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We discuss novel quantum effects pertaining to single
atoms and/or photons in the recently developed state-
of-the-art experiments with ion traps and microwave/
optical cavities cooled to very low temperatures. These
experiments are important from the point of view of
fundamental physics as well as due to the growing
field of quantum information/computation. In the first
part of the article, we mainly concentrate on the
experiments in ion traps such as observation of quan-
tum jumps along with the underlying theory. We have
also discussed non-classical nature of light, quantum
Zeno effect and interaction free measurement.

A single atom, nearly at rest in an empty universe, for
arbitrary long periods of time, is an ideal quantum system
for experiments to test some of the intriguing funda-
mental aspects of physics. Experiments in such systems
have now become possible because of two major advan-
ces. The first is the development of tunable lasers in the
early seventies which has allowed manipulation of atomic
motion in many ways. This has led to several proven
schemes of cooling and trapping of atoms and ions in the
electromagnetic field. The second is the development of
the superconducting cavities with very high quality fac-
tors (Q = 10° — 10'%).

The major motivation for carrying out experiments
with single atom, has been to study pure quantum effects.
These experiments have been carried out with a single
atomic ion stored in an ion trap or with neutral atoms in a
microwave or an optical cavity. Recent experiments on
single atomic ions confined in electromagnetic traps have
demonstrated some fundamental aspects of physics rela-
ted to quantum mechanics. Some of these are photon
antibunching, squeezing, quantum jumps, quantum Zeno
effects, etc. Photon antibunching and quantum jumps are
related to the physical manifestations of an atom’s abrupt
transition between energy states. The quantum Zeno
effect refers to the inhibition of transition between quan-
tum states by frequent measurements.

The other class of experiments involves interaction of
a single Rydberg atom with a single mode of the electro-
magnetic field in high-Q microwave cavities. The system
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is known as one-atom maser or micromaser. The corres-
ponding one-atom laser has also been demonstrated in an
optical cavity recently. These experiments in cavities
have figured out very subtle effects like the collapse
and revival in the Rabi nutation and vacuum Rabi-field
oscillation.

The importance of these experiments stems from the
observation of the rate of technological progress, also
known as the Moore’s law. The law states that the
number of transistors per chip (or the complexity of a
computer) grows exponentially with time and it doubles
every year. This law has been obeyed almost precisely
over the last thirty years. If this exponential growth is
extrapolated into the near future, we foresee that at
Moore’s rate, a bit of information will be encoded into a
single atom by the year 2017. In fact, even before that,
quantum effects will be important for computation pur-
poses and an entirely new process of computation known
as quantum computation will be dominating the techno-
logical scenario. Both ion traps as well as cavity quantum
electrodynamics experiments will be at the heart of
quantum computation.

This article is divided into two parts. The first part will
cover the basic schemes of the single atom/ion experi-
ments in ion traps and their interpretations. Current status
and probable future directions will be presented.

Non-classical features of light

The advent of lasers in the early sixties prompted an
examination of non-classical features of light. Closely
connected with this issue is the ubiquitous phenomenon
of spontaneous emission. This led to the study of reso-
nance fluorescence problem of spontaneous emission in
an applied coherent field. Another important aspect of the
spontaneous emission involves the influence of mirrors
and cavities on the radiative properties of the atom.

It was soon realized that a beam of light is characte-
rized by the statistical distribution of photons in the
beam. The conventional first-order coherence experiments
like the Young’s double-slit experiment or Michaelson
interferometry measure only the ‘coherence length’ of
light by means of fringe contrast. These experiments are
in the regime of one photon or linear optics. One needs to
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go beyond the experiments of one-photon optics in order to
detect any unique quantum mechanical character of light.

The framework for the theory of photon statistics was
introduced by Glauber in 1963 (ref. 1). It is based on the
intensity—intensity correlation function. For example, a
linearly polarized light is characterized by

EF,0)=E~(F,t)+ET(F,1), 0))
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where E" = (E~ )T, V is the quantization volume, o and &
are the frequency and the wave vector of a photon and
ar, a}: are the photon annihilation and creation operators
of the kth mode. The quantum mechanical definitions of
the mean light intensity (/(E)) and the intensity—intensity
correlation function of second order g®(t) are defined as

follows

() =ETEY), 3)
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Note that the second-order intensity correlation g®(r)
implies that both normal ordering and time ordering are
normalized. The symbol {...) denotes the expectation
value or the trace taken over the quantum statistical
density operator.

Physically, g(z)(t) is the measure of the probability of
detecting a photon at time ¢ + T, given that a photon was
detected at time ¢. An apparatus for intensity correlation
measurement was introduced by Hanbury-Brown and
Twiss in the early fifties”. The principle of the experi-
ment is as shown in Figure 1. Light from a narrow band-
width source S is collimated by a pinhole and is split by a
half-silvered mirror BS. Some light is transmitted to the
photodetector PM2 and some reflected to the detector PM1.
The outputs from the two photodetectors are correlated
by an analogue or a digital correlator C. The coincidence
rate in the detection response is plotted against a time
delay T, which is a measure of the intensity correlation.

Photon antibunching

In order to see the relation between second-order inten-
sity correlation function g'”(¢) and photon statistics con-
sider a single-mode light (beam of photons of single
frequency) which can be described by the annihilation
and creation operators @, a' obeying the commutation
rule [a, a'] = 1. In this case,

22(0) = {a'd‘aa){da)’,
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= (A1) /(A)?,
—1+ (0 —(A) KR, (5)
where 7=a'a is the photon number operator and G’
= (#%)—(A)? is variance of the photon number distribu-
tion. The second step in eq. (5) indicates a remarkable
fact that an act of quantum measurement destroys a pho-
ton from the beam, i.e., when a second measurement is
made, there is one photon less in the beam. Also, the
expectation value {...) depends on the state or on the
photon number distribution P(#n).

As a consequence of Planck’s distribution, thermal
light obeys the power law distribution’

P(n) = )"

7m, (ny =[exp(hv/kT) 117 (6)

This distribution yields 6° =) +{n) and hence g®(0)
=2. A laser beam in the coherent state has a photon
number distribution
()" exp())
P(n) = : . (7
n!
leading to 6> ={n) and hence g®(0)= 1. Clearly, light
with sub-Poissonian distribution has g®(0) < 1. The sim-
plest example of this is a number state for which c6>=0,
{n) = n, yielding

1

PO =1-— n>2,
n

=0 n<2. (8)

This example also shows that antibunched light (in which
photons avoid to come in pairs and thus show anti-
correlation) can be described only quantum mechanically.

Resonance fluorescence

First evidence of antibunching and quantum jumps was
provided by the simple phenomenon of resonance fluore-
scence from a two-level atom of transition frequency oy
which is continuously driven by a near resonant laser of
frequency @ (Figure 2). Typically, oy and ® are in the
optical region (10''-10"° Hz). The Rabi frequency 2
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Figure 1. Schematic diagram of the Hanbury-Brown and Twiss appa-
ratus used for measuring second-order intensity—intensity correlation.
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(2= (d-E)/ 2, where d is the induced dipole moment
and E is laser field amplitude) is around a few GHz
corresponding to a laser power of a few mW. The
spontaneous emission of a photon from the excited atom
is characterized by the Einstein A coefficient also called
Y. The mean lifetime 4 ' or Yy ' of the upper level may
vary from 10 to 10 s. If the field is intense (> 7),
the atom will be excited and de-excited several times,
giving rise to Rabi oscillations. The spontaneous emission
damps out the oscillations and the atomic observables
like the mean population difference or the mean polari-
zation will attain their steady-state value eventually.

What is of particular interest is the fluorescence or the
photons that are scattered by the atom. These photons will
be emitted in all directions (i.e. in 47 solid angle) and in an
experiment it is necessary, to monitor them in a direction
transverse to that of the incident laser beam and the atomic
beam in order to avoid mixing with the pump photons.

The intensity correlation function g(z)(r) for resonance
fluorescence from a two-level atom is given by™”

g =(1—-e"y,
=(1-e " cos(2Q1)), Q> 7. 9)

Q<=

The behaviour of g°(t) for Q<< y and for >y is shown
by curves (i) and (ii) in Figure 3. For small fields (Q
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Figure 2.

Two-level atom interacting with a coherent field of laser.

(i)

0.2 @)

o . A . . \ . \
T

Figure 3. Second-order intensity—intensity correlation function (theo-

retical) vs as a function of t. Curves (i) and (ii) are for the fluorescence

light, while curves (iii) and (iv) are for laser and thermal light,
respectively.
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<), g¥(1) shows a steady increase from its value
2?(0) = 0 to its final value g”)(e0) = 1. For intense fields
(2> ), the behaviour is oscillatory, decaying to the
value unity. This behaviour is to be compared with g®(7)
for laser (coherent) light source (curve (iii)) and that for
thermal light source (curve (iv)). For laser light g”)(1)
=1 for all T, while for thermal light g®(t) decays from
its initial value 2 to its final value 1. Thermal light sig-
nifies what is known as photon bunching (photons prefer
to arrive at the detector in pairs). In contrast, light with
g?(7) < 1 shows anti-correlation or antibunching. g*(7)
=1 implies statistical independence between the light
incident on the two photodetectors in the intensity corre-
lation experiment discussed earlier (Figure 1). This is the
case for coherent light.

In contrast, the intensity correlation for thermal light is

(10)

This is known as the Hanbury-Brown and Twiss (HBT)
effect, where 7 is the spectral width. The coincidence rate
at zero delay time T is twice as large as that in the steady
state at large T (see curve (iv), Figure 3).

gD = 1+e77.

Experimental observation of antibunching

Experiments on observation of antibunching in resonance
fluorescence were first carried out by Kimble, Dagenais
and Mandel® on sodium atoms undergoing a transition
32S1/2—>32P3/2. Briefly, atoms of sodium in a dilute
atomic beam (on the average one atom in the interaction
zone) are excited by the light beam of a tunable dye laser
(Figure 4) stabilized in intensity to a few per cent and
in frequency to about 1 MHz. The laser is tuned to the
(3%S12, F=2) to (3°Pyp, F=3) transition. By optically
prepumping with circularly polarized light in a weak
magnetic field (4-5 Gauss) before the final interaction,
the sodium atoms are prepared in the 32810, F=2, mp=2
state. Such a procedure devised by Abate’ assures that

Na atomic beam Scaler

A

o N > Phototube
(o] L‘ Amp/Disc
Laser ©
Scaler Phototube TDC Control
Amp/Disc Computer
Figure 4. Schematic diagram of apparatus employed in experimental

investigation of antibunching.
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the atoms behave like a two-level quantum system.
The resonant optical field seen by such atoms has a
power density of about 70 mW/em® (/y=4-5). The
fluorescent light emitted is collected at right angles to
both the laser and the atomic beams by means of a
microscope objective and subjected to photon correlation
measurements using HBT apparatus. The results were in
agreement with theory described here after appropriate
corrections for transit time broadening and multi-atom
effects were accounted for. Physically, the vanishing of
g(z)(r) at t=10 for a single atom implies that the excited
atom having emitted a photon at time ¢ is unable to
radiate again immediately after having made a quantum
jump back to the lower state. From the point of view of
quantum measurement theory, although the state of an
excited state evolves continuously in absence of obser-
vation, there is sudden return to the lower state when a
photon is detected.

More recently, the application of a radio frequency
(RF) trap to study the resonance fluorescence of a single,
stored **Mg” ion has been demonstrated by Diedrich and
Walther®. Figure 5 shows two types of ion traps, Penning
trap and Paul (RF) trap, that are commonly used for
spectroscopic experiments (the difference between the
two has been explained in the caption of Figure 5). The
transition used was 351, — 3°Ps5, (L =2800 A). In the
experiments, the ion is stored in a Paul (RF) trap moun-
ted inside a stainless steel ultrahigh vacuum chamber. At
a pressure of 5 x 107" mb, the ion can be stored for about
10 min. The single ion is closely confined in the centre of
the trap by photon recoil cooling. The large size of the
trap permitted a large solid angle for the detection of the
fluorescence radiation.

The intensity correlations of the fluorescence light
were investigated by means of an ordinary HBT set-up
with two photomultipliers and a beam splitter. The inten-
sity correlation function g”)(t) could thus be checked.
The photon correlation signals show the non-classical

END CAP

X, Y PLANE
v
r— RING ELECTRODE
END CAP
Figure 5. Schematic diagram of Penning/Paul (RF) trap. For the

Penning trap, magnetic field B is required but sinusoidal field to
the ring electrode is not required, e.g. ¥ = Vy+ v, cos(wf) (o is the
frequency of the RF field) and v,, = 0 for the Penning trap.
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antibunching effect connected with Rabi oscillations,
which are damped out during the excited state lifetime,
but a periodic feature resulting from the oscillation of the
ion in the trap survives.

Another interesting aspect of this experiment was that
sub-Poissonian statistics which is associated with anti-
bunching property in resonance fluorescence could also
be measured. Short and Mandel’ had earlier measured
this for sodium atoms using the dilute atomic beam and
a special trigger scheme for a single atom event. In
the experiment by Diedrich and Walther’s, the sub-
Poissonian character was inferred by determining the
number of events AN in which two photons arrive within
the time interval AT. During a running time 7=1252s a
total number of 5.9 x 107 photons were detected, which
gives for AT =4.607 ns, AN =3200 events according to
Poissonian statistics. Instead 1583 events were counted,
a result that differs by 28 standard deviations from
Poissonian statistics. The normally ordered variance Qy
(Mandel parameter) gave a value =— 7.0 x 10~°, which is
smaller than that achieved by Short and Mandel because
of the smaller overall detection efficiency of about 4 x
107", Note that Oy = (6> —{) /{A) <0 for sub-Poissonian
statistics.

Squeezed light

Squeezed states of electromagnetic field are those show-
ing non-classical behaviour and have no representation in
terms of classical (vector) fields, stochastic or other-
wise'’. During investigation of generalized minimum
uncertainty state, the idea of squeezed state took shape'’.
Quantum noise (or fluctuations) is the fundamental pro-
perty of any system and it is present in all kinds of
electromagnetic field states, including the field vacuum
state. The basic idea of squeezing is the reduction of
quantum fluctuations in the quadrature component within
the Heisenberg’s uncertainty principle. In a coherent
state, the fluctuations in the quadrature components are
equal and their product is the minimum uncertainty pro-
duct given by Heisenberg’s uncertainty relation. Actually,
the quantum fluctuations of a coherent state are zero
point fluctuations and are randomly distributed in phase.
On the other hand, it is possible to have minimum uncer-
tainty states having reduced fluctuations in one qua-
drature phase than a coherent state at the expense of
increased fluctuations in the other quadrature phase.
These states are called squeezed states (which are some-
times referred as two-photon coherent state, generalized
coherent states, etc.) in which the quantum noise is not
randomly distributed in phase'®.

We illustrate our above discussion with reference to a
single-mode field for the sake of simplicity. The expre-

ssion for the single-mode field of frequency wis
E(t) — (x(aefiu)t + a‘]‘ei(ﬂt),

(D
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where o is a constant containing spatial variation and a,
a' are the annihilation and creation operators for the ele-
ctromagnetic field obeying Boson commutation relations.
It is convenient to write a = q; + ig, such that ¢, and ¢,
are Hermitian operators obeying the relation [gq4, g,] = i/2
and the expression for the electric field becomes

E(f) = 20(g, cos(r) + ¢» sin(® 7). (12)

Clearly g, and ¢, are the amplitudes of the two quadrature
phases of the field. We can define uncertainty in the two
quadratures as Ag; = [V(g)]"% (i=1,2), in which V(g,)
means variance. It is straightforward to show that

AgqiAg, > 1/4. (13)

The equality sign in eq. (13) above is for the class of
minimum uncertainty state (MUS). We have in general,
Agq # Ag,; yet, the states could be of MUS category.
Such states are called squeezed states with the condition
that the normally ordered variance

Vig)<1/4 (i=1or2). (14)

Hence, a squeezed state could be defined as the state in
which the quantum fluctuations in one quadrature phase
are less than those for a vacuum state. As a result of
Heisenberg’s uncertainty relation, the quantum fluctua-
tions in the other quadrature component are increased
compared to the vacuum field.

Action of the displacement operator D(B) on the
vacuum state |0) gives rise to a coherent state:

|B) = D(B)I0), (15)

where D(B) = e™/2Peba =P B is 4 complex number.

A squeezed state |B, &) can be produced by application
of squeeze operator S(§) on the vacuum state followed by
the displacement operator D(p)

1B, &) = D(B)S(€)10),

where S(&) = exp(L &'a> L £a"?), £ = re”.

It should be noted that a coherent state is generated
by linear terms in a(a’) in the exponent of D(B) whereas
the squeezed state requires quadratic terms in S(§). The
variances in the squeezed state |B, &) are given by

(16)

V(pl) :% e—2r,
V(ps) =1 e, (17)
where (p) + ip)) = (¢q; + ig)e ™ is rotated complex

amplitude and 2Ap, and 2Ap, are the length of minor and
major axes, respectively of the error ellipse. Clearly, the
variances F(p,) are not a function of field amplitudes. So
one can observe squeezing for the strong field also, which
is in contrast to the photon antibunching which can be
observed preferably for low-intensity fields. Hence squeez-
ing could be termed as a macroscopic quantum effect.
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It is possible to calculate variance in one quadrature
using Glauber—Sudershan P representation. For the single-
mode field we can have

V(g =+ 1+ JP(B)[(B +B*) — ((B) + (BN d°B).
(18)

For the squeezed field we require V(g;) < 1/4, which
implies P(B) to be a nonpositive definite function. But
the classical averaging procedure demands P(P) to exist
as a positive nonsingular function. In this sense, we can
regard squeezing like photon antibunching as a non-
classical feature of the electromagnetic field state.

The phase space representation of the single-mode
coherent field and the squeezed field is shown in Figure 6.
The field state is represented by a dot surrounded by a
circle (for coherent state) or an ellipse (for squeezed
state). The circle or ellipse represents the noise distribu-
tion for these states. The coherent (squeezed) state has
isotropic (non-isotropic) noise distribution.

The production of a squeezed state from a single-mode
field requires mixing of this field with its phase con-
jugate part, i.e.

b=xa+yd,

(19)

and x* —y* = 1. Suppose a represents the field mode in
the coherent state, then b represents the field mode
in the squeezed state. The phase conjugation can be
achieved by a non-linear interaction such as four-wave
mixing. The model Hamiltonian describing nonlinear inter-
action can be written as

qz a

_—®_> 91

Figure 6. Phase plot of (a) coherent state (B real, & =0) with the
circle representing isotropic noise distribution, () squeezed state |B, &)
with reduced phase fluctuations (P real, » > 0), and (¢) squeezed state
B, &) with reduced phase fluctuations (f real, » <0). Ellipse repre-
sents noise distribution in (») and (¢).
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Hint = X;lk 112 +XnaT29 (20)

where 1y, represents nonlinear susceptibility of the
medium. The first experimental observation of squeezed
light was reported in the four-wave mixing experiment'’.
Later, a number of schemes generating squeezed light
were studied'’. The most prominent study utilizes para-
metric oscillator or a parametric down-converter for
generating squeezed light'®.

The squeezed field produced from a parametric osci-
llator is characterized by a photon number function and
two-photon correlation function which are very useful in
describing the spectroscopic features of an atom in the
squeezed field.

Squeezing is a phase-sensitive phenomenon, as the
variances of quadrature field components are different
and can be characterized by their phases. So, it becomes
mandatory to use phase-sensitive techniques such as
homodyning to detect the squeezed field. In this tech-
nique, the signal field consisting of squeezed light is
homodyned with a local oscillator field (supposed to be
in a coherent state). In the limiting condition, when the
amplitude of the local oscillator greatly exceeds the
signal field, then the photon statistics of the combined
field is directly proportional to the variance of the signal
field. Thus photon statistics measurement is carried out
by changing the local oscillator field phase 0. The change
in photon statistics from sub- to super-Poissonian statis-
tics as O is varied, definitely indicates the presence of
squeezing in the signal.

Squeezed light provides a test-bed for fundamental
issues related to quantum measurement theory. Possible
applications of the squeezed light are in optical commu-
nication system, interferometric techniques to detect very
weak forces such as gravitational wave detection, optical
wave-guide tap and atomic spectroscopy. However,
difficulties in obtaining practical squeezed light sources
have hampered these applications.

The radiative properties of atoms are very sensitive
to their coupling to the environment or the vacuum
reservoir. If a normal vacuum reservoir is replaced with a
squeezed one, then it has been predicted that the line
width of both emission and absorption spectra can be
substantially reduced, which could be used in improving
resolution in laser spectroscopy of atoms. The intrin-
sically non-classical features of squeezed light are mani-
fested in various unusual spectral features that have been
reported in the literature over the past two decades'*'".

Quantum jumps in a three-level atom

Basic scheme for observation of quantum jumps

As early as 1975, Dehmelt'’, one of the pioneers in
development of ion traps, proposed a scheme to detect a
weak (dipole-forbidden) transition in single-atom optical
double-resonance spectroscopy. The concept is based on
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bringing an isolated ion nearly to rest by localizing it in
an ion trap and by optically cooling it.

Consider, for example, the three-level ion of Figure 7 a
with two transitions starting from the common ground
state |3). The blue transition |3) — |1) is very strong,
while the red transition |3) —|2) is very weak. The
lifetimes T,(y;") and T,(y;') of the levels |1) and |2)
are, for example, of the order of 10 ns and 1 s, respec-
tively. The narrow, weakly allowed transition is detected
as follows. The ion is assumed to be in the ground state
|3) initially. The light at the wavelength near the transi-
tion |3) — |2) is pulsed on, possibly driving the ion to the
level |2). Light at a wavelength near the blue transition
|3) — |1) is then pulsed on. If the ion had made a tran-
sition in the previous step, no fluorescence (y;) would be
observed: otherwise an easily detectable fluorescence
signal would be observed. This method is called ‘electron
shelving’, since the optically active electron is temporally
shelved on the upper level |2) of the weak transition.
Also, because the weak transition line width may be
extremely narrow, this scheme has been proposed as an
ultimate laser frequency standard, perhaps with a resolu-
tion of 1 part in 10'® (Av /v = 107'%).

The electron shelving technique as a means of direct
observation of quantum jumps was first pointed out
by Cook and Kimble"™. Suppose two lasers (with wave-
lengths near the two transitions) drive the two transitions
continuously. Since the blue transition is strong, most of
the time due to spontaneous emission from level |1)
fluorescence is seen. But the moment the ion absorbs a
red photon it is shelved in |2) and the fluorescence is
extinguished. When the ‘shelved ion’ returns to the
ground state |3) either by spontaneous or stimulated
emission, it triggers a succession of blue photons in the
strong transition, resulting in an amplification by a factor

a
1>
T [e3]
BLUE ]2>
(04 ; S Y2
RED

13>

b

1>
oy Y2 RED
Y1 |2>
ay
BLUE Y3
3>

Figure 7. Scheme for observation of quantum jumps. @, V-system
with T, =1/yy=10ns, t,=1/y,=1s; b, Same for A or Raman-
system.
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= T/t = 10®. Thus the fluorescence observed on the strong
transition should turn off and on abruptly, as the ion
makes transitions to and from the metastable state. Also,
since the weak transition occurs randomly in time, the
atomic fluorescence I(¢) (photons/s) has the form of a
random telegraph signal shown in Figure 8. Incidentally,
the jumps in the level configuration of Figure 7 a are
known as jumps on absorption. In the alternative scheme
shown in Figure 7 b, the shelf level |2) is coupled to the
excited level |1). Raman scattering from level |1) shelves
the ion in the metastable level |2) from which it decays to
the ground state |3). Jumps in this scheme are known as
the jumps on emission. Note that the transitions | 1) — |2)
and |2) — |3) are both very weak. This scheme is now-
adays experimentally popular, because only one laser
driving the strong transition |3) — |1) is required. How-
ever, the jumps in this scheme may be controlled by
applying a second field driving the transition |2) — |1).

For the scheme shown in Figure 7 a, Cook and Kimble"
investigated theoretically, the dynamics of the process
using rate equations by assuming the driving fields to be
incoherent along with a complete saturation of the strong
transition. The analysis resulted in a simple expression
for transition rates between the weakly coupled state and
the pair of strongly driven states. These rates correspond
to the switching on and off of the fluorescence on the
strong transition, resulting in a simple picture of a random
telegraph. Further, it was predicted that both the darkness
and brightness intervals are distributed exponentially.

Experiments on quantum jumps

Subsequent to the theoretical analysis of Cook and
Kimble'", several experimental observations on quantum
jumps have been reported. The first experiment by
Nagourney e al.'* at the University of Washington, was
on Ba” ion trapped in a miniature RF (Paul) trap with the
level structure shown in Figure 9 @. The ion is cooled
(T<10mK) and localized to <1 pm by simultaneous
irradiation from the continuous wave (cw) light of two
dye lasers driving the transitions 62S1, — 6°Py)s, =
493 nm) and 5°Dy, — 6°Py, (A, = 650 nm). The red light
serves to re-excite the ion when it has decayed to the
metastable 52D3/2 state. The shelf level is 52D5/2 with life-

P A b
It T, T, Ts
()
t1 H t>
t (sec) t (sec)
Figure 8. Fluorescence intensity /(f) as a function of time ¢. @, Beha-

viour of I{f) when the ‘red’ laser is off; b, Intermittent blue fluore-
scence when both lasers are on. The length of brightness (77 and
darkness (#,) intervals is randomly distributed.
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time around 47 ns. Coupling to this level is achieved by
means of an incoherent excitation to 62P3/2 level from a
Ba-hollow cathode lamp and a subsequent decay to 52D5/2.
In other words, to observe quantum jumps it is necessary
to transfer the jon into 5°Ds, level. The blue-green
fluorescence is monitored (62P1/2 — 62S1/2), which shows
a sudden quenching whenever the ion jumps to the
metastable level 52D5/2 and a switching on when the ion
decays back to the ground state. A second experiment by
Sauter et al'” at Hamburg University on Ba' used
trapping of the ion in the shelf-level (5°Ds;) by
incoherent Raman scattering from the excited level 62P1/2
(Figure 9 b). Here also, the resonance fluorescence
(62P1/2—>62S1/2) is monitored and it vanishes whenever
there is a transition occurring to metastable 52D5/2 level
via incoherent Raman scattering and reappears when the
metastable level decays back to the 62S1/2 level.

A series of experiments were carried out by Wine-
land’s group'®'” at NBS Boulder on trapped Hg" ion, in
which there is a strong resonance transition from the
5d16s2S1/2 ground state to 5d16s2P1/2 state near 194 nm.
The lifetime of the 2P1/2 state is around 2-3 ns. There is
a ‘weak’ electric quadrupole transition from the 2S1/2
ground state to 5d°6s* 2D5/2 state near 282 nm (lifetime
= 0.1 s). In addition to its usual decay to the ground state
by electric dipole (£;) radiation, the P> has a small
probability of undergoing F; decay to the metastable
Dy, level. From the 2Dy, level, the jon decays directly to

6 °Ps
Alp [ a
6 P
[y 7Y
5Dsp,
455 nm -
(650 nm)
(493 nm ) —~ 5 Dsp
o OBSERVED
FLUORESCENCE
6 iz
6 2P 12 b
7'y
INCOHERENT RAMAN SCATTERING
650 nm 5Ds,
493 nm = 5 21)3/2
OBSERVED
FLUORESCENCE
6 ’Sin
Figure 9. Level structure of Ba® ion quantum jump measurements.

Transition 2S1, — 2P is strong. Shelf level is ’Dsp. a, Incoherent
pumping from 2S1n = 1Py, followed by decay shelves the ion in level
2Dspy. Blue-green fluorescence so monitored on 62P1j, — 65511 changes
randomly. The ion trapped in level 5°Ds;, eventually decays down to
ground level spontaneously. b, Shelving of ions in *Ds, level is due to
incoherent Raman scattering from the level 6Py
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Box 1.

Magnetic traps

Magnetic traps are based on the utilization of magnetic moment of atoms for their trapping with the help of an
external magnetic field. Atoms with unpaired electrons, e.g. all alkali atoms, have finite magnetic moment and they
respond to the external magnetic field by aligning their magnetic moments either parallel or antiparallel to the
direction of the magnetic field. This gives a Zeeman shift to the atom’s energy. When the applied magnetic field is
non-uniform and has spatial gradient, the response of the atom is decided by the nature of the magnetic moment. If
the atoms have positive magnetic moment, they will start moving towards the direction where the magnetic field strength
is maximum, but for the negative magnetic moment, the atoms move towards minimum magnetic field and can be thus
trapped. Alternatively, atoms with negative Zeeman shift move towards highest magnetic field region and those with
positive Zeeman shift move to the region of lowest field and are trapped. Such a device is called a magnetic trap.

Optical traps

Magnetic traps are quite good, but there is difficulty in control. To have better control, optical trapping is employed
which is based on the induced electric dipole moment of the atom. The origin of dipole moment can be explained by
considering the atom to be a polarizable body. A laser beam detuned in frequency from the resonance transition
frequency of the atom will control the random photon emission and the dipole moment so induced in the atom will
interact with the electric field of the laser beam and constitute a force along the gradient of the intensity. The
direction of this force is decided by the nature of detuning. The electric polarizability is positive below the resonance
and negative above the resonance. If the laser frequency is below the atomic resonance frequency, force will be
directed in the region towards larger laser intensity and thus atoms move in the region of higher intensity and can
be trapped. Alternatively, it can be understood as follows: For red detuning, there is a potential well for the ground
state and atoms are attracted into the region of high intensity. Such a trapping mechanism is used in optical traps.
The characteristic feature of such traps is that if the laser beam is moved then the trapped atoms follow, such that
the cold atoms can be moved from place to place. This kind of manipulation using optical tweezers is also possible
for bacteria or living cells in water (Ashkin et al., 1987, Nature, 330, 769).

Laser cooling of atoms

Laser cooling of atoms can be observed when atoms in the beam are slowed by the light force from resonant
scattering of oppositely-travelling laser beam. Consider a laser beam interacting with an atom resonantly so that
when a photon is absorbed by the atom, its momentum is increased by A/A (which is the momentum of photon) in
the direction of the laser. When the atom re-emits the photon then its momentum is decreased, but there is no
preferred direction for photon emission, i.e. the photon is said to be emitted a random selection. The same atom can
reabsorb another photon from the laser and can re-emit again randomly so that on the average, the atoms moving
in the direction of the laser beam are slowed down. However, the Doppler effect comes in the way of the moving
atoms. An atom moving towards the laser beam finds the laser photon to be of slightly higher energy, and if the
direction of the moving atom is opposite to that of the laser beam, then it will find the laser photon to be of lower
energy. So, if an atom is placed between two laser beams (which are facing each other) with frequency slightly
lower than the atomic resonance frequency then the laser on the left side of atom will slow down the moving atom
towards left, as the Doppler shift of laser frequency will make the laser—atom interaction resonant. The laser on the
left side of the atom and the atom moving in the right-hand direction will have very little interaction as the laser will
be further detuned from the atomic transition. There will be exactly the opposite scenario with the laser on the right
side, as this laser will cool down those atoms which are moving towards the right-hand side. In this way atom
cooling in a single direction is obtained. If six lasers are employed in mutually perpendicular directions, then it is
possible to have three-dimensional laser cooling of the atoms. Laser cooling can make the atoms reach temperature
equivalent to single photon recoil energy (< 1 pK).

Optical molasses

Three orthogonal pairs of laser beams (derived from the same laser having frequency slightly below atomic
resonance frequency) along the cartesian axes forming standing waves slow the atom down, whichever direction it
moves in. Hence in the intersection zone of laser beams, there is frictional or damping force exerted by the light,
which is quite similar to particles moving in a viscous fluid. This arrangement is called an optical molass. The name
was coined by Chu et al. (Phys. Rev. Lett., 1985, 55, 48) who first demonstrated this effect.

Quantum jumps

In the 19th century it had been well-established that atomic vapours emitted and absorbed light at discrete
resonance wavelengths, a characterizing feature for a chemical element. At the beginning of the 20th century the
quantum theory of atoms was developed by Bohr and others. They showed that these characteristic resonances or
spectra were due to the quantum nature of atoms. According to Bohr, atoms are composed of discretized states of
definite energy. Whenever transition occurs between allowed states, either emission or absorption of photons
occurs. The change in_atomic energy is related to frequency v of the photon as AE = hv, where h is the Planck’s
constant = 6.625 x 107’ erg s. These instantaneous transitions were called ‘quantum jumps’.
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the ground state by electric quadrupole £, radiation or to
the metastable *Ds), level by magnetic dipole M; and E,
radiation (in fact, £, decay rate to the 2D5/2 level is
negligible compared to M rate). The “Ds, level decays to
the ground state by F, radiation. The magnetic qua-
drupole M, and electric octupole E; allowed decay rate
from the 2P1/2 level to the 2D5/2 level is, however, much
too small for experimental observation.

In the first set of experiments'® with Hg" ion, the ion
was simultaneously irradiated with two cw lasers driv-
ing the strong transition near 194 nm and the weak
transition near 282 nm (see Figure 10 dashed line). The
fluorescence signal from the laser-excited 2810 = 2Py
resonance line was monitored. The abrupt cessation of
fluorescence indicated a quantum jump to the metastable
state 2D3/2. When the ion jumped back from the metastable
D state to the ground S state, the § — P resonance
fluorescence signal returned instantaneously. Recent exp-
eriments on Hg" ion use only a single laser to excite the
194 nm strong transition. The four-level structure shown
in Figure 10, allows one to predict quantum jumps. Experi-
ments have observed these jumps and the data on the
fluorescence signal have been used to determine the
various radiative decay rates and also to infer the exist-
ence of photon antibunching.

We might also add here that Sauter et al.”® have
reported the observation of multiple quantum jumps, e.g.
simultaneous quantum jumps of two or more ions when
several Ba" ions were stored in the same trap. When two
ions were in the trap, for example, the traces of the
fluorescence signal showed three levels corresponding to
both ions in the ‘on’ state, and one ion in the ‘on’ state
and the other in the ‘off” state. They attributed this
phenomenon to a cooperative interaction between the
atoms and the radiation field. Recent experiments17 on
Hg" ions have, however, shown that simultaneous or co-
operative jumps are rare. The three levels of fluorescence
observed when two Hg  ions were trapped were inter-
preted as due to independent ion jumps, rather than
collective jumps.

6P
4 2 (11pm)
Ds
(665 nm)
(198 nm) f;
(194 pm ) zDs/z
(28210m)
6%
Figure 10. Level structure of Hg' ion used in quantum jump experi-

ments. In the first series of experiments, the ion was irradiated with
two cw lasers simultaneously driving the strong transition 281 = Py
and the weak transition 2S12 — *Dsp. In a later experiment, only one
laser driving the strong transition was used.
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Quantum jumps have also been observed in single Mg"
ions in a Penning trap'®. The level structure of Mg" ion is
shown in Figure 11. A single 280 nm laser was tuned
close to the m;=—1/2 to m;=—3/2 Zeeman component
of the transition from the 35S, ground level to the
3p’Py), level. The laser was linearly polarized with the
polarization direction perpendicular to the direction of
the magnetic field, so that only Am;=+ 1 transition was
allowed. The laser detuning is denoted by A, the radiative
decay constant of each excited level is ¥ and the energy
separation is o/2 (ref. 18). The dipole decay is allowed
from level 3 to level 1 only, so that the fluorescence will
be observed continuously until level 5 is populated from
level 1 due to non-resonant transition (indicated by dashed
arrow in the Figure 11) caused by the finite linewidth of
this transition overlapping with the laser. Once level 5 is
populated, then this level can decay back to level 1 with
probability 1/3 (indicated as wavy arrow 7Y/3 in Figure
11) and thus the 1 <> 3 transition continues. On the other
hand, if level 5 decays to level 2 by a spontaneous Raman
transition (with probability 2/3, indicated as wavy arrow
2v/3 in Figure 11), then it remains there and fluorescence
will be terminated. However, due to off-resonant excita-
tion, an atom can move from level 2 to level 4 (dipole
allowed) and then decay back to level 1 (the entire pro-
cess is an off-resonant Raman transition'®) to restart the
fluorescence. The experimental trace of the fluorescence
showed that the mean ratio was found to be nearly indepen-
dent of the intensity of the laser because of the existence
of coherence between excited levels. The experimental
results also verified an effective two-state rate equation
description of the dynamics of the quantum jumps.

So far we have not discussed the utility of quantum
jump experiments in realization of any potential quantum
information processor! The ion traps have been suggested
as one of the possible and most potent quantum informa-

my
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Py, 12 ‘ 5>
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312 ' 13>
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Figure 11. FEnergy level diagram for the 21, and Py, lines of Mg+

ion in a magnetic field. A laser of frequency ® is used to drive the
transition |1) — |3). Laser polarization allows only Am = =+ 1 transition.
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tion processors where the required entanglement can be
generated with the present technology. Many proposals
and pioneering experiments have come up after the pro-
posal of Cirac and Zoller’ for an ion trap quantum
computer. Hughes et al.*® have proposed that the ion
traps could provide a possibility of realizing a practical
quantum computer of long-term success.

Though most of the physics of ion traps is well
understood, some experiments have displayed unexp-
lained collective behaviour in the presence of several
identical ions. The collective behaviour has been mani-
fested as an enhanced rate of coincident quantum jumps.
In the experiment of Sauter et al.'” (as discussed above)
on a system of three trapped ions of Ba’, it was observed
that the measured two-fold and three-fold coincident
quantum jumps increased by two orders of magnitude
compared to what is expected on the basis of statistics. A
possibility of collective interaction of ions with the electro-
magnetic field has been proposed’’. However, in the
experiments by Itano e al.'’ on two and three Hg" ions,
no such correlations were observed. More precisely, in a
test of two ions they observed 5649 quantum jumps
consecutively, in which the number of double jumps was
about 11, which was within the experimental error of
random coincidences. Later, Werth’s group” also repor-
ted enhancement of two-fold and three-fold coincidence
rates in a linear chain of Ca” ions containing 10 identical
species. Perhaps there is a long-range interaction in the
linear ion crystal. So, what is the fallout of the experi-
ments by Sauter et al."” and Block et al.**? Since only
electromagnetic interaction is involved, any new physical
effect or interaction is unlikely on the basis of these
observations. But if their observations are correct, then
there is serious doubt about the suitability of ion traps as
a quantum information processing device.

The physics of interaction responsible for these col-
lective effects should be well understood in order to
take care of the quantum error correction (QEC). In order
to understand this problem in a systematic manner,
Stacey’s group™ has taken up some experiments. One
such experiment involves a linear chain of 2 or 3 trapped
Ca” ions. Their work is complimentary to that of Itano
et al.'’ and they have used different time scales. They
have observed double quantum jumps of about 0.05% of
the single quantum jump rate, which is quite similar to the
work of Itano et al. The methodology adopted in the work
of Stacey’s group is similar to that in the experiment of
Block et al®*. In their experiment” on *’Ca™ ions, a
linear Paul trap in vacuum (<2 x 107" Torr) has been
used with ion separation of 15 um. The laser cooling
technique is used for obtaining temperature of a few mK
for these ions. The energy level diagram of **Ca” is
shown in the Figure 12. The ions are continuously
illuminated with lasers tuned at the transitions 397 nm
and 866 nm and the fluorescence at 397 nm is detected by
a photomultiplier detection system. Another laser at
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850 nm drives the 3D;, — 4P;, transition. The most
likely route for the decay of 4P5), is to 45, ground state,
but it can go back to 3D5,. About 1 in 18 decays proceed
to 3Ds, metastable or the shelving level. If the ion is
shelved, then the fluorescence is stopped. All ions get
shelved within 100 ms — the duration for which 850 nm
laser beam remains open. By use of specialized tech-
niques described in ref. 23, they have observed quantum
jumps from the metastable 3d”Ds), levels were observed
for several hours in order to search for correlations
between decay time of the different ions. No correlation
was observed, thus keeping our hopes alive for an ion trap
quantum processor.

Theoretical formulation and interpretation of
quantum jumps

Basic equations for atomic evolution

We outline a theory for testing the interaction of a two-

level atom with a coherent field. The Hamiltonian of such
a system has the form

H=H,+Hy+ H, ;+H, ¢, 21
where the various terms are

H,=ho,S,S_, Hz=hiwblb,, (22)

H, x =—h(AE,)S, ~h(A*E)S._, (23)

H, c= —h(AEc)S, —h(M EJ)S_. (24)
Here S, are the atomic raising and lowering operators

Se=12) (1], S=]1) (2] (25)

The radiation field modes are characterized by by, b,j and

40 Ca+

4Psp 6.92 + 0.02 ns
4Py 7.10 + 0.02 ns
850 nm

3 Dsp 1168 + 0.7 ms
3Dsp 1200 + 10 ms
397 nm
4 Sin
Figure 12. Schematic of *°Ca* energy-levels along with their life-

times and the wavelengths of lasers (in nm) driving them.
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1/2
— ho, A
Ep,=i b.e., 26
=i 5] e 0
where é, is the polarization vector and E(¢) is the app-

lied coherent field. Finally, the dipole matrix element is
given by

WA =(1)d|2). 27

Dipole approximation and rotating wave approximation
are implicit in the Hamiltonian. The dynamics may be
described by the total density operator pr, (T=a+R)
obeying the Liouville—von Neumann equation

J
ih PL_[H, p,1.

> (28)

This equation contains all the dynamics, but is too general
to be of use in practice. In order to extract useful infor-
mation from it, we may consider two levels of description.

Reduced atomic density operator p: We concentrate only
on the atomic evolution and ignore the details of reservoir
photons. Here we have a reduced description in terms of
the atomic density operator p = Trpps. The equation for p
is obtained by standard techniques. A rather transparent
derivation is obtained by Mollow?*. The basic result of a
system (atom) interacting with an infinite reservoir (bath
of photons) is to introduce damping (atomic decay) and
an energy shift (incorporated by renormalizing the atomic
transition frequency o). The resulting equation reads as

do _

y (29)

i
— ; (Hegrp — pHeTff) +2vS_pSs.

Here H.g 1s an effective Hamiltonian.

Hee= h(@, —1Y)S,.S_—hA(A*-EES_+XE.S,). (30)

Optical Bloch equations are obtained by taking the matrix
elements between the atomic states and defining p, =

Glplj)-

Atomic density operator in the subspace of n photons:
Here we are interested in the subspace of the total Hilbert
space, where the atom is in any of the two states but the
radiation field contains exactly ‘n’ photons. The reduced
density operator p(”) in the subspace containing » fluore-
scent photons evolves according to the equation

dp @™ i Y " n—
= U™ = p P H )+ 25 p IS (18 ).
(31)

This equation is inhomogeneous due to the presence of a
source term representing the atomic transition |1) — |2)
accompanied by the emission of the nth photon. The
reduced atomic density is simply given by
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o) = ¥ p™ ().

n=0

(32)
In the particular case of n =0 (no fluorescence photon),
we have

dp (0)
dt

i 0 0
== e =p V). (33)
This equation describes the coherent evolution of the
atom without emission of a photon.

Delay function, survival probability and g(z) @

The second level of description is particularly useful for
interpreting many quantum-optics phenomena, such as
resonance fluorescence spectra, photon statistics and
quantum jumps. The important quantity is the probability
distribution of the time interval between the emission of
two successive photons w(¢). This is called the delay
function or waiting time distribution.

The survival probability P(#) is defined as the proba-
bility that no photon emission has occurred by the delay
time ¢. Clearly,

P =1 —E w(t) dt’, (34)
__ 4
(== (35)

In order to obtain the relation between g(z)(t) and w(t), we
introduce another correlation function Q(f). Q(¢) dr is the
conditional probability that the atom radiates any photon
between ¢ and ¢ + dt after it has emitted one at = 0. The
photon emitted at ¢ can be the first photon after the one at
t =0, or the next after any one at (0 <t <f). Thus

O(1) = w(r) + E dr’ Q" yw(t—1). (36)
Alternatively, the photon at ¢ is either the first photon
following the one at t =0 or any one after the next at
t (0 <t <t). Hence

O = w(n) + [ dr' O~ yw(e) (37)

The second-order intensity correlation is then given by

g2t = 00/ Q(=). (38)

Wave function approach

It has been suggested that the atomic operator master
equation describing a photo-emission process is equiva-
lent to a stochastic quantum mapping. Quantum evolution
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of such a system under a non-unitary Schrédinger equa-
tion corresponds to an iteration of the quantum mapping
obtained for a random time interval and at the end of this
interval there is wavefunction collapsezs. The quantum
evolution is a sensitive function of the past history of the
photoemissive process and the calculation of probabi-
lities depends on the past history. In general, the ana-
lytical method to implement this quantum mapping
is difficult, but numerical simulation generates ‘quantum
trajectories’ for stochastic wave function. Such a tra-
jectory is good enough to quantify the current status of
the quantum-mechanical system with a past history of
evolution and wave-function collapse. A time series can
be obtained from these trajectories which is statistically
equivalent to fluctuating signals obtained from a single
quantum system. These trajectories can be used to ana-
lyse quantum jumps, photon scattering in cavity QED and
degenerate parametric oscillators”™. In the following we
will discuss briefly the wavefunction approach for the
resonance fluorescence.

The form of the evolution eq. (31) suggests that it
is possible to revert to wave-function approach using
Schrodinger equation with the non-Hermitian Hamilto-
nian Hg:

Heff |\lf(t)>,

S dw@) _
ih — (39)

() = Ci(@0) |1, n) + Co(1) |2, n). (40)
As a procedure to compute the survival probability
P(f) and therefrom the delay function w(f) and g(s),
this approach is just all right. However, the free non-
unitary evolution is interrupted by quantum jumps
and when delay function w(f) is analytically available,
one can introduce an efficient random sampling tech-
nique or Monte-Carlo procedure for the analysis of the
process. After the emission of the nth photon at time
t,, the atom is in its ground state and the choice of the
single random number determines the time 7,.; of the
emission of the (n + 1)th photon. This type of Monte-
Carlo approach is of much current interest” and has
advantage in more complex situations, where solving the
density matrix equation becomes difficult and time-
consuming.

We assume that the two-level atom is evolving in a
coherent superposition of its two states |1) and |2) for a
time ¢, without emitting a photon. The Schrddinger
equation is

ih Wstt» =(A(w, —iy)S,.S_

—hQe™HS, +e™S ) [y (1)), (4D)
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where Q= (d-E,)/2h is one half of the Rabi frequency,
and

[w(r)) = Ci(D11, 0) + Cx(1)]2, 0),

there being no photons in the field and |7, 0) = |i),]|0)% .
It is easy to show that Cy(f) satisfies the following
equations

(42)

Ci=—(imo +Y)C; —iQC,e ™, (43)

C, =—iQC ™. (44)
These equations can be solved easily. At exact resonance,
assuming the atom to be in the ground state initially
(C; = 1), we obtain

Ci(n) = % e O D ginh(Ar), (45)

Cu(r) = [;_x sinh(As) + cosh(kt)] V2, (46)
where A = (y> - 4Q%"%/2. The survival probability P(r)
and the delay function w(¢) are given by

P() =G + |G’

2 2
Yo Y Q
_ e—yt |:§ Sll’lh(le) + W COSh(zxt) - ?1 s (47)

and

w(f) = — Y(Q/A) e 1 — cos(2AD)]. (48)

Note here that w(0) =0 implies antibunching, i.e. the
photons tend to repel each other. The expression for Q(f)
and g?(7) may be obtained from w(¢). In particular,

Py =e™ {1 - [;—ﬁ sinh(t) + cosh(ut)] g W2 1 ,
(49)

where 1= (7’ — 16Q%)"%2. Clearly g”(0)=0 and in the
limiting cases of weak and intense fields, the above exp-
ression simplifies to eq. (9).

Theories of quantum jumps

Cook and Kimble’s analysis on quantum jumps inspired
many theoretical papers on the interpretation of such
jumps. The basic question is: what leads to the random
telegraph? While Cook and Kimble’s analysis refers
to incoherent excitation, experimental realization of the
Dehmelt scheme requires one or more coherent fields.
The ion is thus in a coherent superposition of the three
states (Figure 7 @) instead of in individual atomic states.
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Naturally, one needs a theory involving the density matrix
p. The diagonal elements p;={i|p|i) represent the
probabilities of an ion being in state |i), while the off-
diagonal elements p,; = {iplj), (i #) imply, crudely speak-
ing, that the ion is simultaneously occupying all levels.
The nine components of the density matrix satisfy the
so-called Bloch equations. Note that for incoherent exci-
tation, fluctuations in the light field destroy quantum-
mechanical coherence; this results in rate equations which
can be interpreted in terms of a (classical) probability of
finding the ion in one of the atomic states rather than in a
superposition of these states.

We briefly review some of the theoretical papers here.
Javanainen®® has treated the scheme of Figure 7 b with a
strong transition |3) <> |1) excited by a coherent field
coupled weakly to a metastable third level |2). He calcu-
lated multi-time distribution function for photon emi-
ssions from the strong transition. For a single trapped
ion, this multi-time distribution can be factorized into
products of two-time distributions. In the stationary limit,
the basic quantity of interest is thus the normalized
intensity—intensity correlation function g(z)(t) which is a
measure of the probability for photon emission at a time
t, after an earlier emission at time zero. In the limit of an
infinite Rabi frequency for strong transition, Javanainen’s
analysis®® results in rate equations analogous to those of
Cook and Kimble. The long time behaviour of the corre-
lation g?(¢) is then related to a dichromatic Markov
process. Schenzle et al?’ consider a three-level atom
with fully saturating and incoherent excitation. From
both the short and long time behaviour of the intensity
correlation function g”(¢), they could conclude the
existence of quantum jumps of the atom which are reflected
as intermittent dark and bright periods of fluorescence.

304
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log,lu(t)
Figure 13. Normalized intensity—intensity correlation function f{f) as

a function of time for yi =1, v, = 10’6, v = 10’6, v, =0, G, =0. Here
G; {(i=1,2) are Rabi frequencies of two fields, y; (i=1,2) are
radiative decay constants and v; (i = 1, 2) are non-radiative transition
rates. For short times it exhibits the familiar antibunching and Rabi
oscillations. Transition between two different steady states, one on the
time scale y1# = 1 and the other y,# > 1, occurs for y1#> 1, v,¢ < 1. For
further details see ref. 35.
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In a subsequent paper, Schenzle and Brewer™ discuss
photon-counting statistics of the dark periods from
higher order correlation functions. The same configura-
tion is also treated by Kimble e al.*’, who have evaluated
the intensity correlation function for resonant mono-
chromatic excitation of the strong transition.

A somewhat different interpretation of the quantum
jumps was given by Cohen-Tannoudji and Dalibard™
who consider the case of monochromatic excitation of
both transitions (Figure 7 a). They point out that with the
excitation on a weak line, the strong resonance fluore-
scence develops an extra probability for the next photon
to appear after a long time interval. The relevant quantity
to study is, therefore, not the intensity correlation func-
tion g”)(¢), but the waiting time distribution w(f). The
latter is defined as the distribution of the time intervals ¢
that one has to wait after the emission of a photon before
the next one is emitted. The presence of weak, but slowly
decaying long-time tail in the distribution is a manifesta-
tion of the existence of long dark periods in the fluo-
rescence. Similar waiting-time distribution has also been
studied by Zoller et al.’' assuming incoherent excitation
with complete saturation. The waiting-time distribution
w(t) is however, related in a simple way to the intensity
correlation function. This has been pointed out by Kim
et al.”* and Nienhuis™.

We might also add that Pegg er al’* and Kimble
et al.” have pointed out that a key role in the occurrence
of quantum jumps in the coherently excited three-level
atom is taken by the dressed-atom Autler—Townes split-
ting which governs the intensity-dependent resonance
condition. Quantum jumps in a coherently-driven Raman
system (Figure 7 b) were studied by Agarwal et al. and
by others™. Physical quantities of interest are the inten-
sities and the intensity—intensity correlations f{7) and g(7)
in the stationary limit. The behaviour of f{t) and g(7) is
shown in Figures 13-15. It is seen that the correlations
show damped Rabi oscillations in the region tS'yl_l, a
transition region 7y, '« 1<y, ! and finally a steady state.
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Figure 14. Same as Figure 13, but for G, =0.1.
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Box 2.

Bose—Einstein condensation

The Bose—Einstein condensation (BEC) observed by Cornell, Weimann, Ketterle and Hulet in 1995, was predicted
about 70 years ago. In this particular state of matter, the individual atoms lose their identity and all the atoms
condense into the same quantum state and act as a single entity, but its behaviour is quantum mechanical in nature
on a macroscopic scale. The BEC state which is a phase transition, is very important for superfluidity, super-
conductivity and spontaneous symmetry-breaking in field theory. When indistinguishable boson (having integral
spin) are cooled down to such a low temperature that the separation between atoms is of the order of their
de-Broglie wavelength, the phenomenon of BEC takes place. To observe this phenomenon, researchers have
used combination of laser cooling along with evaporative cooling. Collisions with very low energy scattering
amplitudes are the characterizing features of a BEC. At very low temperature, the ‘s-wave’ collision is pre-
dominant where its amplitude becomes independent of energy. The scattering length could be positive or negative
depending on the inter-atomic potential. A BEC will be stable if the scattering length of low energy collision
is positive.

Atom laser vs optical laser

A laser is an amplifier of optical light waves. The corresponding matter-wave amplifier can be called the atom laser.
An optical amplifier or the laser consists of a gain medium which contains either atoms or molecules each
having at least three energy levels or more. In a three-level laser, atoms are pumped from the ground (or lower)
state |g) to the excited (upper) state |e) by means of some pumping mechanism, viz. a flash lamp, a plasma or
another laser. The presence of an optical input wave whose frequency matches with the transition |e) to |I)
stimulates the atom to move to the state |/) by emitting optical radiation in the same direction with the same phase
and at the same wavelength as the input optical wave. The entire process is called stimulated emission or more
precisely light amplification by stimulated emission of radiation (LASER). ‘Coherence’ is an important property of lasers.
[‘Coherence’ means a fixed phase relationship between light waves in a beam of light. Two wavetrains of light are
coherent when they are in phase, i.e. vibrate in unison, and are

incoherent if there is random phase relationship. ‘Coherence’ for

laser is used to describe relations between phases within the meur VR
same beam.] The ‘atom-laser’ was thought of to be similar to PHOTON VUV

the optical laser and initial developments were based on OUTPUT
coherent extraction of atomic beam from a Bose-Einstein PUMP ll)PHOTON
condensate. But do we really amplify atoms? This question

went unanswered. In yet another development, the phase- le)

coherent matter-wave amplification by stimulated emission of

atoms has been demonstrated and it is considered to be quite 1S 0 URAVAYAVAY i

&) a

e} b

close to a true atom laser. In principle, the matter-wave MATTER WAVE A
amplifier is analogous to the optical amplifier or laser in the PUMP %gzwwn
sense that in former, the stimulated emission of atoms takes LASER 1 LASER 2

place rather than those of the photons. One important
difference between the two systems is that photons can be
created out of vacuum but not atoms. So atoms in the matter-
wave amplifier cannot be created like photons in optical lasers. However, the creation of atoms in the matter-wave
amplifier can be engineered by allowing the gain medium to serve as a reservoir of atoms. The gain medium
considered here is a Bose—Einstein condensate and the energy level diagram is as shown in the accompanying
figure (b).

The pumping from the level |g) to |e) is done by a laser 1 in this case and the input matter-wave is prepared
using optically induced Bragg’s diffraction of a Bose-Einstein condensate (BEC) gain medium. The atom of BEC in
the state |e) can emit a photon of different frequency (other than that from the pump) and may go to level |I) by
spontaneous emission having random phase. If the atom interacts with the matter-wave (generated by Bragg
diffraction using laser 2) before the spontaneous emission then the excited atom in state |e) is more likely to go to
state |/) with the same velocity and phase as the input wave and a phase coherence is built-up. As a result, an
intense matter-wave emerges and all the excited atoms of the gain medium are shifted to state |/). In a recent
experiment, Inouye et al. (Nature, 1999, 402, 641) observed a gain of 10 to 100 in their matter-wave amplifier. Their
amplifier has produced more intense stimulated wave but otherwise identical to the input wave, thus maintaining
phase coherence. The phase coherence was verified with the help of interferometry.

2 Y
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It is also important to note that the rate of decay in the
transition region can be controlled by the strength of the
field driving the transition |1) — |2) (see Figure 13). It is
clear from Figure 14 that the intensity correlation g(r)
gives an indication of the upward jump from an ‘off’
state to an ‘on’ state. Physically, the system is in the ‘off®
state after the Stokes photon is detected. Thus, if at some
time later a Rayleigh photon has been detected, it obvi-
ously implies a jump to the ‘on’ state. Also, the proba-
bility of detecting two Stokes photons will be much
smaller due to overall scale factor oc%/(ocf + ocg). In the A
system (a A system means the configuration of three
levels has been made in such a way that it looks like the
Greek symbol capital lambda), the quantum jump appears
to be from the strongly fluorescent manifold of dressed
states |y,) and |y;) and the non-radiative dressed states
|W>). In the particular case of o, = 0, the shelving theory
is clearly applicable.

Quantum jumps in a V-system

The interpretation of observed quantum jumps in a
V-system (a V-system means the configuration of
three levels which looks like the Roman alphabet capital
‘vee’) is rather interesting. Here the simple shelving
theory based on Schrddinger cat dichotomy seems to be
inapplicable. Quantum mechanically, at any instant of
time, the atom is in a superposition of all three states.
According to quantum measurement theory, when a
photon is detected, this superposed state collapses to the
single ground state. Then how can we explain the
existence of periods of prolonged darkness? The answer
lies in the expression for survival probability P(¢) or for
the delay function w(#). As before, we consider the

1.0x109
1.5x10™
8.0x10%

1.0x10*

6.0x10°Y 5.0x10°

g 0.0
-2 0 2
4.0x107%
2.0x10%
0.0 T T T T T T T T
-2 0 2 4 6 8 10
log,, (t)
Figure 15. The cross correlation function g(f) = (Tn[Is(OR(" + H])/

[sXIe)] as a function of time for Gy = 10, G, = 0.1, v, = 107, v; = 107,
Note the jump to the ‘on’ state for 11z < 10*. (Insef) Oscillatory regime
of g{f) on an enlarged scale.
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coherent evolution of the ion described by the Schro-
dinger equation

Oy _

> et [W(2)) (50
where
3
W)=Y C, (i, (0)), (5D
-
Hegp =R (013 — iyA + 7 (023 — i2)A2
+hoty (€7 Ay + he) + hou, (€70 A, + he), (52)

and 20, (i = 1, 2) are the Rabi frequencies.
The coefficients C(¢) are determined from the equations

C, = — (o — iy)Cy —ioe ™ C,y, (53)
Cy == i(tys — i) Cy —itt,e 1 (54)
C, = —io e C —io,e T C, . (55)

The rapidly oscillating factors may be removed by mak-
ing a transformation

Cy=be ™, Cy=bye ™, Cy=bh,, (56)
and the resulting equations for b,(¢) read as

l;l = (lAl - ’Yl)bl - ia1b3 , (57)

Z;Z = (ZAQ - 'Yz)bz - ia2b3 , (58)

by =~ ituby — iths, (59)

where A} = oy — 03, Ay = W, — 3. Equations (57-59)
can be solved under the initial conditions 5,(0) = 5,(0)
=0 and b5(0) =1 (ion initially in the ground state |3)).
We use the quantum jump conditions ¥, > V,, 0 << O, O
<< v, and set A = 0. The survival probability P(?) is then
given by

P(t) = b1 + |bof + |bsf*

- 7%2 [407 — 2 cos(Af) + YA sin(A)] e + a2 e,
(60)
where
o 2= |2 |2 af (i +43)
B (@2 = A IV
oy (o] —A3)+v{ A5
A= (402 — )2,
2
=y + 11040 o)

@F —A3)+Y7Ay
The survival probability P(¢) is explicitly decomposed
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into two parts. The rapid decay follows the two-level
atomic dynamics, whereas the slow decay function has
the coefficient |ct|* and the decay rate 2T .

The probability that, after a reset, there will be a dark
period of length greater than ¢ > 1/y, is given by

Py(t) = (1biaf + [baaf + [b3a ) expl Ry + A3)1]

2 2Tt

~Jafe (62)

For a resonantly-tuned coupling to level |2) so that A, =
o, the long time (dark) probability to be in the level |1)
is lower from that to be in the metastable level |2) by the
factor

b 2
|' 2 '|2 - 7.
22

(63)

Thus regardless of the length of the period, there is still a
finite probability that the atom is shelved in the allowed
level |1) as opposed to the forbidden level |2). The pro-
bability that a dark period will end with the emission of a
strong transition |1) — |3) photon compared to ending
with a |2) — |3) photon is

Y1lbn |2

(64)
Y2 by |2

= a3/(7172),

which need not be small. If it is large, there is a large
probability that a dark period ends with the emission of
[1) — |3) photon. In other words, the inherent quantum
indeterminacy is reflected in the fact that a dark period
can end with the emission of a photon of any colour
(Figure 16)!

Quantum Zeno effect

Quantum mechanical prediction of an event involves two
aspects. The first is the dynamics — the unitary evolution
(U) in time of the state of the system. The state carries the
information about all observable possibilities. The second
aspect is the reduction R of the state vector. The reduc-
tion needs a measurement of some property of the system.
The latter operation singles out one of the possible out-
comes. It turns out however, that the act of the measure-
ment intervenes. The quantum Zeno effect has to do with
the interplay between observation and intervention in
quantum systems’® that a continuously observed state can

AT AT I

Tnn Toﬂ' Tnn* val‘ -

Figure 16. Time structure of fluorescence telegraph in V-system.
Dark periods may end with the emission of either a strong photon or a
weak photon.
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never decay. A ‘watched pot’ never boils! Achilles, who
is cynosure of all eyes, fails to win!

Consider a quantum system initially in an unstable state.
We may introduce the notion of survival probability P(f)
of finding the system in the initial state after being left to
itself for a certain period of time 7. The Zeno effect
implies that the survival probability P(¢) tends to unity in
the limit of a continuous series of observations intended
to find out whether the system is in the original state or
not. This effect is a consequence of two factors: (a)
presence of an initial range of time for which the survival
probability falls off as 7, and (b) notion of the reduction
of the state vector or the wavefunction collapse during
observation.

We may illustrate the first factor by the following
heuristic considerations. Consider, Heisenberg’s uncer-
tainty relations for the observables characterized by non-
commuting operators A and B.

AAAB > 1[([4,B)), (65)
where
(Ad)? = (A7) ()2 (66)

The operator A evolves according to Heisenberg’s equa-
tion of motion and, in particular, we have

d s
lhE<A>—<[A,H]>I. (67)

~ ~

If we assume B =M, then it is clear from eqs (65) and
(67) that

d( 4)

Ads (A
dt

“20E) [ @ | (65)

where AE is uncertainty in energy. Now let 4= [y){y|
be the projection operator with |y) as the initial decaying
wavefunction and let |0) be the wavefunction at time .
Clearly,

0(1) = exp [—%Jm (69)
Then it follows that
(A =2 () = P(r) = Ky |0)P, (70)
(AA)*=P(1 - P), (71)
and eq. (68) takes the form
n. h |dP
[P(1-P)]"? > E‘E’ (72)

where P =1 at t = 0 (initially). Since the RHS of eq. (72)
is positive definite, it follows that
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E:OattZO,
dt

provided that AE =(H?)—(H)” is finite. This implies
that there is no linear term in P(¢), i.e. the survival pro-
bability falls as t*:

Pty=1-af + ...,

(73)

(74)
for small times. More precisely, if we write eq. (72) in
the form

dpP < 2

[PA-P)"2 1 (AE) dr

(75)

and integrate both sides, we obtain the inequality known

as Fleming’s rule
P(t) > cos? (DE)t/h), (76)

which again reflects the behaviour predicted in eq. (74).
This heuristic derivation is also supported by the
standard perturbation theory. Here we are interested in
obtaining the transition probability from some initial
state |m) to some other state under the action of a per-
turbing potential V. The Hamiltonian is characterized by

H=Hy+ 7,

Ho|m) = Ey|m),

(mH|j) = m|V]j) (m= j),
=(m|Holj) (m= j).

The probability of decay from state |m) can be shown to
be given by

00 =1-FP()

(77

sin? (©,t/2)

| e ,
=—| [m|V |k p
i F (@12)

n A

(78)

where p; is the density of the state and 7w, = E;— E,.
The standard argument is that the major contribution to
the integral comes from the final states & whose energy
E, is close to E,. This assumption which is valid asymp-
totically (that is for larger times), implies the standard
result

O(t) = @npe/ 1) m| V| B[, (79)
based on the formula
w sin> z
L = dz=T. (80)

However, for very short times, this argument fails, and
indeed

2
001 —;—2( [ [l V0P, dE, ] 81)

as can be seen from the fact that sin (x) ~x forx <« 1.
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The second aspect of the Zeno effect is the notion of
wavefunction collapse. Suppose a measurement is made
of an observable with an associated operator 0 having
the eigenvalues A, corresponding to eigenfunction |,,). If
the wavefunction before the measurement is |'¥), then

2y =Y C, ., (82)
where

O 10m) = MO0,

Cy = (0, P), (83)

and the probability of obtaining the value A, is C% C,,.
If the value A, is actually obtained, the von Neumann
theory of measurement says that immediately after the
observation, the wavefunction collapses to the state |§ ).

The Zeno effect is difficult to observe in spontaneous
decay because the interval in which the decay probability
grows quadratically (as ) is much shorter than the time
required to make measurements. Thus, deviation from the
exponential decays for very short and very long times,
has not been observed experimentally so far. However,
quantum Zeno effect also applies to the inhibition of
induced transitions by frequent measurements and can be
observed experimentally.

Observation of quantum Zeno effect

A proposal for demonstrating the Zeno effect on an
induced transition was suggested by Cook’’. The prin-
ciple of this experiment is as follows. Consider a trapped
ion with the level structure shown in Figure 17, similar to
that used for the observation of quantum jumps. Here
level |3) is the ground state, level |2) is an excited meta-
stable state and spontaneous decay from level |2) to |3) is
assumed to be negligible. If the ion is in level |3) at time
t=0, and a perturbation having the resonance frequency
o= (E;—FE;)/h is applied, a coherent superposition
state is created. Let P, and P; be the probabilities for the
ion to be in levels |2) and |3), then

Py(t) = sin’(Q4/2),

>

12>

7 pulse

3>

Figure 17. Schematic diagram for the observation of quantum Zeno
effect — the proposed scheme.
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P5 (1) = cos*(Qt/2), (84)

where € is the Rabi frequency.

If a measurement of the state of the ion is made after a
short time, such that Qf <1, then P;(f) = 1 and P,(¢) =
(1/4)Q°* «1. If instead, the ion starts out in level |2),
the situation is reversed, so that P,(f)=1 and P;(¢) =
(1/4)Q%.

Assume now that the level |1) is connected by a
strongly allowed transition to level |3) and that it can
decay only to level |3), the state measurement is carried
out by the |3) — |1) transition with an optical pulse. This
pulse causes a collapse of the wavefunction. The wave-
function of the ion is projected by the measurement into
level |3) or |2) with probabilities equal to the square of
the wavefunction’s amplitude for being in the level |2) or
|3). If the ion is projected into level |3) at the beginning
of the pulse, it cycles between level |3) and |1) and emits
a series of photons until the pulse is turned off. If it is
projected into level |2), it scatters no photons.

The idea is to drive the transition |3) — |2) with an on-
resonance 7i-pulse of duration 7 =7/Q, while simulta-
neously applying a series of short measurement pulses.
The duration of the measurement is assumed to be much
less than the time between the pulses. Suppose the ion is
in the level |3) at t=0. The m-pulse is then applied.
Without the measurement pulses, the probability P,(#) of
the ion to be in state |2) is unity. Let n measurement
pulses be applied at time ¢, = k(7/n) = kn/(n€2), where k =
1,2, ...n. We calculate the probability P,(¢) at the end
of the n measurement pulses. For this purpose, we use the
optical Bloch equations

Py _ . P33
—_— = Q — = — ,
o i€2(Py3 — P32) o
9 .
BB = 10ps ). (89)
t
Introducing
Ri=pax+pa,
Ry=i(pas — P2)s
Ry=pyn—p33=P—Ps, (86)
we may write eq. (85) as
R, _
dt ’
& = - 2QR3,
dt
dR,
—=_20R,. 87
dt ? (87)

The above set of equations_can be replaced by the
precession of the Bloch vector R

=@xR, (88)

=| &,
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where @ = (£, 0, 0).

If the ion is in the ground state |3) initially (¢ = 0) we
have R = (0,0, - 1).

Just before the first measurement pulse at 7 = 7w/(n2),
the Bloch vector

R = (0, sin Qt,, — cos Q1) = (0, sin(7/n), — cos(n/n)).
(89)

The measurement pulse projects an ion into level |2) or
|3). Tts effect on the density matrix, which corresponds to
an ensemble average, is to set the coherence py; and ps;
as zero, while leaving the populations py; and ps; un-
changed. That is,

R, = (0, 0, — cos(n/n)). (90)

Thus at #; =n/(nL2), just after the first measurement
pulse, R is the same as it was at t+ =0, except that its
magnitude |R| is decreased by a factor of cos(% /n).

After the second measurement at time t, = 27/(n€2), |R|
is decreased by another factor cos(m/n) due to linearity of
the equations of motion. Thus after n measurements, i.e.
at 7= 1/Q the Bloch vector

R(1) = (0, 0, — cos"(n/n)). (91)

The required probability P,(T) follows from the relation

Py(T) =41+ Ry] = 11— (cos(m / n))"]. (92)
For large n,
cos(wn) = 1 =1 (n/n)?,
n [ 1[752]1}’1 —%/2n
(cos(n/n))" =|1-5| — |— | —e . (93)
n n

Thus the probability for induced transition takes the
form

Py =L[1-e™ 72, (94)
which tends to zero as n — oo .

This experiment was carried out by Wineland’s group’®
at NIST using “Be” ions confined in a Penning trap and
laser-cooled. The effect was observed in an RF transition
between two ‘Be” ground state (25°S),) hyperfine levels
separated by 320.7 MHz in a magnetic field B =0.8194
Tesla (Figure 18).

Short pulses of light of wavelength 313 nm (which is
nearly resonant with sub-level of 2p2P3/2 state and
indicated by the large double headed arrow in Figure 18),
applied at the same time as the RF field was used to make
the measurements. The predicted and the observed values
of the transition probabilities for |3) — |2) and |2) — |3)
were found to be in good agreement with the theory. The
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experiment could be done with a single trapped Hg " ion
also.

Interaction-free measurement and quantum Zeno

effect

In 1962 Dennis Gabor, who invented holography asserted
that no observation or measurement can be made with
less than a photon, this is true classically, as the inter-
action-free measurement is a contradiction in classical
mechanics. However, by using quantum mechanics some
experiments can be devised to achieve interaction-free
measurements. A thought-experiment called ‘physicist’s
shell game’ is one such experiment containing two shells
with a pebble hidden under one of them. The pebble is
special in the sense that even if a single photon interacts
with it, it will become dust. How do we determine which
shell is hiding the pebble? To answer this question,
Elitzur and Vaidman® devised a thought-experiment to
carry out the interaction-free measurement of the pebble.
Their experiment consists of an interferometer with two
arms having two mirrors and two beam splitters as shown
in Figure 19. In this interferometer photon detectors are
being used instead of a screen, such that one of the
detectors is so positioned that it detects only the
equivalent of bright fringes (BRT-D) and the other one
records dark fringes (DARK-D), meaning no photon ever
reaches here. In this experiment, initially no pebble is
present and optics is so arranged that a photon always
reaches BRT-D. Next, a pebble is kept in the upper arm
(see Figure 19 b) of the interferometer. A photon entering

B—>

Figure 18. Experimental scheme using *Be” ions in a magnetic field.
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at first beam splitter (BS1) has a choice of two paths to
follow. Let the photon take the upper arm, then it hits the
pebble and destroys it and will not reach the second beam
splitter (BS2). If it takes the lower arm, it does not hit the
pebble. There will not be any interference occurring at
BS2, as the photon has only one way to reach here. At
BS2 again there is 50% probability that it can hit BRT-D
or DARK-D. Detection of a photon at BRT-D gives no
information, because this would have happened in the
absence of the pebble also. On the contrary if the photon
hits DARK-D then we can say with certainty that there
was a pebble in the upper arm, otherwise DARK-D could
not have fired. In conclusion, the presence of a pebble in
one arm occasionally sends a photon in DARK-D, thus
ensuring an interaction-free measurement.

The real experiment using a photon from a nonlinear
crystal has been performed® to clearly demonstrate that
the interaction-free measurement devices can be built.
We refer readers to ref. 40 for more details, where the
experiment is a slight variation of the Elitzer—Vaidman
experiment discussed above.

We now discuss the role of quantum Zeno effect in
interaction-free measurement. In 1994, Kasevich (Stan-
ford) proposed an experiment, which was first devised by
Ashes Peres (Technion-Israel Institute) in 1980 (see ref.
40 also). The experiment considers the change in pola-

a A DARK-D

BS2

M1

BRT-D

BRT-D

BS1

Figure 19. Pebble experiment of Elitzur and Vaidman. In this inter-
ferometry experiment a photon can select either of the two paths but
the optical elements are so arranged that the photon always goes to
BRT-D detector which measures constructive interference (a). If a
pebble is kept in the upper arm, then the DARK-D occasionally clicks
and thus completes the interaction-free measurement (b).
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rization of light. Polarization means vibration of light
wave — it is up and down (side to side) for a vertically
(horizontally) polarized light. These vibrations are at
right angles to the propagation direction of the light. In
this experiment (Figure 20), the light (a single photon)
passes through six polarization rotators so that a hori-
zontally polarized light ends up vertically polarized or
vice versa. Let the initial photon be horizontally pola-
rized and let each polarization rotator change the polari-
zation by 15°. After passing through six such rotators, the
photon polarization will turn by 90° and will become
vertically polarized. Thus it will be unable to cross the
polarizer which will allow only horizontally polarized
photon to pass through. Hence the photon will not be
detected by the detector kept behind the polarizer. The
quantum evolution in this case is stepwise rotation of
polarization, which we want to inhibit. This can be
achieved by interspersing horizontal polarizers between
any two polarization rotators. The probability of photon
absorption in the first horizontal polarizer is sin’(15).
Suppose the photon survives after the first horizontal
polarizer, it will have horizontal polarization only. Again,
at the second horizontal polarizer, the probability of
photon absorption is sin’(15). So, when the photon crosses
the sixth horizontal polarizer, its survival probability is
(1 —sin’*(15))° = (cos’(15))°. Hence, if we have n stages
of such polarization rotators and horizontal polarizers,
the probability that the photon will survive and strike the
detector is given by (cos’(15))". Clearly, when we have
n — oo, the photon will always strike the detector and
evolution of the polarization is completely inhibited*.

The practical apparatus to perform interaction-free
measurement (or detecting an object without photon)
consists of a hybrid version of the Elitzer—Vaidman appa-
ratus and the Zeno set-up discussed above. The details
are as shown in Figure 21. It consists of a fast switchable
mirror and the polarization rotator which rotates the
photon polarization by 15° in each cycle (in fact an
arrangement of mirrors in spiral staircase is used to
obtain this*"). The other part of this apparatus is a
polarization interferometer with a polarization beam splitter
and two mirrors. The polarization beam splitter used here
transmits horizontally polarized light and reflects verti-
cally polarized light. Without the presence of any exter-

Figure 20. Demonstration of quantum Zeno effect with the help of
polarization rotators causing rotation of polarization by 15°. When a
horizontally polarized photon crosses six such rotators (P), it becomes
vertically polarized (upper row). However, by interspersing a pola-
rizer (H) after each rotator, the photon polarization remained
unchanged (lower row).
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nal object in the arms of the interferometer, the light gets
split at the polarizer according to its polarization and
reflects back from mirrors, to recombine again at the
beam splitter. Thus the emerging light is in the same state
as that before it entered, i.e. its polarization rotated by
15° towards the vertical. Hence after six cycles the
polarization will be completely vertical for a horizontally
polarized light. When an object is placed in the vertical
polarization arm, then we come across an interesting
situation and even after six cycles, the polarization remains
horizontal. This is because now the situation is similar to
six polarizers inserted in the quantum Zeno experiment.
In the first cycle, the polarization is rotated by 15° from
the horizontal so that if the photon is reflected in the
vertical polarized arm, then it will be absorbed by the
object placed in that arm. The probability for this to
happen is 6.7% (= sin’(15)). If this absorption does not
occur, then the photon enters the horizontally polarized
arm and its polarization remains horizontal when it returns
to the beam splitter. This process is repeated in the six
cycles when the bottom mirror is switched off. The result
of the measurement shows that the polarization is still
horizontal. Thus one can conclude that an opaque object
is present in the interferometer. By increasing the number
of cycles in the experiments, the photon absorption pro-
bability can be made smaller. Experiments conducted at
Los Alamos laboratories show that 70% of the measure-
ment could be interaction-free.

Quantum anti-Zeno effect

The Zeno effect in its original sense is related to the spon-
taneous decay of an unstable state or particle. Normally,
spontaneous decay is related to the ‘reservoir’ of possible
states where transition can take place. Recently, Kofman
and Kurizki*' have reopened the issue of dependence of
the decay rate on the energy spectrum of the reservoir

PEBBLE

<

Mll]—;:

PBS

\
=]
SM
A

P

Figure 21. Combined set-up of Elitzur—Vaidman and quantum Zeno
effect schemes. Here a photon is entering from below the switchable
mirror (SM) and follows the path six times before coming out through
the mirror. Polarization of the photon remains horizontal if there is a
pebble in one of the paths, otherwise the polarization becomes vertical.
P is polarization rotator and PBS is polarization beam splitter.
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Box 3. Quantum computing

but the quantum computer is based on quantum logic.

Components including electrical wires, etc. of a computer can be in two basic states, viz. logical ‘0’ state or logical
‘1’ state depending upon whether no current of some current is flowing through them. A ‘bit’ of information is
represented by either these two states. The process of computation means to logically manipulate bits via logical
gates. Instead of logical components, one can use quantized electronic states of atoms designated as ground state
|0) and excited state |1), for the purpose of recording information. The generalized state according to the laws of
quantum mechanics would be |®1) = a|0) + B|1) (a linear superposition of these two states), and is called a
quantum bit or ‘qubit’. When there are two qubits, then the general state takes the form |®2) = a|00) + §|01)
+v[10) + 8] 11). A special case of this state, when «=86=0 and = y=1/JE, is called Einstein—Podolski—-Rosen
(EPR) state |®epr) = (]01) +|10)) 2. The degree of correlation of two qubits in |®epr) is a matter of quantum
mechanics, because there is no classical analogue of this state and it is called ‘entangled state’. The utilization of
entanglement is the basic difference of a quantum computer over its classical counterpart. There is intrinsic
parallelism in quantum computing because of this entanglement. The logic used in classical computer is Boolean,

states and the energy spread of the unstable state.
Usually, the ‘decay’ in a quantum optical system is a
consequence of a ‘reservoir’ of possible states to which
transition can occur. Clearly, the decay rate should
strongly depend on the spectrum of the reservoir states,
as the decay is due to transition to these states. Any
measurement means interruption and randomization of
the oscillations of the system. If f is the frequency of the
sequential measurement, then according to the energy—
time uncertainty relation, it will cause an energy spread
of #Af. This energy spread is primarily responsible in
determining the range of accessible reservoir states and
thus affects the decay rate. The usual quantum Zeno
effect should take place when the energy spread due to
repeated measurement is much larger compared to the
width of the reservoir spectrum (in energy) and the sepa-
ration in energy between the unstable state and the centre
of gravity of distribution of states in the reservoir.

It is more likely that the reverse situation is abundant
in natural systems, i.e. the spread of energy due to
repeated measurement is much smaller compared to the
separation between the unstable state and the nearest
maximum in the energy spectrum of the reservoir. Hence
the decay becomes faster if the frequency of measure-
ment is increased. Thus the case of anti-Zeno effect
occurs as the energy spread of the unstable state increases
and correspondingly the accessibility of reservoir states
increases and the transition rate becomes faster, and hence
the decay is faster with the increase in the frequency
of measurement. So, the quantum Zeno effect (QZE)
does not hold generally, but only for a restricted class of
systems. The QZE is principally unattainable in radiative
or radioactive decay because the required measurement
rates may cause the system to disintegrate. Acceleration
of decay by frequent measurement (the quantum anti-
Zeno effect, QAZE) is possible for essentially any decay
process and is much more ubiquitous than its inhibition*'.
It has already been noticed that the QAZE is a cause for
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concern in connection with quantum error correction for
quantum computers.

Conclusions and future prospects

We have discussed some non-classical features of light in
terms of the correlation functions and the statistics of
light along with the experiments to observe these fea-
tures. The experiments in ion traps discussed here reveal
the basic quantum nature of the atom, as pointed out by
Bohr. Besides revealing fundamental physics, these
experiments provide some unique and ingenious methods
for realizing quantum computation. One of the promising
methods to realize quantum computation is an ion trap
quantum computer. In linear ion traps, AC currents in
electrodes generate a time-dependent electric quadrupole
field. By suitably adjusting the AC current, it is possible
to trap ions of different masses. The linear ion trap has
been realized experimentally. It is possible to trap thirty
ions* in this trap, but so far no quantum computation
with thirty ions has been realized. In any quantum
computation work, both storage as well as quantum infor-
mation processing require a lot of experimental inge-
nuity, because quantum information is fragile. In the case
of linear ion trap, the electronic state of ions is used for
information storage. The ions are cooled to their ground
state of motion so that only the unavoidable motion due
to quantum mechanical uncertainty is present. Laser light
is utilized to control the electronic transition and hence in
manipulating the quantum information. However, the
unavoidable interaction of ions with their environment
severely limits the power of computation because of
decoherence induced by such transitions. To combat this
decoherence problem, quantum error corrections are
used. Though there is a good theoretical understanding of
the various underlying processes in quantum compu-
tation, the need of the hour is to realize a fully functional
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quantum computer. But despite this, a lot of interesting
and fundamental experiments in physics can be carried
out with whatever developments have taken place so far.
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