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In this paper we review certain topics in the area of
survival analysis which deals with statistical/mathe-
matical modelling of the survival/death phenomenon
and its ramifications. We also discuss the major sta-
tistical procedures for suggesting and validating the
models for the time to failure (lifetime) of a unit. The
main concerns in survival analysis include the various
censoring schemes which arise in collection of data on
survival time of a unit. We study data analysis under
three schemes. We study the probability laws which
govern the distribution of time to failure, the effects of
various covariates on these laws, as well as the esti-
mation and comparison of effectiveness of the various
competing risks.

SURVIVAL analysis is the branch of statistics which deals
with collection of data, modelling and statistical analysis
of data on lifetimes of units. We assume that the data
consist of realizations of independent and identically dis-
tributed (i.i.d.) random variables (r.vs). Since we deal
with lifetimes here, we further assume that the random
variables are positive-valued and for the sake of simple
modelling, continuous. Thus, we may denote the lifetime
of a unit by X, which is a positive-valued continuous
random variable. Let

F(x)=P[X<x] and F(x)=P[X>x],

be its cumulative distribution function (c.d.f.) and survival
function, respectively. Let us assume the existence of
corresponding probability density function (c.p.d.f.),

d
x)=— F(x),
f(x) o (%)
and the hazard rate

f(x)
F(0 ]

rp(x) = {
It is well known that
b
P[a<x£b]:.|.f(x)dx,

gives the probability that death will occur in the interval
(a, b]. However, the conditional probability that death
will occur in the interval (a, b] given that the unit has
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survived up to a is denoted by Pla <X < b | X > a] and is
given by:
Pla<X<b] F(b)-F(a)

Pla<X<bh|X >al= PIX > al )

Thus, it is seen that the hazard rate (r«(x)) is given by:
rp(x)= limlP[x<XSx+t|X>x],
=0t

and is interpreted as the (limiting) instantaneous condi-
tional rate of failure at age x, given survival up to age x.
F, F, fand rp are in one-one correspondence with each
other since

X
F(x)=exp {—er (t) dt}
0

Since survival experiments are often conducted on live
subjects (often humans), certain complications get intro-
duced at the data collection stage itself. The main cause
for this is that many subjects fail to continue to be in the
study till the event of death/failure. This leads to incom-
plete data due to censored observations. In this article, we
discuss the various censoring types and define the
likelihood for the data realized from them.

Next we see that the exponential distribution plays the
central role in modelling the probability laws of survival
data. Certain other parametric models are also introduced
to handle departures from exponentiality.

We also discuss the development due to Cox', who
studies the effects of covariates on lifetimes through the
proportional hazard model. This model is relatively easy
to understand. Also statistical inferences within this model
can be carried out with very few assumptions in the
semiparmetric framework.

Lastly, we consider the competing risks scenario. This
arises when death can be attributed to one of the several
risks, unambiguously. Then we can separate the proba-
bilities (relative failure rate, etc.)of death due to various
risks, estimate those and make comparisons among them.
Here also one may write the likelihood of the data as
observed within this scheme and develop inference
procedures.

It may not be out of place to point out that the methods
of survival analysis can be applied in many areas beyond
survival analysis (and reliability which is concerned with
failure of industrial objects). It needs to be recognized
that the data to be analysed should be in the form of the
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time of occurrence of the event of interest. Such events
may be from economics—time spent in the state of unemp-
loyment, from sociology—time spent out of jail until next
conviction, and from other disciplines. In general, one
may call this methodology as event time analysis.

Censored data

In survival analysis the observations are lifetimes which
can be indefinitely long. So quite often the experiment is
so designed that the time required for collecting the data
is reduced. Two types of censoring are built into the
design of the experiment to reduce the time taken for
completing the study.

Type I (time censoring)

A number, say n, of identical units are simultaneously put
into operation. However, the study is discontinued at a
predetermined time #,. Suppose n, items have failed by
this time and the remaining n. = n — n, items remain ope-
rative. These are called the censored items. Let U be the
set of ordered uncensored lifetimes #., t), . . ., #n,), and
C be the set of censored items with censoring time ¢, for
the 7. censored items. In this case, the likelihood (L(9)) is:

LO) =TT fotwy) [T (t0), 0<tgy <...<tg .

eU ieC

Type I (order censoring)

Again suppose that n identical units are simultaneously
put into operation. The study is discontinued when a
predetermined number, say k(< n) items fail. Hence the
failure times of £ failed items are available. These are the
k smallest-order statistics #;, i = 1, . . ., k. For the remain-
ing (n—k) items the censoring time #y which is the
failure time of the item failing last is available. The
likelihood of the data is given by:

n!

k e —,
Hfé (t<l>)[F(t<k>)]n k, 0< t<1> < t(k) < o0,

M=o

Right random censoring

The above types of designed censoring are more prevalent
in the reliability studies (of engineering systems). In
survival studies (regarding biomedical subjects) censoring
is more a part of the experimental situation than a matter
of deliberate design. Such undesigned censoring occurs
when some information about individual survival time is
available, but not about exact survival time. As a simple
example of such undesigned censoring consider leukae-
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mia patients who are followed from the start of the
remission until they go out of remission. The event
defining failure is ‘going out of remission’. If for a given
patient the study ends while the patient is still in
remission (i.e. the event defining failure does not occur
yet), then the patient’s survival time is considered as
censored. For this person, it is only known that the
survival time is not less than the period for which the
person was observed. It is called right random censoring
and is the most frequent type of random censoring.

Let X;, X,5,..., X, be the iid. r.v.s. with c¢.d.fF
representing lifetimes of 7 independent, identical units on
test. However, associated with each X, there is a random
variable C;, known as its censoring variable. We observe:

T, =min(X,,C;),i=12,...,n, and

i

1 if X,<C,,
0 if X,>C,.

Let the censoring variable have the p.d.f. 9 and
distribution function G. It is assumed that 7; and C; are
independent. (Without this assumption, only few results
are available.) One should carefully see whether the
assumption of independence of 7; and C; is justifiable. For
example, in clinical trials when the reason for withdrawal
is related to the course of the disease, this assumption
may not be satisfied.

At the end of the study we have a sample consisting of
n pairs of observations (#;, §;). The likelihood is given by:

£®)= [15 1% TIGE [Tew).

t,el teC tel teC

where U is the set of uncensored (complete) observations
and C is the set of censored observations.

The last two terms of the likelihood are ignored as they
do not involve the unknown lifetime parameters.

A well-known non-parametric estimator of the survival

function F in the absence of censoring is the empirical
survival function (F),(¢)) defined as follows:

Fn(f):;

1 [ number of subjects with ]

survival time longer than ¢

Its generalization to randomly-censored data is the popu-
lar product limit estimator of Kaplan—Meier®. Let #, <
ty <...<t; be the distinct failure-censoring epochs in a
random sample of size n (k < n). Let n; be the number of
subjects having lifetime at least ¢; and d; be the number of
deaths at t; (d;=0, if only censoring takes place at ).
Then:

F(r)=H[1—ﬁ}

1<t i
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is the Kaplan-Meier (product limit) estimator of F(¢).
The estimator of its asymptotic variance is given by the
following formula, originally developed by Greenwood’
in another context.

R R d.
Var(Fiy) = (Fpy) Y, ————.
(Fiy) =) tzslt O —d)

One can then obtain confidence intervals for the
unknown d.f. Hall and Wellner* have constructed confi-
dence bands for the entire survival function.

Parametric models

The useful concept in modelling life distributions is that
of ageing. The age of a working unit (or living individual)
is the time for which it is already working satisfactorily
without failure.

Let a unit be of age . It has residual lifetime 7, with F,
as its survival function. ‘No ageing’ phenomenon can be
described as ‘age has no effect on the residual lifetime of
the unit’. A mathematical way of describing this would be
to say that 7, (+=0) are identically distributed random
variables, i.e.

F(x)=F,(x) Vt, x>0.

This gives, F (x)F(f) = F (¢ + x). The last equation is the
celebrated Cauchy functional equation. It is well known
that the exponential is the only continuous distribution
that satisfies it. It has the density, f(x, A) = Ae ™, x > 0,
with the corresponding hazard rate rp(x) = A (constant)
and F(x) = e’“, x> 0. It is seen that the survival function
of 7; at age ¢ is:

Fny =10 _ o
()

which is again the same exponential distribution. We shall
call this characteristic property as the ‘no ageing pro-
perty’. Electronic items, light bulbs, etc often exhibit the
‘no ageing’ phenomenon. These items do not change pro-
perties with usage; but they fail when some external
shock, like a surge of high voltage comes along. Hence
exponential distribution is a good model for lifetimes of
such items. Davis® gives a number of examples, including
bank statement and ledger errors, payroll cheque errors,
automatic calculating machine failure and radar set com-
ponent failure, in which failure data are well described by
the exponential distribution. Applications in animal and
human studies of chronic and infectious diseases can be
found in Zelen®, Feigl and Zelen’, and Zippin and Armi-
tage®. Using the notation and likelihood expressions from
the section on ‘Censored data’, we state here the
estimators of A under the three censoring types:
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n,

1. Type I censoring: A= -

U

t(i} "rlo (I’l—l’lu)
1

i=

k

2. Type II censoring: A= T

i=1

nu

v
Y
i=1

The asymptotic variances of these estimators can be
obtained through the Fisher information formulae, leading
to asymptotic confidence intervals.

Though there are plenty of ‘no ageing’ situations, we
more often come across situations in which positive
ageing phenomenon is observed. By positive ageing we
mean that the age has adverse effect on the residual
lifetime of the unit. If age affects the performance of the
unit adversely, then the residual lifetime of unit of age t,
is stochastically shorter than residual lifetime of a unit of
age ty (f; < ).

This could be stated as: X;, 2X;, VO0<1 < t, or equi-
valently, in terms of survival functions:

3. Random censoring: A=

F[](x) > F;z(x) Y x and 0< tl < t2.

This is equivalent to 7x(r) Tz, if the failure rate exists.
Hence the shape of the hazard function indicates how an
item ages. The exponential distribution is characterized
by constant hazard rate, as there is no ageing or wearout.
The hazard function being increasing means that items are
more likely to fail as age increases. In other words, items
wear out or degrade with time. This certainly is the case
with mechanical items that undergo wear or fatigue. It can
also be seen in case of biomedical experiments. If T is
time until a tumour appears after the carcinogenic injec-
tion in an animal experiment, then the carcinogen makes
the tumour more likely to appear as time passes. The class
of probability distributions of such random variables is
known as ‘increasing failure rate (IFR)’ class. The decreas-
ing hazard is (decreasing failure rate, DFR) less commonly
observed in real life. In this case, the items are less likely
to fail as time passes. Some metals work-harden through
use and thus have increased strength as time passes. We
shall discuss two families of distributions which are com-
monly used to model lifetimes of the items/individuals
with increasing (decreasing) failure rates.

The Weibull family

The survival function for this family is given by: F(f) =
e’m; t>0; A, y> 0. This distribution is a generalization of
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the exponential distribution. However, it has a hazard rate
which may have different shapes. For y=1, the distri-
bution has constant hazard (i.e. exponential distribution);
for y> 1, it belongs to IFR class and y < 1, to DFR class.

The Gamma distribution

KY tY_l e—kz

f@= ; t>0,y>0,A>0.

0

This distribution is also a generalization of the expo-
nential distribution and includes chi-square distribution as
a special case. Again Y= 1 gives the exponential distri-
bution, for y> 1, the IFR class and y < 1, the DFR class.
Furthermore, for all vy,

lim r(f)=A2,
11—

indicating that a lifetime with a gamma distribution will
have an exponential tail. Thus, if an item survives long
enough, the distribution of the remaining lifetime is app-
roximately exponential.

Although the exponential, Weibull and gamma distribu-
tions are popular models, several other distributions are
also useful in modelling lifetimes. We mention few such
models below:

Linear failure rate family

The survival function for this family is:

F(f) = expl- (At + ;WAD)], Ay>0,120.

Makeham family

The failure rate (hazard rate) for this distribution is given
by:

) =[1+06(1-e7)], 6>0.

Pareto distribution

Harris’ has pointed out that a two-parameter, Pareto
distribution of the second kind (referred to as Lomax
distribution) arises as a compound exponential distribu-
tion when the parameter of the exponential distribution is
itself distributed as a gamma variate. For this distribution
the hazard rate is

of
B x+1)’

re(x)= o, B >0,x>0.

This distribution belongs to DFR class of distributions.
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Non-monotonic hazard functions

Two-component parallel system: Suppose that the two
components are independent and have respective life
distributions:

F()=1-¢™ % >0,:>0, and
1 1

F,()=1-¢™ X, >0,¢20.
2 2

If F is the life distribution of the system, then

N Ao 4 h,e T — () + A, et

rr()= ot gt _ gt '

It can be verified that 7(r) T 7 on (6, f,) and decreases on
(1, =), where t, depends on A, and A,.

The system considered in the above example is a
coherent system'’. The lifetime distribution of the system
belongs to what is known as increasing failure rate
average (IFRA) class of life distribution. It is defined as
the class of distributions for which R (7), defined as:

ﬁ(r)%{jm x) dxl,

0

is an increasing function of «.

Another class of life distributions which arises naturally
in human mortality studies and in reliability situations is
characterized by failure rate function having ‘bath-tub
shape’. A good example of this is seen in standard human
mortality tables. The risk of death for infants decreases as
age advances. Then for ages 10-30, the death rate is
almost constant; the deaths in this period are mainly due
to random causes such as accidents. Finally, after the age
of 30 an increasing proportion of the living persons die as
age advances. The three phases are represented by a bath-
tub curve (see Figure 1).

0.7
0.6 -
E 0.5 1
g 0.4
s 7
S 03
o
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0.1
0 DFR Almost Constant
0 10 20 30 40
Age
Figure 1. Bath-tub curve.
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Model selection and validation

Exponential distribution is the most popular distribution
for modelling lifetimes. However, exponential distribution
should be used judiciously since its ‘no ageing’ property
actually restricts its applicability. So testing for exponen-
tiality is important. Hahn and Shapiro'' have suggested a
two-sided test for the one-parameter (unknown) exponen-
tial distribution. The test is based on Wj statistics as
defined below:

Y (- )2

_ i
Wy = ,

£

where t, to, . . ., t, are observed lifetimes of the » units on
test. The null hypothesis of exponentiality is rejected if
W is too small or too large.

It is seen that the exponential distribution is a member
of every ageing class. The phenomenon of strictly positive
(negative) ageing occurs when there is departure from the
exponential distribution. So a test for exponentiality within
a positive or negative ageing class when the 7, is rejec-
ted, will suggest the ageing class in which the search for
the model should be limited. Again we shall restrict only
to three tests among the several tests of this type from the
published literature.

Hollander and Proschan test I'*:

Hy: F(x)=1-¢™, x>0, \>0 (unspecified).

Using Cauchy functional equation an equivalent formu-
lation of Hj is:

Hy: F(s+6)=F@$)F () Vs,t>0vs

Hy: F(s+ ) <F(s)F(t) forsome s,t>0,

(i.e. the new better-than-used property).

The test is based on the measure T defined as:
0

1 . e
T=3 —Y onsimplification,

{F(s)F ()= F(s+1)} dF (s) dF (7).

S — 3

where

T=

0%8

T{F(s +1) dF' (s) dF(¢).
0

Here the alternative corresponds to the positive values
of T or small values of 7. So the U-statistics"” is cons-
tructed for .
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Let Ty, T, ..., T, be arandom sample from distribution
F and T, be the ith order statistics. Define:

1,,7,,T5) = .
V(. 1. 13) {0 otherwise.

Then:

" n(n— 1)(n 2)ZZZ‘V(T<k>>T<J>»T<z>)

i< j<ik=l

For large samples the test statistics is asymptotically
normal. For small samples, the cut-off points are provided
using Monte Carlo simulations.

Hollander and Proschan test II'*: This test uses pro-
perties of total time on test (TTT) transform defined as:

—1
Fo

Vr(== [F(u)du,
g

where | is the mean of the distribution. Exponentiality is
tested within the ‘new better-than-used in expectation’
class. Let Ty, i=1,2,...,n, be order statistics of a
random sample {7;,i=1,2,..., n} from the distribution
F. Let

t(ﬂ k+ DTy = T 1>)

! =l nT

where T, is the sample mean. Define
7

K,=Y (U;-j/n.
j=l

The test statistics is

)

3
=

I,
-

The test statistics is asymptotically normal and small
sample cut-off points are provided by simulations.

Deshpande test”: This is a class of tests for exponen-
tially within the IFRA class of life distributions. The test is
based on the following characterization of IFRA property:

Fis IFRA & [F(0)]° < F(bx), 0<b < 1,x>0.

Thus a measure of divergence from exponentiality is
given as:

=_ 1
T =[E|;F(bx)dx(x)—m}
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The U-statistics estimator J, is constructed with the para-
meter y. Let 7, 7,,...,7, be a random sample from
distribution F. Define:

1 if X >bX,,
0 otherwise.

0<bh<],
Y (X, -bX,)=
Then the test statistics is:

1
n(n—1)

ZZ[W(Xi —bX ) +y(X; -bX;)].

i< j=1

Jb:

The asymptotic distribution of J, is normal. For small
samples, the cut-off points are provided by Monte Carlo
simulations for 5 = 0.5 and b= 0.9.

Graphical methods have long been used to judge the
goodness of fit. These methods are simple and effective.
A number of authors have discussed the use of probability
plots for informal evaluation of distributional assumptions
and for the estimation of parameters'®"?.

Cox’s proportional hazards model: A method of
regression

Our primary interest in survival analysis is the study of
lifetimes. In clinical and other experimental enquiries,
measurements on characteristics which possibly have
influence on lifetime are also obtained. Such characte-
ristics are called concomitant or explanatory variables or
simple covariates. For example, many medical charts con-
tain a large number of patient characteristics, i.e. values
of covariates which are possibly related to the prognosis.
A statistical analysis is useful in sorting out the ones that
are most closely related to the prognosis. This can be
done by introducing models which represent the influence
of concomitant variables. Such models, which deal with
the relationship between two variables, a dependent or
response variable Y and an independent variable or co-
variate X, are known as regression models.

Model formulation

Suppose for every individual there is defined a gx1 vector
Z of covariates. It is often convenient to define Z such that
Z = 0 corresponds to some meaningful ‘standard’ condition.

The baseline lifetime model (when Z =0) could be
parametric or non parametric and the representation of
changes introduced by Z # 0 is usually parametric. Such
models are called ‘semi-parametric’ if baseline is not
known.

Proportional hazards model (PH model): This is the
most cited model which was introduced by Cox' in his
path-breaking paper. The simple form of the proportional

hazards model is:
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h(t, Z) = ho (1 (Z),

where hg(#) is the baseline failure rate and y(Z) is a
parametric link function bringing in the covariates. It
satisfies Y(0) =1 and y(Z) = 0 for all Z. The commonly
used form of y is:

¥(Z)=y(Z. B)=exp(B 2).

known as the log linear form. Thus, for the individual
with covariate vector Z, the hazard function A(¢, Z) can be
represented as:

h(t, Z) = hy (1) expl B Z1,
so that the ratio:

h(t, Z)
ho ()

represents the ‘relative risk’ of failure. Further,

h(t,Z)| o/
log {—ho(t) }—B_Z,

is the usual form of a linear regression model. Hence the
name ‘log linear model’. The regression coefficients are
constants and covariates are fixed. Therefore, hazards
h(t,Z) and hy(r) are proportional, hence the name
proportional hazards.

We first consider the case of single binary covariate

0
Z,=
{

Here the term exposed may refer to a risk factor such as
smoking, or a patient’s characteristic such as race (white,
non white) or sex (male/female). It can be seen that:

=exp[p Z],

if the patient is not exposed,
if the patient is exposed.

h(t; non exposed) = A, (1),
h(t; exposed) =k, (z‘)eB ,

so that hazard ratio, eﬁ, represents the constant relative
risk of exposure. Let Iy be the survival function for non
exposed and F; be the survival function for exposed.
Then

Fi(ty = (Fo(r))e’.

Thus, testing for regression coefficient 3 is zero, is equi-
valent to testing equality of survival functions of non
exposed and exposed.

Semi-parametric PH model: We shall consider the
baseline (h¢(¢)) as completely unknown and the covari-
ates as fixed. Let 1 <t ..., < t, be the lifetimes of
failed subjects. The rest of the (n—m) subjects are
randomly censored. For each known time of death/
failure, #;, there exists a risk set R; of subjects which

CURRENT SCIENCE, VOL. 80, NO. 9, 10 MAY 2001



SPECIAL SECTION: STATISTICS

are still in the study just prior to this time point. Cox'
suggested using:

m | exp(B’Z;)
Jj=1 Zexp(B_'Z ) ,

keR;

L:

as a partial or quasi likelihood function.

Efron”® has shown that inferences about the set of
regression coefficients based on Cox’s partial likelihood
are ‘asymptotically equivalent to those based on all data’.
Tsiasis®' gives a proof of the asymptotic normality of [§
The concept of stratification is introduced by Kalbfleisch
and Prentice™, to accommodate the non-proportional case
as well. However, sound mathematical basis for treating
partial likelihood as ordinary likelihood is provided by
Andersen and Gill*. This development extends the
proportional hazards model to accommodate the time-
dependent covariates. Following are examples of time-
dependent covariates:

(i) Suppose that a treatment is applied at time 7, > 0.
Then one can incorporate a time-dependent binary co-
variate (Z(#)) defined as:

0 if t<t,,
ZO)=q .
1 if t2>1¢,.

(i) In some industrial applications, a time-varying stress
may be applied. So the covariate process will be the entire
history of the stress process.

Thus, one is justified in employing the log likelihood
equation:

logL=Y EZJ-—IOg Yexp(B Zp) |
=

keR;

in the usual way to estimate the regression parameters and
to test the hypothesis regarding the regression parameters.

Model validation

Treatment of time-dependent covariates leads to a simple
test of goodness-of-fit for PH model with fixed covariates.
Suppose X is the (only) fixed covariate in the model. We
define an additional covariate X, as X, = Xt and consider
the expanded model:

h(t; X, =x,) =N (t)e(ﬁlxﬁ'ﬁzxz)
— }\‘0 (t) e(Bm"’Bzﬁ’) ,

and examine the significance of the hypothesis B, = 0.
Acceptance of the hypothesis implies a goodness-of-fit of
PH model for the factor X;.
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In addition to the above simple suggestion by Cox,
other more complicated methods are suggested in the
literature. For example, Schoenfeld® suggested generali-
zation of Pearson’s chi-square test when the regression
parameter is assumed to be known and when it is esti-
mated on the basis of partial likelihood. Anderson® has
suggested a chi-square goodness-of-fit test based on the
partition of the time axis. Wei*®, Gill and Schumacher”’
also have contributed to the literature on the goodness-of-
fit testing of the PH model. Lin and Wei’® have suggested
a goodness-of-fit test for the PH model which is an
extension of White” goodness-of-fit test in the ordinary
likelihood setting. In their test, the measure of divergence
from the PH model is taken as the difference between two
model-based consistent estimators of Fisher’s information
matrix of the maximum partial likelihood estimator [§ in
Cox’s model. This difference is asymptotically normal
with mean zero. Covariance matrix of this difference can
be consistently estimated. Wald statistics based on this
asymptotic distribution is suggested as the test statistics.
Deshpande and Sengupta® have suggested a goodness-of-
fit test for the PH model, where the alternative considered
is monotonic increasing hazard ratio. The test statistics
base on U-statistics considerations is shown to be
equivalent to a linear rank statistics'”. The asymptotic
distribution of the test statistics is normal.

The graphical tests of goodness-of-fit are proposed
by Cox', Key’', Crowley and Hu'? and Arjas™.

Applications: The PH model has been used in diverse
areas. We shall mention only a few. It is used in a study of
dialysis and kidney transplants in end-stage renal disease’”,
in the Stanford Heart Transplant Programme™, in reci-
divism®*>" which considers the probability that an inmate
of jail will return to prison after release, in the study of
break discs on high-speed trains™, weapons systems™,
size regulation of Atlantic Halibut™.

Extensions of Cox’s model: The PH model has been
extended to smooth additive function of the risk by Hastie
and Tibshirani*', Gentleman and Crowley42.

In the context of regression trees and other piece-wise
constant regression functions, work has been done by
Davis and Anderson*’ and Gray™. Hastie and Tibshirani*
extend Cox’s model to model smooth time-varying varia-
ble effects. Kooperberg et al.** developed the powerful
hazard regression (HARE) method which uses piece-wise
linear regression splines, where knots and variables are
adaptively selected on the basis of outcome variables to
model the hazard function. The resulting model has simi-
larities with the multivariate adaptive regression spline
(MARS) model of Friedman*. However, because the
HARE method focuses on the estimation of the entire
hazard function, instead of just relative risk regression
function, the unconditional log hazard function model
must also be modelled parametrically as part of the
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procedure. LaBlanc and Crowley™ have considered models
similar to HARE model, except that the technique pro-
posed uses a least squares version of MARS algorithm to
adaptively select knot positions for terms in the regression
model. Then, for a given set of knots, the ‘standard’
partial likelihood is used for estimating the coefficients.
Both HARE and this method are related to the method
developed by Gray™, who has used fixed knot splines in
the PH model. However, HARE and LaBlanc and Crowley
methods adaptively select the knot positions. LaBlanc and
Crowley also illustrated the techniques with a clinical trial
data for myeloma.

Competing risks

In many situations, there are several possible risks of
failure. The actual cause of failure of the individual (item)
may be any one of these risks. Hence these risks are said
to compete for the life of the individual. The model for
lifetime in the presence of such competing risks is known
as the competing risks model.

The competing risks set-up is often modelled as follows.
The unit is exposed to K (= 2) risks of failure. One and
only one of these actually claims the life and is called the
cause of failure (death). It is presumed that X, X, . . ., X}
are positive-valued continuous random variables denoting
the lifetime (time to failure) of the unit under the & risks,
respectively. In other words, X;, called the ith latent
lifetime of the unit, represents the random lifetime of the
unit when the unit is exposed to the ith risk alone.
However, all the & risks act simultaneously and the actual
lifetime of the ith unit is another positive-valued conti-
nuous random variable 7= min(X;, X, . . ., Xp). Also, let
us assume that upon failure the cause of death or the risk
which actually claimed the life, becomes known. It is
denoted by & and is defined as:

S=jifT=X, j=12,.. .,k
Thus data available from » independent copies of the
unit are:

(7,8,), i=L2,..,n
It can be seen that there is correspondence between the &
latent lifetimes in the competing risk set-up and the
lifetimes of the £ components constituting a series system.
Once such data are collected, the question of making
inferences about the assumed model arises. The proba-
bility model is specified by, say, joint survival function of
X1, X, . . ., X denoted by:

F(xl,xz,...,xk)ZP[Xl>x1,X2>x2,...,Xk>xk].
The functions S(#), i=1, 2, ..., k defined by
S.(t)=P[T>t,8=i], i=12,.. .k,
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are called incidence functions of the & risks, respectively.
Obviously S; can be derived from F. However, the
converse is not always true. Berman® showed that if
the random variables X, X; . . ., X are independent with
distribution functions F(x), then there does exists a one-
to-one correspondence between the joint survival function

k p—
H F; (xi )a
i=1

and the collection
(S, i=12,...k},

of incidence functions. Earlier Cox™ observed that in the
general dependent case, F is not identifiable from

(S, i=12,...k},

Tsiatis’' made this clear by explicitly constructing a joint
survival function,

J— k J—
G(tla tZa---a tk):HGi(ti)a
i1

k l k -l
=TT exp =[5, | Xsi () | dp,
=l 0 =l
where
d -
si(x) =——8;(x).
(x) o (x)
The joint survival functions 7~ and G lead to the same set

(5,0, i=12,.. Kk,
of incidence functions.

There have been several studies on identifiability aspect
in the parametric set-up. For example, Nadas’> shows that
bivariate normal is identifiable, Arnold and Brockett™
show that the bivariate Makeham and two versions of
Pareto distributions are identifiable. They have given
explicit solutions for the parameters in the above models
in terms of the incidence functions.

There is no problem of identifiability in case of inde-
pendent latent lifetimes. A large number of statistical
procedures have been devised to make inferences about
the joint survival function F(x), X, . . ., x;) or equivalently
in the independent case, the marginal survival functions
Fi(x) of latent lifetimes. See David and Moeschberger™,
Bagai and Deshpande’ for a description of such proce-
dures for estimation, testing and other problems, when the
parametric family to which Fs belong is known. These
procedures are based on the basic likelihood:

k n _ s
L(t;38, 85 -8, )= [T TTCA D™ Fe, '™

=l j=1
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For example, if F; is the exponential distribution with
parameters A, respectively, then m.Le. of &; is

A .
A= n’ ,
)Ny
j=
where ¢ are the lifetimes of the units, j=1,2,.. ., n and

n; is the member of units failed due to the ith risk.
Similarly, one can derive confidence intervals and tests
for specified hypotheses.

Non parametric inference

We discuss some contributions to non parametric infe-
rence regarding independent competing risks.

It may be noted first that, in the context of reliability
the latent lifetimes correspond to the lifetimes of the
components that are arranged in series. So it makes sense
to talk of the remaining lifetime of a component which
has not failed even if the system has failed. To estimate
the F;s in the non parametric set-up, the system’s lifetime
would be regarded as censoring variable. Then the stan-
dard Kaplan—Meier product limit estimator’ of survival
function would be used for the estimation of F';s. Suppose,
there are only k=2 risks operating in this system. The
tests for the null hypothesis Hy: F1(x) = F>(x) have been
proposed in the literature™. Let us suppose that Fy(x) =
Fy(x), a specified distribution function and F(x) = Fy(x),
0 > 0 belong to the same parametric family. Then Bagai
et al.’"™ derive the locally most powerful (LMP) rank
tests for Hy: © =0 against H;: 6 > 0. Here rank statistics
are defined in the following way: Let Ty < Ty
<... Ty be the ordered lifetimes of n independent
systems. Let 17, be the 8 corresponding to the 7y, . Then a
statistics of the type:

S:zn:Cjo,
j=l

where C; for j =1, 2 are some appropriate scores, may be
said to be a linear rank statistics. It sums the scores
corresponding to the ranks of the lifetimes which are
actually the latent lifetimes (8 = 1) under the first risk. Tt
is seen that in the exponential model Fg(x) = e U™ the
LMP rank test is based on:

7 7
Si=XW; =13,
= =l
This is sign statistics. In the logistic model with:

Fy(x)=(+e ™)™,

the LMP rank test is based on a statistics of the form:

v=Ya-b)w,
J=1
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where

po L ¥ 20Qn-2)..(2n-2k+4)
J_(2n+1) k:2(2n+1)(2n—1).._(2n_2k+3)a

and
1
bl = .
(2n+1)
The papers’’® also suggest certain tests based on U-

statistics on heuristic grounds. Usually equivalent forms
of these statistics can be expressed as linear rank sta-
tistics. Those in the literature include:

0 Uy =Y (-1,
i=l

(i) U, =2E02n—1-i)W,.

The limiting distribution of each of the statistics is normal
through U-statistics asymptotics. The exact null distri-
butions are found through moment-generating function
technique. In fact it has been seen that U; has the same
null distribution as the Wilcoxon-signed rank statistics,
with (n — 1) replaced by n”°.

Analysis of dependent competing visks

Prentice et al.59, Kalbfleisch and Prentice”, Slud et al.GO,
have discussed the problems in general dependent case,
where neither F(x, y) nor the marginal F,(x) are identi-
fiable from the probability distribution of (7, 8) specified
by Si(#), i = 1, 2. Apart from the problems discussed in the
above papers, it is seen that independence of X and Y
cannot be tested on the basis of the competing risk data. It
seems that only statistical questions regarding the pro-
bability distribution of (7, 8) are pertinent. Prentice
et al’® have raised the questions in terms of cause-
specific hazard rates:

A;(t)= lim LP[l‘<TSAl-,8 =2—-i|T>t], i=1,2,
0<A; =0 A,

whereas Sen®' has concentrated on the conditional proba-
bility I1(f)=P(§=2-1i| T'=1). The subsequent discus-
sion is centred on the questions raised in terms of Si(¢),
i=1,2 directly and the methodology is developed for
these questions.

The empirical incidence functions S,,(f) provide con-
sistent estimators of the true incidence functions, where
Sia(f) are defined as:

‘in(t):%Z](Tj>t58j:2_l’), i=1,2.
j=1

In Deshpande and Karia® the problem of Bayes’ esti-
mators of the values of:
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S..(t) at 0<t, <ty<...,t, <oo,

is discussed. It is shown that the estimators of S(#,) with
the constraints:

Si(t)>S;(t,) ...> S;(t;), and

Si(t)+ S, () <1,

can be obtained with Dirichlet prior distribution for the
difference:

Py :E(tj_l)_gi(tj)-

Also, the complicated posterior distributions and their
features can be estimated by Markov chain Monte Carlo
method. Similar study of incidence functions with a priori
constraints S(¢) < .S55(?) is also carried out.

Doksum and Sievers® have developed the theory of
response functions to study the differences between
distribution functions. Deshpande® and Aras and Desh-
pande® have suggested certain models for the incidence
functions of two risks.

Model I

_ 0 _
Sl(t)zl— S,(), 0<0<1.

This model represents the situation when 7" and & are
independent. It is also equivalent to the proportionality of
the two cause-specific hazard rates.

Model II.  S;(@,)=S,(t), t>0>0. In the joint
environment, the first risk is as potent up to age ¢ as the
second risk up to age o, for every > 0.

Model IIl: S,(t)=©S(®))"; S,)=S®)-®S@)), v>0,
0<0<1, where S() = P[T> {].

Deshpande and Karia® have worked out response
functions in the sense of Doksum and Sievers® and have
carried out descriptive analysis for the data set of Nair®’
for these three models. In the same paper, after defining
the response functions in the three models, asymptotic
confidence bounds based on competing risk data have
been established.

In case the two competing risks are dependent, then in
order to see whether the two risks are equally potent (in
the environment in which they jointly operate), it is
interesting to test the hypothesis of bivariate symmetry
against one-sided alternative, i.e. say:

Hy F(x,y)=F(y,x) VYx,y,
against

H F(x,y)>F(y,x) Vx>y.

Deshpande® has shown that U, statistics discussed earlier
is useful for this testing problem.
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If we define by s,(f) for i = 1, 2, the subdensity func-
tions corresponding to two incidence functions, then the
marginal likelihood of R'= (R, ..., R,), the ranks of
(Ty, ..., T,) and the corresponding indications W' = (W),
W,, ..., W,) can be written as

PO | R, W= [T (001" thtey) - sts, 0"
i=1

where the integration is over #; <t, <...<t,and h(?) is
the density corresponding to H(¢) = P[T < 1].

Aras and Deshpande® show that the locally most
powerful test for Hy: 6 = 6, against [,: 6 > 6, is given by:

n
Reject Hy, if L = ZWjaj is too large.
=
Here

78 0 "
=10 P, 0,) dr,

s(2;,80) i

a;

and the integration is over t; <#t, ..., <t, If the sub-
densities s, and s, are modified from well-known pro-
bability densities, then we get familiar tests adapted to
competing risks as the LMP rank tests.

Aly et al®® have used Kolmogorov—Smirnov type
statistics:

D, =0 | 81,(t) = 55, (1)

for the empirical versions of incidence functions, to
compare the two incidence functions. Sun and Tiwari®
have constructed tests for equality of the two cause-
specific hazards based on the difference between the
Aalen estimators of two cumulative cause-specific hazard

rates.

Coherent systems

In reliability theory, a well-studied class of systems is
the class of coherent systems (see Barlow and Proschan'
for details). These systems include series, parallel, £-out-
of-n, etc.

There is not much work done on inference from the
data realized from monitoring of coherent systems.
Deshpande et al.” have considered a two-sample prob-
lem. Suppose n; and n, independent copies of a coherent
system composed of & components operate in different
environments. Neither the independence of the lifetimes is
assumed nor is the structure of the system known. The
observation scheme is the continuous monitoring model.
In this situation, it is not possible to estimate either joint
or marginal survival functions of the components. Hence
the test developed is based on incidence functions of the &
components in the two environments. Let 7j; and X%,
indicate the lifetime of the jth system in /jth ([; =1, 2)
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group and the lifetime of the ith component in the jth
system, in the /th group; i=1,....kandj=1,2,.. ., n;
The available data are:

{lei :min(X;iaTij)a Slji :I(X;i Sle)},

for all i, j and I. The incidence functions of & components
in the two environments are defined as:

Fy(x)=P[X}; > x,8,, =1],

and the corresponding hazard function as:

where f; is the subdensity corresponding to /. Then to
test the hypothesis:

Ho Fi(x) = Folx ), i=1,2,. .,k

the statistics proposed is of the form:

S=n'7ZD"Z,
where
Z=(Zy Zoy .. Z)
and
Z,-=f1<i(s) dFi(s) __diy@) |
0 (-F;(s) (A-Fy(s)
where

~ 1 &
Fh.(t):n—ZI[Xlﬁ <t,8, =11.
1 j=l

K(#) are appropriate weight functions and 7; is large but
finite, which satisfies F(T;) < 1.

Asymptotic distribution of the test statistics is chi-
square, with k degrees of freedom. The matrix D in H is
estimated covariance matrix which is diagonal as elements
of Z are asymptotically independent. The weight functions
of K(s) are predictable processes and different choices of
these functions yield different tests of this class.

This work is a generalization of Gray’' to consideration
of more than one risk simultaneously and of Bagai and
Deshpande™ to dependent risks.
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