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Chaotic and complex systems
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We discuss the concepts of chaotic and complex sys-
tems, much in vogue these days, due to the potential
of a wide spectrum of applications to natural phe-
nomena in terms of mathematical modelling and a
better prediction of future behaviour. Actually, the
theory of chaotic systems is in an increasingly more
solid basis and we can now present a possible global
and universal scenario for them, in terms of conjec-
tures that have been partially fulfilled. The situation
concerning complex systems is much more delicate.
They seem to be dynamical systems that are on the
border of the chaotic systems, to depend on a large
number of parameters and to be in constant evolu-
tion. Some of the possible features of complex system
are presented, as well as some of the basic references
on applications.

THE theory of chaotic systems is now quite well-
developed and at this point we can even offer a global
scenario for it: uncertainty of the long-range behaviour
of solutions of the systems is very common, which does
not mean total uncertainty. This is often quoted in rather
non-scientific terms as ‘there is order in chaos’.

The concept of a chaotic system and the fact that this
is commonly the rule, and not the exception, for nonlin-
ear and non-gradient deterministic systems came as a
big surprise just about 25 years ago. Actually, the fa-
mous Lorenz' example dates back to 1963, but became
well known to mathematicians working in dynamics
only in 1975.

Due to the wide success of the concept of chaos, there
was for some time an animated controversy: To whom
should we attribute the original idea? In fact, uncer-
tainty and randomness are more than a century old con-
cepts in science and can be traced back to the great
mathematicians and physicists Maxwell’, Boltzmann®,
Poincaré®, during the second half of the 19th and early
20th centuries. So, should the idea of chaos be attrib-
uted to one of these previous scientific giants or, jump-
ing over to much more recent times, to Smales, the
inventor of the ‘horseshoe map’, who was also involved
in developing the so-called hyperbolic theory in dynam-
ics in the sixties, or to Lorenzl, with his famous 1963
butterfly-sensitive attractor, as briefly described in the
sequel, or to others? To avoid such a controversy, per-
haps we can honour Edgar Alan Poe, who prior to all of
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them, wrote the following beautiful paragraph in a
short-story published in 1850:

‘For, in respect to the latter branch of the supposi-
tion, it should be considered that the most trifling
variation in the facts of the two cases might give rise
to the most important miscalculations, by diverting
thoroughly the two courses of events; very much as
in arithmetic an error which, in its own individual-
ity, may be inappreciable, produces, at length, by
dint of multiplication at all points, a result enor-
mously at variance with truth.’

The Mystery of Marie Roget
A Sequel to The Murder in the Rue Morgue
by Edgar Alan Poe (1850)

Lorenz attractor — A paradigm for chaotic
behaviour

Lorenz exhibited a relatively simple flow in 3-
dimensions with quadratic equations, and consequently
a deterministic system, whose future behaviour of solu-
tions (positive limit set) blends together a singularity of
the flow (rest point) with periodic motions, actually
infinitely many of them (Figure 1):

The butterfly corresponds to the limit points of all
future orbits starting near the rest point (0, 0, 0): it is an
attractor since all nearby orbits will tend to it in the fu-
ture. Often we call the points ‘events’ and the space,
‘space of events’: the butterfly and the flow on it repre-
sents how the flow behaves after a long period of time,
that is, in its ‘horizon’. In general, the key question in
dynamics is the understanding of its future or past hori-
zon, when we can invert the direction of time.
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Figure 1.

Lorenz attractor. A model for weather prediction.
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Moreover, Lorenz attractor is robust: it persists even
when we change slightly the coefficients of the quad-
ratic equations of the system. It is also sensitive with
respect to the initial conditions. When we consider two
very nearby points (also called events), their orbits after
a long time in the future may be very distant apart, as
much as the diameter of the butterfly. This uncertainty
occurs with total probability for pairs of initial events
and with the long time behaviour of a deterministic sys-
tem. It is interesting to observe that the original paper
by Lorenz in 1963 had no mathematical proofs in the
usual sense, but only computational approximations of
the behaviour of the trajectories of the flow above, from
which he inferred with superb intuition all the facts that
we have just mentioned. Only very recently were all
these ‘facts’ completely confirmed in mathematical
terms by Tucker®.

Other attractors

First, let us define dynamical systems just as transfor-
mations in a space of events. Usually such a space has a
nice geometric shape and it is covered by a set of local
differentiable charts and change of charts is made
through differentiable invertible maps. The space of
events is what we call differentiable manifolds. So, dy-
namical systems are transformations defined on a dif-
ferentiable manifold. This case corresponds to discrete
dynamics and the flow case to continuous dynamics. In
both situations, we are always interested in the long
time behaviour of trajectories, starting at initial points
like p (Figure 2).

An attractor is a subset of the space of events that
attracts all future orbits starting at nearby points or at
least most of them (a set of positive probability) (see
Figure 3).

Important examples of attractors

As we have mentioned before in the case proposed by
Lorenz, an attractor for a given dynamical system is a
piece (subset) of the space of events which is invariant
by the dynamics (i.e. made of trajectories) and attracts
all future trajectories starting near it.

Hyperbolic attractors: Established in the sixties, here
distances along trajectories increase and decrease expo-
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Figure 2. a, Transformation T; and b, Flow.
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Figure 3. Different types of attractors. a, Point attractor; b, Attrac-
tive circle; ¢, Torus as an attractor. It consists of all points of the
space of events. The transformation considered on the torus is in-

21
duced by the linear map [1 1]; d, p is NOT an attractor.

Figure 4.

Hyperbolic attractors.

nentially in complementary dimensions in the ambient
space. In the case of flows, we have to add to the ex-
pansion and contraction, the direction of the flow as a
neutral one (at each non-singular point or non-zero
value of the flow), as shown in the Figure 4. See refs 5,
7 and 8 for further discussions, achievements as well as
other references.

Chaotic (sensitive) non-hyperbolic attractors: These
are of two types.

1. Lorenz ‘butterfly’ attractor, proposed in 1963, but
better known only in the middle seventies. Actually,
the fact that Lorenz equations, shown earlier, yield
an attractor with the properties predicted by him,
was only mathematically proved to be true about 35
years later®. That shows the remarkable ingenuity of
Lorenz, but it is also worthwhile mentioning that he
was inspired by the work of Saltzmann’. Lorenz was
interested in the long-range weather forecasting, that
certainly we can suggest as a first example of a
complex system. Indeed, he was convinced that sta-
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tistical methods common at the time, like linear re-
gression, were essentially with flaw since evolution
equations are certainly not linear. It is to be noticed
that Lorenz attractor is robust: if we change slightly
the coefficients of the equations presented earlier,
we still get an attractor with the same properties.

2. Hénon'® attractor, proposed in the mid-seventies, but
mathematical proofs of its existence were provided
in the late eighties (refs 11 and 12). Hénon’s initial
idea was to provide an attractor with similar proper-
ties to the Lorenz attractor, but in two dimensions.
Since this is clearly not possible for flows, he
thought about the simplest possible nonlinear trans-
formation in two dimensions, namely a quadratic
diffeomorphism of the plane (see Figure 5).

Jan(lx, »)=(1 - ax®+y, bx), fora= 1.4 and b= 0.3.

This transformation contains pieces of curves, where we
see expansion followed by folds (Figure 5). Locally, the
attractor consists of the product of two different ele-
ments: a segment and a fractal set, i.e. a discontinuous
set having a fractional dimension smaller than one (see
ref. 7). A beautiful aspect of this example is the fact
that it exists for positive probability in the parameters a,
b above, but is not robust in the sense that it does not
persist for all small perturbations of the initial parame-
ters for which we have a Hénon attractor. This is quite a
subtle feature, but a very important one for the present
new perspective on dynamical systems that we are dis-
cussing here. It is also remarkable that near the Hénon
attractor all future orbits converge to it: we say that
there are no ‘holes’ in its basin of attraction, again a
much more profound fact than in the case of the Lorenz
attractor. This has been recently proved by Benedicks
and Viana", answering a couple of decades-old ques-
tion by Ruelle and Sinai. The same authors have also
proved that Hénon attractors are stochastically stable,
i.e. they are stable in the average or, equivalently, in a
probabilistic way (see ref. 14).

Hénon’s ingenuous work was done numerically, like
the case of the Lorenz attractor constructed a decade or

Figure 5. Hénon attractor.
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so before. In a sense, Hénon was perhaps even more
audacious, because his ‘attractor’ was not robust, but it
can only exist for positive probability in the coefficients
of the system: in this case, just a quadratic transforma-
tion of the plane with an inverse (a diffeomorphism of
the plane) and thus, again, it is a deterministic system.
It is important to notice that the Hénon attractor also
corresponds to a complex system in terms of population
growth, as shown recently by Yoccoz in a still unpub-
lished work, obtained from experimental data from a
certain species of small animals in the mountains of
Norway, provided by local biologists.

So, from Lorenz to Hénon, we went from a 3-
dimensional to a 2-dimensional attractor. There is also
the 1-dimensional case, that appeared subsequently in
the late seventies. Feigenbaumls, Coullet and Tresserlé,
independently discovered the period-doubling phe-
nomenon for periodic orbits when the parameter a in the
equation below varies:

fux) =1 —ax’.

Also, the rate of approach of such a period-doubling
phenomenon to a limiting point in the parameter line is
a ‘universal constant’ for all quadratic families. This
has been verified in experiments at the onset of turbu-
lence of fluids, again a complex system for which we
have some good insights. They also obtained chaotic
sensitive attractors: they are fractal sets in the line.

We notice that in more global conceptual terms, since
Poincaré, the following central question has been much
discussed: Can we have a global scenario for dynamics?
That is, can we describe the future behaviour of solu-
tions of most or almost all systems? Can we approxi-
mate any system by one with a reasonably predictable
future behaviour?

Several such scenarios were tried in the past, espe-
cially in the sixties. They were basically concerned with
systems displaying an exponential increase (decrease)
of distances along trajectories: they are called hyper-
bolic systems. Among them, we have the gradient-like
systems, for which there is no uncertainty in the future
behaviour of trajectories.

All such possible scenarios collapsed by the end of
the sixties and early seventies. After a decade or so of
bewilderment, caused by Lorenz, Hénon, Feigenbaum,
Coullet and Tresser, and others, the dynamicists moved
forward to obtain several remarkable results in the last
twenty years, that allowed us to propose in 1995, the
following global scenario:

Conjecture on the denseness of finitude of attractors:
There is a dense set D of dynamics such that any ele-
ment of D has finitely many attractors, whose union of
basins of attraction has total probability. The attractors
carry nice invariant physical probability measures and
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are stochastically stable at their basins of attraction (ref.
14).

Such attractors will be simple, like points and peri-
odic orbits, hyperbolic ones or the more complicated
ones like Lorenz and Hénon. So, most points in the
space of events have only finitely many choices to go in
the future (finitely many attractors), with some degree
of uncertainty in each choice, unless the attractor is just
a point or a trajectory.

This programme has been very successful for trans-
formations of the interval with one critical point. There
are also important related results in higher dimensions,
but the conjecture is, in general, quite open and likely to
remain so for some time.

Complex systems

Complex systems are much less understood and not
even well-defined mathematically. Roughly speaking,
they are in the frontier between simple and chaotic sys-
tems: A complex system is a dynamical system depend-
ing on many parameters, in constant evolution and
distances along trajectories increase (decrease) polyno-
mially and not exponentially! One considers that the
brain’s neural network is one such system.

Some of the properties assumed to be features of
complex systems are:

1. It is a dynamical system in constant evolution,
formed by a great number of unities.

2. Each unit interacts with other units (a much smaller
number than the total).

3. Each unit responds to signals received from the oth-
ers in a nonlinear manner.

4. The system in its evolution is adaptative — memory
(hard to treat mathematically).

5. Some characteristics of the systems are randomly
distributed.

6. In its evolution, sometimes the system develops a
self-organization structure from a very disordered
state — emerging order.

7. The system is hierarchical: a sign may be treated in
several different levels before reaching the ‘centre
of action’.

8. The system may have several attractors.

9. Local interactions may have global effect: they may
produce considerable global change in the system.

10. In many complex systems, there appear fractal
structures.

The possible notion and applications of complex sys-
tems are not yet conclusive, like the case of the brain,
origin of life and economics. Nevertheless, it is worth
mentioning some literature in this direction: Bak and
Chen'” concerning evolution and self-organizing criti-

calities, Kauffman'® on the origin of life, Hopfield19 for
the introduction of a basic model of neural networks,
Holland® for a good discussion on adaptative complex
systems and genetic algorithms, and finally Arthur®' on
complexity and economics. There is a fine collection of
articles on complexity and chaos, corresponding to a
series of interdisciplinary lectures, edited by Nus-
senzveig’’, still waiting to be translated from Portu-
guese.

Finally, as we have mentioned before, the theory of
dynamical systems is in much solid grounds and the
applications to celestial mechanics, population growth,
weather prediction and turbulence, electric circuits and
earthquake prediction, among others, are increasingly
more reliable. And finally, we must call the reader’s
attention to the fact that in some of these cases the two
words ‘chaotic’ and ‘complex’ are often loosely used as
having the same meaning.

1. Lorenz, E. N., J. Atmos. Sci., 1963, 20, 130-141.

2. Maxwell, J. C., Matter and Motion, Dover Publ., 1952, 1st edn.
in 1876.

3. Boltzmann, L., Wien. Ber., 1872, 73, 679-711 and 66, 275-370;
Vorlesungen uber der Principie der Mechanik, Lepizig, 1897.

4. Poincaré, H., Science and Method, Dover Publ., 1952, 1st edn.
in 1909.

5. Smale, S., Bull. Am. Math. Soc., 1967, 73, 747-817.

6. Tucker, W., C. R. Acad. Sci. Paris, Sér I, Math., 1999, 328,
1197-1202.

7. Palis, J. and Takens, F., Hyperbolicity and Sensitive Chaotic
Dynamics at Homoclinic Bifurcations, Cambridge University
Press, 1993.

8. Viana, M., The Mathematical Intelligencer, Springer Verlag,
2000, vol. 22, pp. 6-19.

9. Saltzmann, B., J. Afmos. Sci., 1962, 19, 329-341.

10. Hénon, M., Commun. Math. Phys., 1976, 50, 69-77.

11. Benedicks, M. and Carleson, L., 4nn. Math., 1991, 133, 73-169.

12. Mora, L. and Viana, M., Acta Math., 1993, 171, 1-71.

13. Benedicks, M. and Viana, M., Invent. Math., 2001, 143, 375—
434,

14. Palis, J., Astérisque, 2000, 261, 335-347.

15. Feigenbaum, M., J. Stat. Phys., 1978, 19, 25-52.

16. Coullet, P. and Tresser, C., C. R. Acad. Sci. Paris, 1978, 287,
577-580.

17. Bak, P. and Chen, K., Sci. Am., January 1991.

18. Kauffman, S., At Home in the Universe, Oxford University
Press, 1995.

19. Hopfield, J. J., Proc. Natl. Acad. Sci. US4, 1982, 79, 2554.

20. Holland, J. H., Hidden Order, Addison-Wesley, Reading, Mass,
1995.

21. Arthur, B. W., Sci. Am., February 1990.

22. Nussenzveig, H. M., Complexidade Caos, UFRI-COPEA, 1999.

23. Bak, P., How Nature Works, Oxford University Press, 1997.

ACKNOWLEDGEMENT. I thank C. N. R. Rao for the invitation to
deliver the Newton’s Distinguished Lecture on the theme of the pre-
sent paper, at the Jawaharlal Nehru Centre for Advanced Scientific
Research, Bangalore.

Received 16 August 2001; revised accepted 17 January 2002

406

CURRENT SCIENCE, VOL. 82, NO. 4, 25 FEBRUARY 2002



