comparable estimates of maximum
profit. From the standpoint of computational effort, normal
approximation takes the least time, followed by Edge-
worth approximation and Monte Carlo simulation.

One potential opportunity for application of statistical
methods in the deregulated environment is to devise stra-
tegies for hedging risks for both buyers and sellers of
electricity, by entering into special contracts or buying
and selling specific derivative financial instruments. Some
discussion on this topic is given in Pilipovic®. In this
work an estimate of the statistical distribution of marginal
costs will play an important role.

Conclusions

The above discussion has shown that statistical methods
and probability models play a major role in the compu-
tation of electric power production costs. The challenges
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arise from the largeness of the state space associated with
typical electric power generation systems. The example of
the last section shows that there is an opportunity for
interaction of optimization techniques with probability
computations for solving very real practical problems in
electric power system planning.
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