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Recently, a remarkable idea called holography has
gained prominence in string theory. It says that a
system containing gravity can be described by de-
grees of freedom living on its boundary rather than
in the bulk. Recent progress has led to concrete re-
alizations of this idea in string theory revealing deep
and unexpected connections between gravity and
gauge theories. It seems clear now that holography
will profoundly change our view of space-time. It
could also have important applications in other
branches of physics, like the study of the strong in-
teractions in some limits.

RECENTLY, a remarkable idea called holography has
gained prominence in string theory. The idea has led to
a lot of excitement and resulted in some rapid progress.
It is now clear that holography will have long-lasting
impact on string theory, profoundly changing our view
of space—time. It is also likely to lead to interesting con-
nections between string theory and other branches of
physics, like the study of the strong interactions, where
the strongly-coupled behaviour of gauge theories is of
interest.

Holography has its origins in the study of black holes
in the 1970s, especially the work of Beckenstein and
Hawking. Its significance for the study of quantum
gravity was emphasized by ’t Hooft and for string the-
ory by Susskind. More recently, concrete examples im-
plementing this idea have been uncovered in string
theory, in particular due to a remarkable conjecture by
Maldacena. This has brought holography into sharp fo-
cus.

We start this article, by introducing the idea of holo-
graphy in general terms, in the next section. To gain a
better appreciation for it, we discuss next some of the
historical motivations provided by the study of black
holes. Recent developments which have incorporated
holography into string theory are discussed next. In par-
ticular, we discuss one specific example of holography
in string theory, the evidence in support of it and some
of the consequences. We end with some general com-
ments on possible future directions.

This article is meant as a general introduction for the
non-specialist. No prior knowledge of string theory or
the General Theory of Relativity is assumed.
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What is holography

Let us begin by noting two features about the world
around us:

® We live in 4 space—time dimensions, 3 dimensions
of space and 1 dimension of time.
e There is gravity in the world around us.

Roughly speaking, holography says that there is an
equivalent description of nature:

¢ In 3 space—time dimensions
e  Without gravity.

Equivalent means that the two descriptions agree on the
outcome of any experiment.

More precisely, holography says that all physical
phenomenon inside a region of space-time can be
equally well described by a theory, without gravity,
living on the boundary of the region. This boundary
theory is called the hologram.

The word, holography, is taken from optics. Its mean-
ing in gravity and string theory, as we will see below, is
similar in spirit, but not identical. In particular, in the
present context, the hologram stands for an equivalent
predictive description in its own right.

At first glance holography seems like a completely
crazy idea. It is at odds with our intuition which tells us
that there should be many more degrees of freedom in
four space—time dimensions as compared to three. How
then, one might ask, can two descriptions, one in four
space—time dimensions and the other in three space—
time dimensions really be equivalent?

Physicists use the notion of entropy, §, to quantify
the number of degrees of freedom. Entropy is defined to
be

§ = log(N), M

where N is the number of states accessible to a
system. In our usual experience, entropy is an exten-
sive variable, scaling like the volume of the system
(note 1).

As an example, consider a gas of volume V full of
photons at a temperature 7. Elementary statistical me-

chanics tells us that the entropy is given by
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S =c V. 2

Notice that entropy scales like the volume not like the
area (note 2).

Now, the real issue in front of us is this: Take a re-
gion (in 3-dimensional space) of size R, is the maximum
entropy one can put in this region, proportional to the
volume, R or to the area R*? If the answer goes like the
volume it seems very unlikely that holography is in fact
correct.

It turns out that in a wide range of circumstances,
where gravity can be neglected, the entropy does scale
like the volume, in accord with our intuition. We saw
this above in our example of photons. But it is much
more generally true as well. For example, we can re-
place the photons with non-relativistic atoms. Or, keep
the photons, but increase the temperature to a few mil-
lion electron volts (MeV) at which point the box con-
tains electrons and positrons as well. Or go up even
further in temperature, to a few hundred million elec-
tron volts, so that there are other particles like quarks
and gluons, besides photons and electrons and positrons
in the box. In all these situations, as long as gravity can
be neglected, the entropy continues to scale like the
volume.

The question we are really interested in settling
though, as mentioned above, is one of the maximum
bound on entropy for a fixed volume. And it turns out
that in maximizing the entropy in this manner, gravity
always, eventually, gets important. In fact, as we will
see below, black holes get important. And once this
happens, the behaviour of the entropy changes very sig-
nificantly.

So, we need to gain a better understanding of black
holes nexct.

Black holes and entropy

Black holes

The correct setting for understanding black holes is
Einstein’s General Theory of Relativity. In broad terms,
this theory says that matter—energy curves space—time
and this curvature is what we call gravitation.

In a black hole the effects of the curvature are
so intense that nothing, not even light, can escape its
gravitational pull and reach an outside observer. As a
result, a black hole is completely dark to the outside
world.

More accurately, surrounding a black hole is a sur-
face called a horizon (see Figure 1). A photon which
starts from outside the horizon, can make its way to a
distant observer. But a photon, which starts from within
the surface, cannot make its way out, regardless of its
energy. It can come towards the surface for a little
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while, but eventually the pull of gravity overwhelms it
and the photon falls back into the black hole (note 3). In
other words, the horizon is the critical surface which
divides the region of space—time which can communi-
cate with a distant observer from the region which can-
not.

For a non-rotating black hole the horizon is spherical,
with radius Ry, and an area

Ay =4TR:. 3)

The horizon, especially its area, will play an important
role in the subsequent discussion.

For a black hole of mass M the radius of the horizon
is

2G yM
§ = C—f; @)

R

Here, Gy is the gravitational constant, and, c is speed of
light. For a solar mass black hole, M = 10°3 g,

Ry 3 km. )

This works out to a density of about 10% glec!

In fact black holes are the densest objects in the uni-
verse. Consider a star of mass M undergoing gravita-
tional collapse. As long as its radius is bigger than Ry,
light from its surface can reach a distant observer, but
once its radius is smaller than Ry this is no longer true
and a black hole forms. Thus black holes are the end-
point of gravitational collapse, denser than white dwarfs
or even neutron stars.

There is another way to understand this last point.
Consider a region of space of radius R, and let us ask
what is the maximum energy which can be stored in this
region. This bound is achieved by a black hole. The
mass of this black hole, in terms of the radius of the
region R can be obtained by re-expressing eq. (4) and is
given by

—HORIZON
e ,1{/

Figure 1. Photon A can reach distant observer, but not photon B.
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2
c

M=
2Gy

R. ©)

Any attempt to further increase the mass of the black
hole M also increases its radius R, in accordance with
eq. (6).

We started the discussion regarding entropy by men-
tioning the gas of photons. Let us see if we can apply
some of the ideas mentioned above to it. Concretely we
take a gas of photons in a box of size L with volume
V=L’ and at temperature 7. We mentioned that the gas
has entropy

S=c VI, @)
It also has energy,
E=c,VT*. ®)

Notice that if the volume is fixed, the temperature
must be increased to increase entropy This also in-
creases the energy density. As a result, eventually, a
black hole forms. Setting the size of the region, R, in
(eq. (6)) to be of order L, and using the relation
E=Mc, we see from eq. (8) that this happens when the
temperature reaches a value, T, (note 4) such that

Ty ©)
C 2 M

Supressing the natural constants for the moment, we see
that T, scales with the length L as:

T, ~1/4L. (10)

In summary then, we have seen that maximizing the
entropy while keeping the volume fixed, has led to the
formation of a black hole as was mentioned earlier. To
carry our discussion of the maximum bound on entropy
further, we need to understand what, if any, is the en-
tropy which can be attributed to the resulting black
hole.

Black hole entropy

We are now ready to discuss some of the developments
in the 1970s in black hole physics. Our story begins in
1971. That year Stephen Hawking proved an important
theorem, which set into motion a chain of events that
culminated in answering the question of black hole en-
tropy.

The theorem Hawking proved is called the Area theo-
rem of black hole physics. This says,

The area of a black hole horizon never decreases.
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That is, in any process let A, be the initial area of a
black hole’s horizon and Agp, be the final horizon area
then

AA = Afipa — Ajnitia1 2 0. an

If there is more than one black hole, a similar theorem
holds where the area refers to the total area of all the
horizons.

Consider, for example, a situation where radiation is
impinging on a black hole, some of it gets reflected, the
rest of the radiation falls in. Hawking’s theorem says
that area cannot decrease in this process. Or consider
two black holes, which have a cataclysmic collision and
merge. Now one measures the initial total area and the
area of the resulting final black hole, once again the
area cannot have decreased.

Jacob Beckenstein was a young graduate student at
Princeton University in 1971. He was struck by the
similarity between the area theorem and the second law
of thermodynamics.

As we know, the second law of thermodynamics says
that:

The entropy of a closed system never decreases.

That is,
AS = Stinal — Sinitial 2 0. 12

Further thought suggested to Beckenstein that there was
more to this similarity. He argued that in fact a black
hole must have an entropy proportional to its horizon
area (Beckenstein, 1973).

When Beckenstein’s paper first appeared, it met with
widespread disapproval from most experts.

The experts said, for example,

if a black hole has an entropy, it must also have a tem-
perature and it must radiate like a black body does at this
temperature.

This is impossible.

Beckentein replied (this was actually part of his paper
of 1973),

if a black hole does not have an entropy the second law of
thermodynamics will be violated. We could throw some
matter into a black hole and lose entropy.

The controversy was settled in 1973, by Hawking. He
found that black holes do radiate, just like a black body,
and calculated the temperature of black hole radiation.
As a result, he could also calculate the entropy of a
black hole. It is proportional to the horizon area.
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Beckenstein was right after all.
The temperature Hawking found is

he?

S — 13
87G v M (13)

Ty

Notice it depends on Planck’s constant % and arises due
to quantum effects. black hole,
Ty 107 K. This is very, very, small. The -classical

For a solar mass
approximation, which says that nothing can come out of
a black hole is very good for such a black hole.

The resulting entropy can be calculated from the first
law of thermodynamics (note 5). It turns out to be (note
6)

1A
Spy = ——2H, (14)
4 Io1
where

lPl = h—? = 10_33 cm. (15)
d C

The entropy of a solar mass black hole is 107, This is
very, very big. For example, in comparison, the entropy
of the sun is approximately, 10°®. The solar mass black
hole has such a huge entropy because /[, is very small
compared to the horizon radius, and in fact much
smaller than any distance scale we have probed so far in
experiments.

With Hawking’s discovery everything fell into place.
It was shown that the second law of thermodynamics
was valid, in many different circumstances, when one
included the entropy of black holes as well.

Let us return to the box of photons. The last time we
considered it (in eq. (9), eq. (10)) we concluded that as
we increase the entropy in fixed volume V, eventually a
black hole forms when

T ~ 1/L. (16)

We can now phrase our worry in a very precise manner.
The entropy at the outset of black hole formation goes
like the volume, but after the black hole forms we have
learned above that the entropy goes like the area. Is this
consistent with the second law of thermodynamics
which says that the entropy cannot decrease?

We know enough now to settle this question with a
direct calculation. The entropy in the gas at the outset of
black hole formation is

Sinitiar ~ L T2 ~ (L))" (17)

The entropy after forming the black hole is
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Stinal ~ (L/ 1), (18)

For a box of size L» [, we see that there is no danger
of violating the second law at all. For example, with
L=1m,4;=10""cm,

S final= Sinitial ~ 107 > 1. 19)

The entropy scales like the volume before gravitational
effects became important, and like the area after a black
hole forms. But since I, is so small, compared to any
length scale in our everyday experience or probed in the
laboratory, this crossover is not in conflict with the sec-
ond law of thermodynamics.

Before going on, let us also mention that in the ex-
ample above, for L~ 1m, the temperature at which the
black hole forms is T, ~ 10 GeV. This is certainly a high
temperature compared to those experienced in day-to-
day laboratory settings but the laws of physics are
known well enough at this temperature, for us to trust
the calculation leading to eq. (17) — eq. (19).

Let us now summarize what we have learnt so far:

e The maximum entropy which can be stored in a re-
gion of size R, in three spatial dimensions, goes like
the area, R.

e The state which maximizes this entropy is a black
hole, with a horizon radius equal to R.

¢ The maximum entropy is

SBH == (20)

e In view of these lessons, holography does begin to
seem more plausible. After all what holography
really says is that there should be an alternate de-
scription in terms of the ‘genuine’ degrees of free-
dom. This is the hologram.

One final comment. The result that a black hole’s en-
tropy is proportional to its area is very general. It is true
in space—times with dimensionality different from four
too (note 7). As a result, the principle of holography can
be applied to these cases as well. In the discussion in
string theory that follows, the string theory will live in a
space—time with five large dimensions and the hologram
in four large dimensions.

Holography in string theory
The Maldacena conjecture

In the interests of brevity and at the grave risk of pro-
viding a distorted historical account, we will now jump
from the 1970s to the late 1990s in our discussion.
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Three important contributions in the intervening
years however, must at least be mentioned. First, Kip
Thorne and his group found that from the viewpoint of
an observer located outside the horizon, the behaviour
of a black hole could be conveniently understood in
terms of a membrane located close to the black hole
horizon. Various physical properties like electrical con-
ductivity could be attributed to this membrane (note 8).
G. 't Hooft argued that if the laws of quantum mechan-
ics held for the observer outside the horizon, the Beck-
enstein Hawking entropy must correspond to physical
degrees of freedom at the horizon. He further empha-
sized the generality of this result arguing in particular
that any three-dimensional region must have a two-
dimensional image. Finally, L. Susskind discussed the
importance of these ideas in the context of string theory,
emphasizing, in particular, that string theory was the
natural setting in which to look for a holographic de-
scription and discussing some of the consequences for
the theory.

We now move forward to the late 1990s. In 1997,
Juan Maldacena, shortly after finishing his Ph D, made
a remarkable conjecture:

String theory in a particular curved ten-dimensional
space—time is equivalent to a Gauge theory in flat four

dimensional space—time.

The curved space—time is called: five-dimensional
Anti de Sitter space X the five sphere (AdSs X S”). The
gauge theory is an SU(N) gauge theory with a lot of
supersymmetry.

Let us try to understand the curved space—time, five-
dimensional Anti de Sitter space X the five sphere, bet-
ter. The five-sphere is a five-dimensional generalization
of the two-sphere. It is a very symmetrical space with a
constant positive curvature. Anti de Sitter space is a
space—time with constant negative curvature. The full
space—time has ten dimensions, five of these lie along
the five-sphere and the remaining directions are along
five-dimensional Anti de Sitter space. One can think of
this as follows: at each point in the five-dimensional
Anti de Sitter space, sits a five-sphere. This is similar to
a cylinder which can also be described as a Linexa
Circle (Figure 2).

Now what does this conjecture have to do with holo-
graphy? In a nutshell, the conjecture is saying that the
gauge theory is the hologram of the string theory. At
first glance, this does not seem to be true, because the
string theory, which contains gravity, lives in ten di-
mensions while the gauge theory lives in four space—
time dimensions. But in fact, the five-sphere in Anti de
Sitter Space X S’ has a very small radius. So there are
five large dimensions of the AdSs in which gravity and
all the other modes of string theory live. Furthermore,
five-dimensional AdS space—time has a boundary which
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is four-dimensional and the gauge theory lives on this
boundary. So we see that the conjectured equivalence
between the two descriptions is in fact a statement of
holography.

We have depicted five-dimensional Anti de Sitter
space pictorially in Figure 3, with the four-dimensional
boundary in black. The extra direction present in the
AdSs will be sometimes referred to in the radial direc-
tion below. Also sometimes in the discussion below, we
will refer to string theory in the AdSsX s’ space—time
as the gravity description, to draw attention to one of its
more important features, in contrast, the hologram will
be referred to as the gauge theory description.

Before proceeding further, it is worth emphasizing
just how remarkable the conjecture is: It says that string
theory, in a particular background, is equivalent to a
gauge theory. Now, String theories, which amongst
other things contain gravity, are still quite mysterious.
On the other hand, gauge theories are much better un-
derstood theoretically as well as experimentally. If true,
the conjecture is a big step forward in understanding
string theories. Much of the excitement in the field
stems from this fact.

As we have been emphasizing above, the proposed
equivalence is a conjecture. While there is no proof for

Figure 2. Any point on cylinder is labelled by position along the Z
direction and angle ©.

5 dim Anti DeSitter space

O—> String

Pull of gravity <(———

Radial Direction ‘r’

4 dim boundary

/ Gauge Theory

—_—

Figure 3. 5 dim. Anti De Sitter space.
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it, there is mounting evidence in its support. In the
next section we will describe some of the tests to
which the conjecture has been put, all of which it has
passed.

Tests of the conjecture

Parameter  counting. 1If the two descriptions are
equivalent, the number of parameters needed to specify
each side must agree. Table 1 shows that both descrip-
tions are specified by two parameters.

And in fact one can match these parameters in a very
precise way.

Something quite interesting is revealed by this match-
ing. It turns out that for a choice of parameters such that
the string theory is tractable, the gauge theory is diffi-
cult to directly calculate with, since it is strongly cou-
pled. And vice-versa.

This means, first of all that tests of equivalence will
have to be devised with some cleverness.

More importantly it means that for some values of
parameters, when the gauge theory is strongly coupled,
it can be more conveniently thought of as a string the-
ory.

The particular gauge theory involved in the conjec-
ture is unlikely to be of much use, outside of string the-
ory, since it has a lot of supersymmetry, etc. But the
hope is, and considerable progress has already been
made in this direction, that the conjecture can be ex-
tended to situations where the gauge symmetry has less
or no supersymmetry. String theory would then be of
use in understanding the strongly coupled behaviour of
these gauge theories.

The potential connections with the study of the strong
interactions and possibly other branches of physics as
well, mentioned at the beginning of this article, all arise
from this feature.

Symmetries.
agree.

The gauge theory has 3 +1 dim. Poincare invariance.
It has scale invariance. It has 32 supersymmetries. And
so on.

It turns out that the string theory has all these symme-
tries too. In fact the full superconformal group of sym-
metries agree on both sides.

The symmetries in both descriptions must

Table 1. Parameters for string and gauge theories

String theory Gauge theory

8s 8rM

String coupling Gauge coupling
Curvature N

of AdS space Rank of Gauge group
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The operator, mode correspondence. The observables
in the gauge theory are gauge invariant operators. The
natural degrees of freedom in the string theory are the
various fluctuating modes about the background geome-
try. These should be in one-to-one correspondence.

For a large class of special operators, éi,
gauge theory side the corresponding modes on the grav-
ity side ¢ have now been identified.

on the

0, & 4. 1)

Their symmeltry properties match exactly. In fact they
fall into the same representations of the superconformal

group.

Observables. A precise form of the Maldacena conjec-
ture has been formulated. This allows the correlation
functions of gauge invariant operators in the gauge the-
ory, to be calculated in the gravity description as well.

Two and three point functions have been calculated in
both descriptions using this prescription for the special
operators mentioned earlier. They agree. This is quite
impressive.

The essential idea is that external sources coupling to
operators in the gauge theory are related to boundary
conditions for modes in the gravity theory.

Black holes and thermal states. Finally black holes in
the gravity description must correspond to a thermal
state in the gauge theory at the same temperature. This
leads to a possible test: does the entropy of the black
hole agree with that of the thermal state in the gauge
theory?

The weakly coupled gauge theory, in volume V and
temperature T, gives

2 3
S = %N Ty, 2)

The coefficient can change in extrapolating to strong
coupling, where the gravity calculation is reliable. But
the N dependence should be robust.

On the gravity side, one finds that the black hole has
an entropy

7’ 2.3
Sz?N TV. (23)

We see that the N dependence agrees, although the co-
efficient has changed.

There are other examples of holography that Malda-
cena also conjectured to be true. In one of these, the
hologram is in 1+1 dimensions. This case is, in some
ways, more tractable, for e.g., in the comparison of en-
tropy of black holes and corresponding boundary states.
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Motivation for the conjecture

We have seen above that the conjecture passes some
non-trivial tests.

Let us discuss now, at least briefly, the physical in-
sights which led to Maldacena’s remarkable conjecture.

For this purpose, we need to introduce the concept of
a D3-brane. A D3-brane is an extended object in string
theory, which stretches out in three out of the nine spa-
tial dimensions. It has mass, charge — with respect to a
gauge field, and it preserves a lot of supersymmetry.
These properties make a D3-brane rather special.

The crucial insight was to take several D3 branes to-
gether and consider their dynamics at low-energies. It
was already known that the low-energy dynamics can be
described as a gauge theory.

At low-energies, though, a second description for
D3-branes also becomes valid. This is because, many
complications of string theory became irrelevant at
low-energies and Einstein’s theory of gravity, more ac-
curately a ten-dimensional version of it with supersym-
metry called supergravity, becomes an adequately good
approximation. In this theory it turns out there is pre-
cisely one state with the rather special properties of the
collection of D3 branes mentioned above, i.e. precisely
one state with the same mass, charge, etc. This state is a
particular solution in the theory, with a geometry,
which, in the low-energy limit, is five-dimensional Anti
de Sitter space X S°. It is then reasonable to equate this
state and all the fluctuations about it, with the gauge
theory; since both describe the low-energy dynamics of
the D3-branes. This gives rise to the conjecture.

The extra direction in the hologram

The discussion under the section ‘What is holography’,
makes holography somewhat plausible, but it remains a
counterintuitive idea nonetheless. One puzzling ques-
tion for example is this: the gravity description has one
extra dimension, how is information about this extra
dimension stored in the boundary hologram?

This question has been addressed in a few different
ways by now. The answer is quite revealing, and possi-
bly profound.

One approach followed was operational in nature
(note 9). The idea was to take a well-localized state in
the gravity description and construct its image in the
boundary hologram. Then by moving the state in the
extra direction present in the gravity description, and
asking how the image changes, one could learn how
information about the extra direction is stored in the
hologram.

The first step in carrying out this procedure was to
develop some mathematical formalism which allows
one to map a state in the gravity description to its image
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in the hologram. The essential idea is that any excitation
in the bulk decays away towards the boundary, with a
characteristic decay pattern. The state in the boundary
can be constructed from this decay pattern. In effect,
determining this mapping between states in the gravity
description and the hologram, is like constructing a
‘camera’ which constructs the holographic image, from
the state in the gravity description.

The next step was to choose some localized excitation
in the gravity description, as a starting point. A particu-
larly convenient choice is a state called a ‘D-instanton’
(note 10). The detailed description of this state is not
important for the present discussion. All that is relevant
is that the state is well localized, in fact one can think of
a D-instanton as being point-like within the approxima-
tions of the present discussion. This makes it particu-
larly well suited for the question on hand.

When the image of the D-instanton was constructed
in the gauge theory, using the formalism mentioned
above, it turned out to be a well-known classical solu-
tion in the gauge theory called an ‘instanton’. Interest-
ingly, the instanton in the gauge theory is not a point-
like object at all. Instead it is a lump-like object with a
characteristic size. Furthermore, it was found that, this
size depends on the position of the D-instanton in the
extra direction. As the D-instanton is moved away from
the boundary, the size of the image gauge theory in-
stanton grows (in length), as is shown in Figure 4.

The basic lesson of this investigation then, which also
emerges from others studies, is that information about
the extra dimension gets stored in the characteristic
length scale of the holographic image.

Put another way, physicists use the word renormaliza-
tion group flow, to describe how the behaviour of a the-
ory changes as one goes to longer and longer length
scales. Here one is finding that renormalization group
flow in the gauge theory corresponds in the bulk to
moving further and further away from the boundary.

The full significance of this finding is still unclear to
us. One thing can be said: a well-known physical phe-
nomenon called gravitational red-shift, underlies why
longer length scales on the boundary are related in the
bulk to positions away from the boundary.

To understand this, let us return to Figure 3. There is
one important feature of the five-dimensional Anti de
Sitter space which we have not mentioned so far,
namely that the pull of gravity is away from the bound-
ary along the radial direction.

This means that photons, with the same initial energy,
which start further away from the boundary, need to
work harder against the gravitational pull and so lose
more of their energy by the time they get to the bound-
ary (see Figure 5). This is why positions along the ra-
dial direction further away from the boundary
correspond to lower energies in the gauge theory. This
loss of energy for a photon, is an example of a
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well-known phenomenon in called the
gravitational red-shift.

We can now summarize some of the main points of
this section. The Maldacena Conjecture says that
string theory, containing gravity, is equivalent to a
gauge theory. It has passed some very non-trivial
checks. The conjecture is clearly of great importance for
string theory, gravity and black holes. It is also of inter-
est in the study of strongly coupled gauge theories.
Much more needs to be done before we understand it
fully.

gravitation,

Summary and discussion

Holography, which had its origins in the study of black
hole, is a deep general principle. Attempts to incorpo-
rate it into string theory, have already yielded a rich
harvest of remarkable ideas.
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Photon B which starts further away arrives at the boundary with a

The subject is in its infancy, especially within the
context of string theory. Future directions, where one
can hope for progress, include:

e Understanding holography in space—times other than
Anti de Sitter space, e.g. flat space and cosmological
space—times. This throws up new conceptual chal-
lenges. For example, the boundary of Anti de Sitter
space is time-like, but the boundary of cosmological
space—times is often space-like and for flat-space it
is null. Extending holography to these cases, will
surely be worthwhile.

¢ Understanding how space—time emerges from the
holographic description better. One example of this
sort of question was discussed earlier, where we
sketched the role of the extra dimension present in
the gravity description, in the hologram. A deeper
understanding of this question is likely to radically
alter our view of space—time.
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SPECIAL SECTION:

Understanding strongly coupled gauge theories with
no supersymmetry.

In this article we have seen one example where a
strongly coupled gauge theory is more easily de-
scribed as a string theory. There is already some
progress in extending this to cases where the gauge
theory has less or no supersymmetry and no scale
invariance. It is hoped that this progress will allow
us to understand asymptotically free gauge theories,
like quantum chromodynamics, at least in some lim-
its, as string theories.

Another place where strongly coupled gauge theo-
ries might enter our description of nature is in the
physics which underlies the standard model, espe-
cially the breaking of electro-weak gauge symmetry.
Some progress has already been made in casting
such scenarios in terms of an equivalent description
involving gravity in one higher dimension. This
could get really exciting once the next round of col-
lider experiments begin.

10.

. Actually, the constants ¢, ¢z also change as the temperature is

varied, since the effective number of species of particles
changes. This was discussed under ‘what is holography’ above,
but we will neglect this complication here.

. In fact, before the discovery of black-hole radiance, Bardeen,

Carter and Hawking had shown that a version of the First Law
of Thermodynamics in the presence of black holes is valid if
black holes have an entropy proportional to their area.

. The reader will notice that the entropy S ~ 1/#, this depend-

ence of the entropy is familiar from examples like photons in a box.

. Of course what one means by area changes as the dimensional-

ity of space—time changes. For example, a sphere of radius R in
n space dimensions has an area going like R"™'.

. For more on this see, Thorne, K., Price, R. H. and Macdonald,

D. A., Black Holes and the Membrane Paradigm, Yale Univer-
sity Press.

. This discussion is based on ‘Holographic Probes of Anti de Sit-

ter Spacetimes’, Balasubramanium, V., Lawrence, A., Kraus, P.
and Trivedi, S. P., Phys. Rev., 1999, D59, 104021.

The experts will recognize that we are working here in Euclid-
ean space.

Notes

1.

In our definition the entropy is dimensionless. This is different
from the usual definition which includes a dependence on the
Boltzmann constant.

*¢i is constant whose precise value will not be very relevant in
the subsequent discussion.

Strictly speaking by the word horizon, I mean here, and in most
of the rest of the article, the event horizon of the black hole. The
experts will notice that when this description is over simplified,
the horizon is really a null surface.

For an historical account of some of these development, see Kip
Thorne, Black Holes and Time Warps, Einstein’s Outrageous
Legacy, W.W. Norton & Company, ISBN 0-393-03505-0.

For more about string theory in general terms, see Brian Greene,
The Elegant Universe, Vintage Books, ISBN 0-375-70811-
1(pbk.)

A popular account of holography can be found in Susskind, L.,
Sci. Am., 1997, 276, 52-57.

Also of popular interest is the article, in Taubes, G., Science,
1999, 285, 512-517.

For a somewhat more technical discussion accessible to physi-
cists, see 't Hooft, G., Dimensional Reduction in Quantum Grav-
ity, Published in Salamfest 1993:0284-296; gr-qc/9310026.

Also of interest to physicists is the article in Susskind, L., J.
Math. Phys., 1995, 36.
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