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The enormous theoretical potential of quantum infor-
mation processing (QIP) is driving the pursuit for its
practical realization by various physical techniques.
Currently, nuclear magnetic resonance (NMR) has
been the forerunner by demonstrating a majority of
quantum algorithms. In NMR, spin-systems consisting
of coupled nuclear spins are utilized as qubits. In
order to carry out QIP, a spin-system has to meet two
major requirements: (i) qubit addressability and (ii)
mutual coupling among the qubits. It has been dem-
onstrated that the magnitude of the mutual coupling
among qubits can be increased by orienting the spin-
systems in a liquid crystal matrix and utilizing the re-
sidual dipolar couplings. While utilizing residual di-
polar couplings may be useful to increase the number
of qubits, nuclei of the same species (homonuclei)
might become strongly coupled. In strongly coupled
spin-systems, spins lose their individual identity of
being qubits. We propose that even such strongly cou-
pled spin-systems can be used for QIP and the qubit-
manipulation can be achieved by transition-selective
pulses. We demonstrate experimental preparation of
pseudopure states, creation of maximally entangled
states, implementation of logic gates and implementa-
tion of Deutsch—Jozsa (DJ) algorithm in strongly cou-
pled 2, 3 and 4 spin-systems. The energy levels of the
strongly coupled 3 and 4 spin-systems were obtained
using a Z-COSY experiment.

THE theoretical success of exploiting the quantum nature
of physical systems in certain information processing
tasks like prime factorization' and unsorted database
search’ has motivated the pursuit for the practical realiza-
tion of quantum information processing (QIP)*”. With
the demonstration of many quantum algorithms, nuclear
magnetic resonance (NMR) is now considered as a suit-
able test-bed for QIP. One of the main challenges for the
progress of NMR—QIP is ‘how to increase the number of
qubits?’ In this direction several attempts are being
made, such as (i) find molecules with different chemical
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shifts and J-couplings, and (ii) use of dipolar and quad-
rupolar couplings. This article concentrates on one aspect:
‘how to use dipolar couplings among homonuclear
spins’. This problem is outlined in the following para-
graphs.

In NMR, systems consisting of coupled spin-1/2 nuclei
form qubits. In order to carry out QIP, the spin-system has
to meet two main requirements: qubit addressability and
mutual coupling among the qubits. In liquid-state NMR
using isotropic fluids, the qubit addressability is normally
provided by the differences in Larmor frequencies of the
various spin-1/2 nuclei, while the mutual coupling is
normally provided by the scalar (J) coupling among the
nuclei connected by covalent bonds. The Hamiltonian for
a J-coupled spin-system is®,
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where Jf, is the Zeeman Hamiltonian, and J, is the
coupling Hamiltonian. When 27J; < |, — @), the system
is said to be weakly coupled, and the Hamiltonian can be
approximated to®,
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For qubit addressability, all @ should be sufficiently dis-
persed and all J; should be non-negligible (>1 Hz) and
unequal in magnitude. In such a circumstance, each spin
can be treated as a qubit and the coupled nuclei as several
qubits. The values of J; depend on the covalent bonds
connecting spins i and j. They normally have a small
range (< 10> Hz) and become too small (<1 Hz) if the
spins are connected by more than 4-5 covalent bonds.
This places a natural limit on the number of qubits reach-
able by liquid-state NMR using J-couplings alone. To
overcome this limitation, the possibility of using dipolar
couplings was considered. The truncated Hamiltonian for
dipolar interaction is®’,
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The dipolar coupling D;; between spins of gyromagnetic
ratios ¥; and 7%, whose inter-distance vector r; makes an
angle 6; with the Zeeman magnetic field is of the form®’,
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Dipolar couplings among common nuclear species have
larger magnitudes (~10° Hz) and longer range than scalar
couplings. However, in isotropic liquids the time average
of Dj;; vanishes, while in solids there are too many dipolar
couplings resulting in broad, unresolved lines and loss of
qubit addressability. In molecules oriented in a liquid
crystal matrix, while the intermolecular dipolar couplings
are vanishingly small, the intramolecular dipolar cou-
plings survive, scaled down by the order parameter Sj; of
the liquid crystal”®,
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In such systems one obtains a finite number of sharp,
well-resolved spectral lines making it possible to use
such systems for NMR-QIP* ™", In the NMR—QIP experi-
ments implemented so far, the systems have been chosen
such that either (i) 2a(J; + 2Dj) < [(@ — ®@)|, yielding
weakly coupled spin-systems, which is the case for
the heteronuclear spin-systems”'® or (ii) the coupling
2(J; +2Dy) is finite and |@ - @] =0, i.e. equivalent-
spins case'"'?. In the latter case, the symmetry filtering
of energy levels becomes increasingly difficult for higher
number of qubits' . Even though the heteronuclear
spins oriented in liquid crystal matrix are excellent for
QIP since they provide good qubit addressability as well
as large mutual coupling, the use of more than 3-4 het-
eronuclear spins is limited by the extensive hardware
requirements. Therefore, for reaching larger number of
qubits, one needs to utilize homonuclear (nuclei of same
species having same 7 but different chemical shifts)
spins oriented in a liquid crystal.

Homonuclear spins oriented in a liquid crystal gener-
ally become strongly coupled, since the dipolar couplings
become comparable to or more than the differences in
Larmor frequencies |@— @|. In such a situation, the
Zeeman and the coupling parts of the Hamiltonian do not
commute. Therefore, the eigenstates of strongly coupled
spins are obtained as the linear combinations of product
states of various spins, and the individual spins can no
more be treated as qubits. We propose and demonstrate
here that the 2" eigenstates of a coupled N-spin 1/2 sys-
tem can be treated as an N qubit system, even in the pres-
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ence of strong coupling. A similar idea has already been
used in demonstration of QIP using quadrupolar (§'> 1/2)
nuclei oriented in high magnetic field, where the 25+ 1
non-equidistant energy levels have been treated as
N-qubit systems, where 2V =25+ 1. So far §=3/2 and
7/2 have been utilized, respectively as 2 and 3 qubit sys-
tems'*'® for various NMR—QIP.

While substantial work has been carried out in NMR-
QIP using weakly coupled spin-systems'’, till now the
use of the strongly coupled spin-systems for QIP has not
been experimentally demonstrated, presumably because
(i) spin-selective pulses are not defined in the case of
strongly coupled spins®, and (ii) there is difficulty in con-
structing a general unitary operator using the evolution
under scalar coupling®. The problem of using scalar
coupling evolution of a strongly coupled two-spin-system
for a general unitary transform has recently been addres-
sed theoretically, but extending to an N-spin-system is
complicated’’. However, we note that unlike spin-selec-
tive pulses, the transition-selective pulses are well-
defined even in strongly coupled spin-systems’, and
hence it is possible to construct a unitary transformation
using transition-selective pulses. In the next section we
demonstrate NMR—QIP on a strongly coupled two-spin-
system in isotropic medium by preparing pseudopure
states, implementing Deutsch—Jozsa (DJ) algorithm, cre-
ating Einstein—Podolsky—Rosen (EPR) state and imple-
menting logic gates. Next, we describe the creation of
Greenberger—Horne—Zeilinger (GHZ) states and imple-
mentation of two-qubit DJ algorithm on a strongly cou-
pled three-spin-system in an oriented medium after
labelling the transitions using the Z-COSY experiment.
Labelling of transitions, preparation of pseudopure states,
and implementation of gates on a strongly coupled four-
spin system are then demonstrated.

In this study the strongly coupled systems used are
given in Table 1.

The experiments have been carried out on a Bruker
DRX-500 NMR spectrometer at 300 K.

Strongly coupled two-spin system

The four eigenstates of a strongly coupled two-spin-
system (of spin 1/2 nuclei; AB spin-system) in isotropic
medium are |Qo), cos®|af) +sin®|fa), cosO|fa) -
sin®|aff) and |BP) (Figure 1 a), where © = %tan’1(2m]AB/
(@ — @y))°. These eigenstates are labelled respectively as
[00), [01), |10) and |11), thus forming a two-qubit system
(Figure 15). To demonstrate QIP on such a system, we
have taken the strongly coupled 'H spins of trisodium cit-
rate (Figure 1 ¢). In this system, the scalar coupling (J) is
15 Hz, the difference in Larmor frequencies (Af) is
55.5 Hz, and the strong coupling parameter (®) is 7.6°.
The equilibrium spectrum of the system is shown in Fig-
ure 1 4.
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a, Eigenstates of a strongly coupled two-spin-system; b, Qubit labelling; ¢, Trisodium citrate yielding a strongly cou-

pled two-spin-system, and d, Equilibrium 500 MHz 'H spectrum of ¢.

Table 1. The various samples used for QIP
Isotropic/ No. of
Sample Solvent oriented qubits
Trisodium citrate DO Isotropic 2
Organometallic compound (I) CDCl; Isotropic 2
1-Bromo-2,3-dichlorobenzene  ZI1LI1-1132 Oriented 3
2-Chloroiodobenzene ZL1-1132 Oriented 4

Preparation of pseudopure states

In QIP, the computation normally begins from a definite
initial state known as a pure state®®. In NMR, however,
because of the small energy gaps, it is not possible to re-
alize a pure state wherein the whole population is in one
energy level, since it requires very low temperatures as
well as very high magnetic fields. However, an alternate
solution was discovered to overcome this problem”>*. In
thermal equilibrium, NMR density matrix can be written
as

p=2""{I+epye,}- (6)

The first part is a normalized unit matrix which corre-
sponds to a uniform population background. The second
part containing the traceless deviation density matrix Pgey
(with a small coefficient £~ 107°) evolves under various
NMR Hamiltonians, and gives measurable signal. It was
observed independently by Cory et al.*” and Chuang et
al.®, that by applying a certain pulse sequence to the sys-
tem in equilibrium, we can prepare the so-called pseudo-
pure density matrix,

Pops =2 M AU=" 12"V + € e} ()

The first part is again a scaled unit matrix, but the second

part corresponds to a pure state. Such pseudopure states
mimic pure states’”’. Many methods have been proposed
for the preparation of pseudopure states, including spatial
averaging”>**, temporal averaging®, logical labelling™**,

and spatially averaged logical labelling®®. Some of the
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other methods include the preparation of pseudopure
states via cat states” and preparation of pair of pseudo-
pure states''. Both J-evolution and transition-selective
pulse methods have been utilized for preparation of pseu-
dopure states!»16:2225:27:30

We have adopted the method of spatial averaging using
transition-selective pulses. The Boltzmann distribution of
populations in high-temperature high-field approximation
is linear with energy gap. The equilibrium deviation popu-
lations (in excess of a large uniform background popula-
tion) of a homonuclear two-spin-system are schematically
given in Figure 2 a. For creating a pseudopure state all the
populations except one of the states have to be equalized.
This distribution can be achieved by a sequence of transi-
tion-selective pulses intermittent with field-gradient pulses
to destroy any coherence created in the process.

A transition-selective pulse of nutation angle 6 and of
any transverse phase between states (i, j), changes the
populations as follows:

pi = p;cos’(0/2)+ p;sin’(0/2),
P =p,cos’(B/2)+ p;sin’(@/2). (®)

To prepare the [00) pseudopure state (Figure 2 b) from
equilibrium (Figure 2 a), we use a sequence [(0)“(»““1)—
G, — (90°)°P 1M _ 6" ] (pulses are applied from left to
right), and it is inferred from the deviation populations of
Figure 24 and b, that 8 should be such that cos*(6/2) =
2/3. This yields 6= 70.5°. On the other hand, 8= 90°
equalizes the populations of the two levels to an average
value. Thus, the |00) pseudopure state is prepared by the
pulse sequence [(70.5°)!7 7V _ G, —(90°)°V 1V _ &
and the corresponding spectrum is given in Figure 2 5. The
|01) and |10) pseudopure states (Figure 2 ¢ and d) are pre-
pared by applying (180°)°” 1 and (180°)°” 11 pulses,
respectively after creating the |00) pseudopure state. The
[11) pseudopure state (Figure 2 e) is prepared by the pulse
sequence  (70.5°)°0 PV _ G _(90°)°0 1Y _ G/ The
observed intensities in the spectra on the left-hand-side of
Figure 2 correspond to the created population distribution
and hence confirm the creation of the pseudopure states.
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DJ algorithm

The DIJ algorithm is one of the first quantum algorithms
which successfully demonstrated the power of QIP*'*2.
The task of the DIJ algorithm is to distinguish between
two classes of many-input-one-output functions, constant
and balanced. Constant functions are those functions in
which all the outputs are same independent of inputs; and
balanced functions are those in which half the number of
inputs gives one output and the other half gives another
output. Classically, given a function of n input bits, it
takes 2" + 1 function-calls on an average, to determine
whether the function is constant or balanced, whereas DJ
algorithm needs only one function-call for any number of
qubits. The DJ algorithm has been implemented in NMR
using scalar-coupling evolution as well as spin and tran-
sition-selective pulses® %, We have followed Cleve’s
version of the DJ algorithm which requires one extra
work qubit’”. The circuit diagram and the NMR pulse se-
quence for implementing 1-qubit DJ algorithm are shown
in Figure 3 a and b, respectively. The experiment begins
with the [00) pseudopure state. An initial (7/2)_, pulse (the
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Figure 2. a, Equilibrium spectrum of trisodium citrate, and spectra
corresponding to various pseudopure states: b, |00); ¢, [01); d, |10), and
e, |11). Numbers above the energy levels indicate populations and
binary numbers below the levels indicate labels. Transitions are also
indentified as 1, 2, 3 and 4 in (). Pulse sequences applied to prepare
each pseudopure state are explained in the text. Transition-selective
pulses used were of length 100 ms and gradient pulse was of length
1 ms and strength 10 G/cm. Each spectrum was obtained by a non-
selective high-power pulse of duration 1 us, corresponding to a flip-
angle of 10°.
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pseudopure Hadamard operation™*) on all the qubits cre-
ates a superposition. It may be noted that unlike weakly-
coupled spins, the superposition created here is not uni-
form in the eigenbasis, since the coefficients of various
eigenstates are different. However, as is shown here, it is
still possible to distinguish between the different classes of
functions. The Hadamard operation is followed by an uni-
tary operator U, corresponding to the given function f.
The unitary operator carries out the transformation
|7, s)L | f(s)Dr,s), where |r) and |s) are the states
of the work-qubit and the input-qubit, respectively. The
four different one-qubit functions and the corresponding
unitary operators as well as r.f. pulses are listed in Table 2.
The test for a balanced function is that the transitions of
input-qubit will gain opposite phases at the end of the al-
gorithm. The experimental results corresponding to all the
four functions f, f5, 3 and f; along with their correspond-
ing simulated spectra are given in Figure 3 c—f. From the
spectra we can identify that functions f) and f, are constant,
since the transitions 1 and 2 are of same phase, whereas f;
and f, are balanced, since the transitions 1 and 2 are of
opposite phase (transition numbers are from Figure 2 a).

Creation of an EPR state

EPR pairs are the maximally entangled pairs of the form

(100) £]11) or —=(| 01) £ |10)), 9

1
V2 V2
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Figure 3. Implementation of DJ algorithm. a, Quantum circuit. b,
Experimental scheme for the implementation of DJ algorithm. ¢, d,
Experimental spectra corresponding to the two constant functions of Uy
and U, respectively. e, f, Spectra corresponding to the two balanced
functions of Us and U, respectively. Expected spectra for all the four
functions are given on the right-hand-side.
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Table 2. Functions, unitary operators and r.f. pulses for one-qubit DJ algorithm
Constant Balanced
S i S Ja
0 0 1 0 1
1 0 1 1 0
1 000 0100 1 000 0100
U 0100 1 000 0100 1 000
4 0010 00 01 00 01 0010
0001 001 0010 0001
Pulse No pulse ()0 < 0V _ (o) o1 (0= ()0 = oV
Table 3. Transition numbers of eq. (10) and corresponding phases of 1 0 —i 0
r.f. pulses for creating |[00) +|11) EPR state. Transition numbers are \/—
from Figure 1 4 _ 110 2.0 0 (11)
=— ) ,
Expt. Expt. \/E 0 0 0 l‘/E
no. k 1 ) & no. k 1 (A [0 1 0 i 0
1 2 3 X —x 5 4 1 X —x
2 2 3 x x 6 4 1 = x where the operators are however applied from right to
3 23y y 7 4 1 y ooy left. EPR state is obtained by applying U on [00) pseudo-
4 2 3 -y -y 8 4 1 -y -y

which are not reducible into product states of individual
qubits’. The non-local correlation exhibited by these pairs
has no classical equivalence, and is exploited in many
branches of QIP, including quantum computation and
quantum teleportation™*. EPR states of a pair of weakly-
coupled nuclear spins have been earlier created by NMR
using spin-selective pulses and evolution of coupling’.

Here, we demonstrate the creation of EPR state on the
above strongly coupled two-spin-system using transition-
selective pulses and tomograph the result using non-
selective pulses. Starting from |00) pseudopure state, the
EPR state (|00) +|11))/v2 can be created by applying
the pulse sequence (pulses are to be applied from left to
right)

(2] )

where & and [ are the transitions, and ¢, and ¢, are the
phases as shown in Table 3. For example, the unitary
operator U for the pulse sequence

[[%T -(n)ix]

is

(10)

U = exp(in )" exp(—i Z 100110
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pure state

(12)

o O O
o O O O
o O O O
o O O O
a
—
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o O O O
o O O O
—_ O O

A phase-cycle over different combinations given in Table
3 helps reduce errors in the off-diagonal elements. Figure
4a shows the experimental equilibrium spectrum and
Figure 4 b shows the experimental spectrum after creat-
ing the EPR state. Since the EPR state does not consist of
any single quantum coherence, no signal is obtained (Fig-
ure 4 b). The corresponding simulated spectra are shown
in Figure 4 fand g.

To verify the creation of the EPR state, it is necessary
to tomograph the complete density matrix. Tomography
in NMR is normally carried out using spin-selective
pulses obtaining a series of one-dimensional NMR experi-
ments, each giving a linear equation of different elements
of the density matrix”®. However, in the case of strongly
coupled systems all operations, including tomography
exclude the use of spin-selective pulses and demand either
non-selective pulses or transition-selective pulses or both.
Recently, a robust method for tomography was suggested
based on two-dimensional Fourier spectroscopy, which
utilizes only non-selective pulses’’. This method invol-
ves:

(i) a one-dimensional experiment for measuring dia-
gonal elements: [G, — 10,° —{], and

(i) a two-dimensional multiple quantum experiment for
measuring all off-diagonal elements:

CURRENT SCIENCE, VOL. 85, NO. 7, 10 OCTOBER 2003
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Figure 4. Creation and tomography of (|00) + [11}) s/E EPR state. Spectra in a—e are experimental and
in f~, are simulated, corresponding to various steps of creation and tomography. a, f, Equilibrium spec-
tra; b, g, Spectra after creation of EPR state (no single quantum signal observed); ¢, &, Spectra of diago-
nal part measured by the pulse sequence (EPR) - G.— 103 ; d, i, Spectra obtained by the sequence
(EPR) — (/4),; e, j, Spectra obtained by (EPR) — (7 /4),; k, Two-dimensional spectrum to measure the
off-diagonal elements. This spectrum clearly shows the double quantum coherence present in the EPR
state. Axial peaks at zero frequency originate from the longitudinal relaxation of EPR state during # pe-
riod which is detected due to the imperfection of the 90° r.f. pulse following the #; period. The theoretical
(1), and experimental (m) density matrices of EPR state. Spectra in d, e, are used for calculating the scal-
ing between diagonal and off-diagonal measurements. While plotting, the spectra shown in d, e, i, j are
scaled-up by a factor of 4. Pseudopure state and EPR state are created using transition-selective pulses of

length 100 ms. An eight-step cycle {(shown in Table 3) was employed to minimize the errors.

Pseudopure | UEPR T T
preparation (2) (3) (E)y (Z)X
@ 1 @

M

Go

Figure 5. Pulse sequence for creation and tomography of EPR state.
Numbers within parentheses indicate transition numbers as shown in
Figure 1d. Ugpr is applied on transitions [(2), (3)] or [(4), (1)] as de-
scribed in eq. {10) and Table 3. G, G2 and G; are field-gradient pulses
of different strengths along the Z-direction.

[t — (2), — G, — (W4)_, — ta]. (13)
The scheme involves only non-selective pulses and there-
fore, it is not only simple and accurate, but also applica-
ble to strongly coupled systems. The result of measurement
of diagonal elements of the EPR state [experiment (i)] is
shown in Figure 4 ¢ and the corresponding simulated spec-
trum is shown in Figure 4 4. Figure 5 shows the complete
pulse-sequence for creation of EPR state followed by
measurement of the off-diagonal elements [experiment
(i1)]. The resulting 2D spectrum of the experiment is given
in Figure 4k, which clearly shows the double quantum
peaks corresponding to the EPR state. No zero quantum
or single quantum peaks are observed®’.
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Since the diagonal and off-diagonal terms are measured
by two different schemes, it is necessary also to determine
the scaling between the two measurements. Normally,
this is achieved by comparing single quantum terms in
the two-dimensional experiment with the spectrum obtai-
ned by direct detection of the density matrix’’. However,
since no single quantum coherence is present in the EPR
density matrix, we carried out two additional one-dimen-
sional experiments: (iii) [(7#/4), -] and (iv) [(7W4), - 1]
after creation of the EPR pair. Experimental spectra cor-
responding to (iii) and (iv) are shown in Figure 4 d and e,
respectively, and the corresponding simulated spectra are
shown in Figure 4/ and j, respectively. The signals in
Figure 4 d are proportional to the sum of the amplitudes
of diagonal and double quantum coherences of the EPR
state, while those in Figure 4 e, are proportional to the
differences (when single quantum coherences are not
present as in the present case). Since in a perfect EPR
state the diagonal elements and double quantum coher-
ences are equal, the spectrum of Figure 4 e, should have
no signal, as is evident from the simulated spectrum of
Figure 4. The signals of Figure 4 e compared to Figure
4 d are measures of experimental errors, which in the pre-
sent case are estimated to be less than 15%. The complete
density matrices corresponding to the theoretical and ex-
perimentally obtained EPR state are shown in Figure 4/
and m.

Implementation of logic gates

Logic gates have been implemented earlier by one- and
two-dimensional NMR using weakly-coupled spin-1/2
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Figure 6. a, Organometallic compound (I) in which the two phospho-
rus (*'P) nuclei constitute a two-spin-system. b, Energy level diagram
of the two-spin-system. ¢, Equilibrium phosphorus spectrum recorded
at 202 MHz in a magnetic field of 11.7 T.

nuclei as well as quadrupolar nuclei'”'******! We dem-
onstrate here the first implementation of a complete set
of 24 one-to-one logic gates in a 2-qubit system using
strongly coupled spin-1/2 nuclei. The system chosen for
this purpose are the two phosphorus nuclei of the organo-
metallic compound (I) shown in Figure 6 a. The energy
level diagram and the equilibrium phosphorus spectrum
of this molecule in isotropic liquid state are given in Fig-
ure 6 b and c, respectively. Starting from equilibrium, the
logic gates were implemented using sequences of transi-
tion-selective pulses. The final populations were mapped
by a small-angle (10°), non-selective pulse. The spectra
corresponding to final populations of all the 24 logic
gates are given in Figure 7. The unitary transforms and
pulse sequences for implementation of these gates are
given in ref. 39 with the modification that the r.f. power
has been adjusted for a given angle of flip for the two in-
ner versus the two outer transitions.

Strongly coupled three-spin system

The system and labelling of transitions

The system chosen are the three strongly coupled protons
of 3-bromo-1,2-dichlorobenzene (Figure 8) oriented in
the nematic liquid crystal ZLI-1132. The equilibrium
spectrum of the system at 300 K obtained from DRX
500 MHz spectrometer is shown in Figure 8. There are
only nine out of a total of 15 possible single quantum
transitions with observable intensity in this spin-system.
Construction of energy level diagram and labelling of tra-
nsitions were performed using a Z-COSY experiment*.

The Z-COSY spectrum along with cross-sections
parallel to @, axis at various transitions is given in Figure
9. The zero-quantum artifacts were suppressed in the Z-
COSY experiment by incrementing a delay synchronized
with ¢, increment™. The connectivity matrix is obtained
by the MATLAB-assisted automation:
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Figure 7. Implementation of 24 one-to-one logic gates. Starting from
equilibrium all the gates were implemented using sequences of transi-
tion-selective pulses and non-selective pulses. The unitary transforms
and pulse sequences for implementation of these gates are given in ref.
39. Gaussian-shaped pulses of 100 ms duration were used as selective
pulses. The r.f. power has been calibrated for a given angle of flip for
the two inner versus the two outer transitions. A sine-bell-shaped gra-
dient was applied after implementation of each selective pulse, to kill
any coherences created due to imperfection of pulses. Final populations
were mapped by a small-angle (10°), non-selective pulse.
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The constructed energy level diagram for the above con-
nectivity matrix is shown in Figure 10. The ninth transi-
tion shown by a dashed line belongs to the transition
011 « 100, and is not connected to any other observed
transitions. Therefore, the transition did not show any
connectivity to other transitions in the Z-COSY experi-
ment (Figure 9) and is marked as * in Figure 8. It turns out
that these nine transitions are sufficient to carry out certain
QIP operations as shown in the following sections.
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Preparation of pseudopure state

We have used the method of ‘POPS’ to prepare a pair of
pseudopure states on this three-spin strongly coupled sys-
tem''. POPS requires only two population distributions:
(1) equilibrium populations (Figure 11 @) and (ii) equilib-

H
H H
Br Cl 4
1
Cl 8
5
7
2 (*
3 I6
T T T T T T T T T T
8000 7000 6000 5000 4000 3000 2000 1000 Hz

Figure 8. Equilibrium proton spectrum of 3-bromo-1,2-dichloro-
benzene oriented in ZLI-1132 at 500 MHz. Transitions are labelled
from left to right. The ninth transition marked * did not show conne-
ctivity to other transitions (Figure 9), and belongs to the lone transition
between 011 and 100 (marked by dashed line in Figure 10).

4
2 78|
|?5L § 1

|
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Hz / I I
0 —k
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L — M |
4000 ,
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80004 ~ 1\ |
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Figure 9. Z-COSY spectrum of oriented 3-bromo-1,2-dichloro-

benzene. Equilibrium spectrum and cross-sections of the Z-COSY spe-
ctrum are shown on the right-hand-side.

111

Figure 10. FEnergy level diagram of oriented 3-bromo-1,2-dichloro-
benzene constructed using the Z-COSY spectrum shown in Figure 9.
Transitions are labelled as in Figure 8. Only nine transitions are assig-
ned. The remaining transitions have very low intensity.
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rium populations changed by a single transition-selective
7 pulse on a given transition (Figure 11 5). Subtraction of
(i1) from (i) yields effectively, a pair of pseudopure states
[000) (000] — |001) {001]| (Figure 11 ¢).

Creation of |GHZ) (GHZ| — |001) (001 state

Entanglement between many particles is essential for
most quantum communication schemes, including error-

. . . . 5
correction schemes and secret-key-distribution network’.

GHZ states are three-spin entangled states of the form*™*

1
GHZ) = —(| 000)+ | 111)). 15
| JEU [111)) (15)
1 4 8
2 7
s e[ |
I J
6000 4000 2000 0 Hz
C2-NOT
L
]
, , [ POPS

8

| J GHZ-{001) (001]

1 7
T T T T
6000 4000 2000 0 Hz

Figure 11. Preparation of GHZ state on the three-spin strongly cou-
pled system of Figure 8. Energy levels, transitions and representative
deviation populations (numbers inside circles) are shown on the left-
hand-side and the corresponding spectra are shown on the right-hand-
side. @, Equilibrium deviation populations and the corresponding spec-
trum; b, Deviation populations and spectrum obtained after inverting
the transition 6, and ¢, Deviation populations and spectrum obtained by
subtracting b from a. Deviation populations and the spectrum in ¢
correspond to the pair of pseudopure states: |000){000| — [001)001]|.
d, Population distribution and spectrum corresponding to the state
|GHZ){GHZ| — |001)¢001|. All spectra were recorded using a final
small-angle (10°) detection pulse to maintain linear response, such that
the intensities are proportional to the population differences of the two
involved levels only.
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Table 4. The 16-step phase-cycle for preparing GHZ state. The pulse-sequence is given in eq. (17)
o 03 o L 0} h o s L PR
1 ¥y ¥y ¥y 5 ¥y X —x 9 X ¥y —x 13 X x -y
2 y -y -y 6 y —x x 10 x —y x 14 x —X y
3 -y y -y 7 -y x x 11 —x y x 15 —x x y
4 -y -y ¥y 8 -y —x —x 12 —x -y —x 16 —x -x -y

The three particles in GHZ state exhibit one of the
strangest correlations that cannot be explained by any
hidden variable theory™*’. A set of measurements carried
out on the three particles in GHZ state prepare the parti-
cles in a classically impossible correlated state’. In NMR,
the GHZ state was first created by Laflamme et al.*’. The
correlations of the GHZ state have been studied using
NMR by Nelson e al.*’.

Preparation of the GHZ state requires preparing a pseu-
dopure initial state, like |000). However, since we have
prepared a pair of pseudopure states as the initial state,
we will be actually preparing a state

|GHZ) (GHZ| - |001) (001]. (16)
This state differs from the GHZ state only in the diagonal
elements and therefore retains the essential correlations
of the GHZ state.

The GHZ state can be created from the |000) pseudo-
pure state using a cascade of three transition-selective
pulses (i) (7/2)4, pulse on the transition 8, (ii) (7)y, pulse
on the transition 4 and (iii) (), pulse on the transition 1.
The pulse sequence is,

z " @ W
[5] ) ﬂ‘Pz ' ﬂ‘?s ?
1

where pulses are to be applied from left to right. The
phases ¢, ¢, and ¢; of the pulses can be any one of the
16 possible combinations, as shown in Table 4. A phase-
cycle over these combinations helps reduce the errors in
the off-diagonal elements.

The unitary operator for the above pulse-sequence can
be written as,

a7

. 1 . 4 4
Ugsz = exp(—inl ) - exp(—inl}.)-exp [—151(}? ] (18)

where Iq()?,l(;j) and 7§ are the single transition opera-
tors on transitions 1, 4 and 8§, respectively. The spectrum
corresponding to the diagonal part of |[GHZ) (GHZ| -
|001) <001] state is shown in Figure 11d. It is clearly seen
that in the GHZ state (eq. (15)) transitions 1, 3 and 8§
have approximately half the intensity of the equilibrium
spectrum. Transitions 5, 6 and 7 appear due to POPS.

940

However, to confirm the creation of the GHZ state, a
complete tomography of the created GHZ state is needed.
The pulse sequence for preparation of POPS, creation of
|GHZ) (GHZ| - |[001) (001] state followed by tomography
(using experiment (ii) of eq. (13)) is given in Figure 12 a.
The 2D spectrum corresponding to the measurement of
all off-diagonal elements of the GHZ state is shown in
Figure 12 b. Presence of only triple quantum coherence
and absence of all other coherences confirm the creation
of the GHZ state. The axial peaks at zero frequency in
the vertical dimension are due to the longitudinal relaxa-
tion during the ¢, period and imperfections of the 90°
pulse (see caption of Figure 4).

Two-qubit DJ using two-dimensional NMR

Implementation of the DJ algorithm on two qubits
requires three qubits, including one work qubit. The algo-
rithm can be described as

1) )| —L | ) | $) [ £ ® £(r, $))s (19)

|)]s) and |f) being the states of the two input qubits (7, 1)
and the work qubit ({;), respectively. There are eight pos-
sible two-bit binary functions (f), among which two are
constant and six are balanced. The transformations corre-
sponding to the constant functions f; and f; are respec-
tively, unity operator and a 7 pulse on all the transitions
of the work qubit. The unitary transformations encoding
the remaining six balanced functions f; — fg are achieved
by transition-selective pulses on different transitions (3,
4, 9(*), 6) of the work qubit as [0, 0, =, 7, (7, 7, O, 0],
[z, 0, m 0], [0, @, O, 7|, [m, 0, O, 7] and [0, &, 7, O] (ref.
38).

The pulse sequence for two-dimensional DJ algorithm
is [(%)10’1l 12 —1,—U; —Det(1,)]. The transitions of 7, and
I, qubits are frequency-labelled during the ¢, period and
detected during the #, period. Fourier transformation with
respect to ¢, and ¢, yields the desired two-dimensional spe-
ctrum™ *'. The experimental result of the above operations
on the strongly coupled 3-qubit system of 3-bromo-1,2-
dichlorobenzene is given in Figure 13. The experimental
results match the expected theoretical results, confirming
that two-dimensional DJ algorithm can also be carried out
in a strongly coupled three-spin-system.

CURRENT SCIENCE, VOL. 85, NO. 7, 10 OCTOBER 2003
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Figure 12. a, Pulse sequence for creation and tomography of

|GHZ){GHZ| — |001){001| state. Numbers inside parentheses indicate
transition numbers as shown in Figure 8. Gy and G, are field-gradient
pulses of different strengths along the Z-direction. b, Two-dimensional
spectrum obtained using the pulse sequence {&). Pure triple quantum
coherence at @ + @y + ws (Where @y is the frequency of transition k)
confirms the creation of the GHZ state.

Strongly coupled four-spin-system
Labelling of transitions

The system chosen is 2-chloroiodobenzene dissolved in
ZLI-1132. The four aromatic protons form a strongly
coupled four-spin-system. Equilibrium spectrum is shown
in Figure 14. The transitions are labelled according to the
descending order of their intensities. The total number of
transitions for a four-spin strongly coupled system is
2X4C4,1 =56, of which only 30 transitions have been
observed with sufficient intensity. There are other transi-
tions of smaller intensities comparable to that of "C
satellites. In order to avoid any interference due to C
satellites, we have used “C decoupling in the experi-
ment. Decoupling in #, dimension is achieved by a single
7 pulse on C channel in the middle of #, period, while
that in #, dimension is carried out by multi-pulse decoup-
ling sequences on the C channel. The Z-COSY spec-
trum obtained after *C decoupling for the present system
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Figure 13. Result of DJ algorithm on 3-bromo-1,2-dichlorobenzene

dissolved in ZLI-1132 for various functions f; — fz. Only expansions of
the transitions of the input qubits (/; and I>) are shown. Expected pat-
terns obtained by GAMMA simulation are also shown against each
spectrum. Transitions 3, 4, 9 (*) and 6 are used as the four work-qubit
transitions. Interchange of labels 011 < 101 allows us to identify tran-
sitions 4 and 9 as those belonging to the 3rd qubit. This does not affect
other operations and the four 3rd-qubit transitions, namely 3, 4, 9 and 6
remain unconnected. However, transition 1 now belongs to the Ist
qubit (011 « 111) along with transition 2 (010 < 110), and transition 7
to the 2nd qubit (001 < 011) along with transition 8 (000 « 010). All
experiments were carried out on a Bruker DRX-500 spectrometer at
300 K. Transition-selective pulses were 1.5, 7.4, 20 and 1.5 ms long,
respectively for transitions 3, 4, 9 and 6. Pulse power was then
adjusted to make the flip angle of each pulse as 7. A phase-cycle of
(x, —x) was used to minimize the error of the 7 pulses during computa-
tion. The extra peaks in f; (shown by <) in the experimental spectra
originated due to undesired coherence-transfer during computation. All
experiments were done using 2048 £, and 128 #; datapoints. All plots
are shown in magnitude mode. Resonance frequencies of various tran-
sitions (1, 2, 7 and 8) in @, domain are schematically identified in the
bottom line. The 7 pulses applied to various work-qubit transitions are
indicated for each f, with the transitions identified in f>. The same order
follows for other fs. For example, f, = (%, 7, 7, 7) means 7 pulses are
applied to all the transitions of work qubit and fs = (x, 0, 7, 0) means 7
pulses are applied to transitions 3 and 9, and no pulses to transitions 4
and 6.

is shown in Figure 15. The spectrum consists of more
than 2000 peaks. MATLAB analysis of the spectrum has
been carried out. Figure 16 @ shows the connectivity and
labelling of the 30 transitions of Figure 14.

Four-qubit gates and pseudopure states

Figure 16 shows implementation of gates and preparation
of pairs of pseudopure states using the four-qubit system
2-chloroiodobenzene. The labelling scheme for the energy
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levels is shown in Figure 16a. Figure 165 shows the
equilibrium spectrum. A C’-NOT gate can be imple-
mented using a single 7 pulse on the transition 4. The
spectrum corresponding to the C*-NOT gate obtained us-
ing a small-angle detection pulse is shown in Figure 16 c.
A pair of pseudopure states, namely [L1111)(1111]—
[1110)(1110]| is prepared by subtracting the spectrum in
Figure 16 ¢ from the equilibrium spectrum shown in Fig-
ure 16 5. The resultant spectrum is shown in Figure 16 4.
Similarly, the pair of pseudopure states |1110)(1110|—
[1010)(1010| (Figure 16e) is prepared by inverting the
transition 1 and subtracting the obtained spectrum from
the equilibrium spectrum. Figure 16f demonstrates the
implementation of C*-SWAP gate after preparing the pair

Cl

14 13
15 72

16
ﬁzs 19 baf 20 ”
28 1{2‘ 27[ 0 2
N J11
:

T
6000 5000 4000 3000 2000 1000 0 Hz

Figure 14. One-dimensional 500 MHz proton spectrum of 2-chloro-
iodobenzene oriented in liquid crystal ZLI-1132, at 300 K forming a
four-qubit system. Transitions are labelled according to descending
order of their intensities.
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Figure 15. Z-COSY spectrum of the four-spin strongly coupled sys-

tem shown in Figure 13. The spectrum consists of more than 2000 desi-
red peaks.
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of pseudopure states [1110)(1110|—|1010)¢1010]. The
action of C’-SWAP gate is to interchange the states
[1110) and |1101). This is achieved by three transition-
selective pulses

[ 71D 2, (20)

N 10 3 7 5 43 1112
PO I 2 0 R W . T
Equlibrium
c i 1 l l A lA h | l ll " L X
| ci-NoT
ol |
] ! poOPS (4)
o .
| [ POPS (1)
f - J | ——
1 [ pops (1)+C2- SWAP
| | —
| POPS (15)

Figure 16. a, Labelling scheme for the states of the four-qubit system
of Figure 14. b, Equilibrium spectrum obtained using a small-angle
(10°) pulse [the spectra of Figure 14 were obtained using a 90° detec-
tion pulse]. ¢, Spectrum corresponding to C*-NOT gate obtained by
selective inversion of transition number 4 (|1110) < |1111}). d, Spe-
ctrum corresponding to the pair of pseudopure states [1111){1111]—
[1110){1110| obtained by subtracting ¢ from b, named POPS(4).
e, Spectrum corresponding to the pair of pseudopure states [1110)
(1110] — [1010){1010]| obtained by inverting the transition 1 and sub-
tracting the obtained spectrum from the equilibrium spectrum b, named
POPS(1). f, Spectrum corresponding to the pair of pseudopure states
[1101)1101] — |1010){1010| obtained by applying C:-SWAP gate on e.
The pulse sequence for C>-SWAP gate is given in eq. (20). g, Spectrum
corresponding to the pair of pseudopure states [1101){1101| - |1010)
(1010] is obtained by inverting the transition 15 and subtracting the spec-
trum for the equilibrium spectrum b, named POPS(15). Spectra f and g
match fairly well, indicating good implementation of the C>-SWAP. All
spectra were recorded using a final small-angle (10°) detection pulse to
maintain linear response, such that the intensities are proportional to
the population differences of the two involved levels only.
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where the superscripts indicate the transition numbers.
Since the states [1101) and |1110) have almost the same
populations in the present case, the spectrum after apply-
ing C>-SWAP gate on equilibrium input state will not be
very much different from the equilibrium spectrum.
However, if one starts with a pair of pseudopure states
[1110)(1110] — [1010)(1010| as the input, the output will
be a different pair of pseudopure states,

|1110)1110] — |1010)1010] C>-SWAP

[1101)1101] - |1010)(1010|. 2D
The spectrum corresponding to the state [1101)(1101] -
|1010){1010| obtained by applying C*-SWAP gate on
[1110)(1110] —|1010)¢1010] is shown in Figure 16f. The
pair of pseudopure states [1101)(1101] —]1010){1010| can
also be prepared by inverting the transition 15 and sub-
tracting the spectrum obtained from the equilibrium spec-
trum, as shown in Figure 16 g. The spectra in Figure 16 f
and g match fairly well, indicating good implementation
of the C>-SWAP in Figure 16 f.

Conclusion

Increasing the number of qubits in NMR calls for the use
of dipolar couplings in oriented homonuclear systems.
Such spin systems generally become strongly coupled.
Spin selective pulses are not defined in the case of strongly
coupled systems. Qubit addressability in such a scenario
is achieved through transition-selective pulses. Earlier in
weakly-coupled spin-systems, logic gates”™*"*® and algo-
rithms such as Grover’s algorithm and quantum Fourier
transform have been implemented48. Efforts are going on
to implement these algorithms in strongly coupled sys-
tems as well as to realize higher qubit systems using nu-
clear spins oriented in liquid crystal matrices.
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