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We look at graphical descriptions of block codes
known as trellises, which illustrate connections bet-
ween algebra and graph theory, and can be used to
develop powerful decoding algorithms. Trellises for
linear block codes are known to grow exponentially
with the code parameters and hence decoding on such
objects is often infeasible. Of considerable interest to
coding theorists therefore, are more compact descrip-
tions called tail-biting trellises which in some cases
can be much smaller than any ordinary trellis for the
same code. We derive some interesting properties of
tail-biting trellises and present an optimal maximum-
likelihood decoding algorithm that performs rather
well in terms of decoding complexity even at low sig-
nal-to-noise ratios.

OUR model of a communication system consists of a
sender and a receiver communicating over an unreliable
channel, as illustrated in Figure 1. The channel has an in-
put alphabet A and an output alphabet B. Symbols from
A are transmitted over the channel. In order to transmit
information reliably, we transmit blocks of symbols
rather than individual symbols. Before transmitting the
blocks we encode them by adding redundant symbols in
the hope that the redundancy will enable us to detect and
correct errors. The encoding procedure produces a code-
word from a message and it is this codeword that is
transmitted. The set of all codewords is called a code. At
the receiving end, what is obtained is a word » over the
alphabet B. The object of the decoder is to obtain the
codeword ¢” which was the most likely one to have been
transmitted.

The theory of algebraic codes is founded on the struc-
ture and properties of finite fields. Indeed most algebraic
decoding algorithms, for instance the Berlekamp—Massey
algorithm'”, the Euclid® and the Guruswami—Sudan list-
decoding algorithm® depend rather critically on these
properties. However, such algorithms require channel
outputs to be mapped into field elements, that is, they
need quantization of the outputs before beginning the
decoding process, resulting in loss of valuable informa-
tion. Coding practioners have therefore tried to explore
schemes where raw channel output symbols can be pro-
cessed as such. One way of doing this is by using trellis
representation of codes. Trellises are special kinds of
graphs on which decoding algorithms that do not require
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quantization can be applied. The problem with such
decoding schemes is that the algorithms are computation-
ally demanding, in contrast with algebraic decoding
whose complexity usually ranges from linear to cubic in
the size of the input. Trellis-based algorithms are often
probabilistic in nature. Until recently, the most widely
used probabilistic decoding algorithm was the Viterbi
decoding algorithm’. This is an optimal algorithm in the
sense that it minimizes the probability of decoding error
for a given code. However, the computational complexity
of this algorithm is exponential in the code parameters.
This is because the Viterbi algorithm operates on a trellis
for the code, and the number of nodes (also referred to as
the state space of the trellis) in such a graph is often very
large, resulting in a high decoding complexity. A tail-
biting trellis can be viewed as a superposition of subtrel-
lises for subcodes that share nodes (also called states).
The sharing of states gives rise to much smaller graphs
and hence reduced decoding complexity. The reduction
in the state space in going from an ordinary to a tail-bit-
ing trellis can be dramatic. For linear binary trellises, the
number of states at any given time index is always a
power of 2. So, for example, if the maximum state com-
plexity of a linear trellis was 2'® which is approximately
65,000, it could reduce to 28, i.e. 256 for a tail-biting trel-
lis for the same code. Thus, if we could obtain an algo-
rithm to decode on the tail-biting trellis, it would be
considerably less complex than the Viterbi algorithm on
the conventional trellis.

The connections between algebraic and combinatorial
representations of block codes are interesting, and we
describe some of them here. We also show that one such
connection leads to a decoding algorithm that appears
quite promising from the point of view of computational
complexity.

Background

We give a brief background on subclasses of block codes
called linear codes. Readers are referred to the classic
texts®®

Let us fix the input alphabet 4 as the finite field [,
with g elements. It is customary to define linear codes
algebraically as follows:

A linear block code C of message length k& and block
length »n over a field [, is a k-dimensional subspace of an
n-dimensional vector space over the field [, (such a code
is called an (n, k) code).
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Figure 2. Generator matrix for a (4, 2) linear binary code.

The most common algebraic representation of a linear
block code is the generator matrix G. A k£ X n matrix G
where the rows of G are linearly independent and which
generate the subspace corresponding to € is called a
generator matrix for C. Figure 2 shows a generator ma-
trix for a (4, 2) linear code over F,.

An alternate way of specifying the code Cis by the
parity check matrix H of C which enjoys the following

property:
He'=0,Vee C.

Thus, whereas the generator matrix defines the vector
subspace which is the code, the parity check matrix defi-
nes the orthogonal subspace. The codes generated by C
and H are said to be duals of one another. The dual of C
is denoted by C*. For the (4, 2) code that we considered
earlier, the parity check matrix is the same as the gener-
ator matrix G shown in Figure 2. Such codes are referred
to as self-dual codes. Each row of the parity check matrix
can be thought of as a constraint that the bits of the
codeword must satisfy. Thus a codeword is one for which
the bits simultaneously satisfy all the constraints imposed
by the rows of the parity check matrix.

A general block code also has a combinatorial descri-
ption in the form of a trellis. We borrow from Kschis-
chang and Sorokine’, the definition of a trellis for a block
code.

A trellis T for a block code C of length n, is an edge-
labelled directed graph (¥, E, [) with a distinguished root
vertex s, having in-degree 0 and a distinguished goal ver-
tex f having out-degree 0, with the following properties:

(i) V is the set of all vertices and all vertices can be
reached from the root.
(i) The goal can be reached from all vertices.
(iii) E is the set of edges and the number of edges trav-
ersed in passing from the root to the goal along any
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A typical error control scheme.

path is n. Each edge e has a label I(e) from the input
alphabet [,.

(iv) The set of n-tuples obtained by concatenating the
edge labels encountered in traversing all paths from
the root to the goal is C.

The length of a path (in edges) from the root to any ver-
tex is unique and is sometimes called the time index of
the vertex. Accordingly, the vertex set V of the trellis is
partitioned into n subclasses Vg, Vi, ... V,1, with V; de-
noting the vertex set at time index i. (The class ¥, is taken
to be the same as V,.) A subtrellis of T is a connected
subgraph of T containing nodes at every time index i,
0 <i<n and all edges between them. Let S; be the set of
states corresponding to time index i, and |S)| denote the
cardinality of the set §;. Define s; = (log,|Si[) and sy =
max,(s;). The state-complexity profile of the code is
defined as the sequence (s, Sy, ... S,_1). Minimization of
Smax 18 often desirable and s, is referred to as the maxi-
mum state-complexity. There are several measures of the
size of a trellis. Some of these are s, the total number
of states, the total number of edges and the vector repre-
senting the state complexity profile. Minimality of a trel-
lis can be defined with respect to each of these measures'.
It is well-known that minimal trellises for linear block
codes are unique'"'” and simultaneously satisfy all meas-
ures of minimality. Such trellises are known to be bipro-
per, which means that no two edges entering a node or
leaving a node have the same label. Figure 3 shows a
trellis for the linear code in Figure 2.

There are several constructions of minimal conven-
tional trellises from algebraic descriptions of codes. We
will focus on two of these, namely the product construc-
tion of Kschischang and Sorokine’, henceforth referred to
as the KS construction, and the labelling scheme of Bahl,
Cocke, Jelinek and Raviv”, henceforth referred to as the
BCJR construction. The first of these produces a trellis
from a generator matrix. The structure of the trellis is
critically dependent on the form of the generator matrix
which has to satisfy a special property to yield the mini-
mal trellis. The second uses the parity check matrix to
generate the trellis and produces the minimal trellis irre-
spective of the form of the parity check matrix.

We first present the KS construction for constructing a
minimal trellis from a generator matrix for the code.
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Figure 3.
and So = f.

A trellis for the linear block code of Figure 2 with Sp=s

Each row of the generator matrix is associated with an
elementary trellis and the trellis for the whole code is ob-
tained by a trellis product operation on the set of elemen-
tary trellises for the rows of the generator matrix. Let T}
and 7, be the component trellises. We wish to construct
the trellis product 77.75. The set of vertices of the product
trellis at each time index is just the Cartesian product of
the vertices of the component trellis. Thus, if i is a time
index, Vi(T1.T2)=V{T1) X V{T3). Consider E(T))x E{T>)
and interpret an element ((v;,0,v(), (v5,&,,v5)) in this
product, where v,—,v; are vertices and oy, a, edge labels,
as the edge ((v;,v,),Q +,,(v{,v5)), where + denotes
addition in [F,. If we define the ith section as the set of
edges connecting the vertices at time index i to those at
time index 7 + 1, then the edge count in the ith section is
the product of the edge counts in the ith section of the in-
dividual trellises.

Before the product is constructed we put the matrix in
trellis-oriented form described now. Given a nonzero
codeword ¢ = (cy, ¢35 ... Cy), Start(c) is the smallest inte-
ger i such that ¢; is nonzero. Also, end(c) is the largest
integer for which c¢; is nonzero. The linear span of ¢ is
[start(c), end(c)]. By convention, the span of the all 0
codeword 0 is the empty span [ ]. The minimal trellis for
the binary (n, 1) code generated by a nonzero codeword
with span [a, b] is constructed as follows. There is only
one path up to @ — 1 from index 0, and from b to n. From
a — 1, there are two outgoing branches diverging (corre-
sponding to the two multiples of the codeword), and from
b —1 to b, there are two branches converging. For a code
over [, there will be g outgoing branches and g con-
verging branches. It is easy to see that this is the minimal
trellis for the one-dimensional code, and is called the
elementary trellis corresponding to the codeword. To
generate the minimal trellis for € we first put the trellis
into trellis-oriented form, where for every pair of rows
with Spans [al, bl], [az, bz], a; + b] and a) #+ bz. We then
construct individual trellises for the & one-dimensional
codes as described above, and then form the trellis prod-
uct. Clearly, the number of states at each time index is
always a power of g. We see that the generator matrices
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Elementary trellises for the rows of the generator matrix in

displayed earlier are already in trellis-oriented form. The
elementary trellises for the two rows of the generator matrix
in Figure 2 are shown in Figure 4. The product of these
two elementary trellises yields the trellis in Figure 3.

We now summarize the BCJR construction of a trellis
from a parity check matrix for a code. The interesting
property of this construction is that it generates the
minimal trellis irrespective of the form of the parity
check matrix. We refer to the labelling of vertices gener-
ated by this construction as the BCIR labelling of the
trellis. Tt is well known'® that the set of vectors that are
labels at each time index form a vector space whose
dimension is the state-complexity at that time index. Let
H be the parity check matrix for a (n, k) linear block code
over [, and let hy, h,, ..., h, be the columns of H. Each
codeword ¢=(cy,...,c,) of the code gives rise to a
sequence of states {s;}.,, each state being labelled by
an (n — k) x 1 vector as follows:

ifi=0

0
s; = _
" s, +ch; otherwise.

An interesting property that can be proved using the
BCIJR labelling scheme for trellises is the following:

Theorem 1. Let C be an (n, k) linear block code. Then
the state complexity profiles of the minimal trellises for
both € and (" are the same.

Though the minimal trellises for a linear code and its
dual have the same state complexity profiles, the edge
complexity profiles can be very different. This difference
is useful in certain decoding algorithms'*. The BCIR
labelling was used to introduce a useful decoding algo-
rithm often called the forward—backward algorithm'. In
contrast to the Viterbi algorithm, the BCJR algorithm
performs maximum a posteriori symbol detection. The
labelling scheme allows one to prove several important
results for linear trellises, for example, Theorem 1.

We now introduce tail-biting trellises in a setting that
leads to the decoding algorithm presented later. As we
have mentioned earlier, every linear code has a unique
minimal biproper trellis; so this is our starting point. Our
objective is to describe an operation which we term sub-
trellis overlaying, that yields a smaller trellis. Reduction
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in the size of a trellis is a step in the direction of reducing
decoder complexity.

One way of constructing tail-biting trellises is to parti-
tion the code € into disjoint subcodes, and ‘overlay’ the
subtrellises corresponding to these subcodes to get a
smaller, ‘shared’ trellis. An example will illustrate the
procedure.

Example 1: Let C be the linear (4, 2) code defined by
the generator matrix in Figure 2. C consists of the set of
codewords {0000, 0110, 1001, 1111} and is described by
the minimal trellis in Figure 3. The state-complexity pro-
file of the code is (0, 1, 2, 1). Now partition Cinto sub-
codes €, and C, as follows:

C=Gu G, G={0000,0110}; G= {1001, 1111},
with minimal trellises shown in Figure 5 a and b, respec-
tively.

The next step is the ‘overlaying’ of the subtrellises as
follows. There are as many states as time index 1 and
time index n as partitions of C. States (s,,55), (53,5%),
(s1,51), (s4,54) are superimposed to obtain the trellis in
Figure 6.

Note that overlaying may increase the state-cardinality
at some time indices (other than 0 and »), and decrease it
at others. Codewords are represented by (s(i),sjf) paths in
the overlayed trellis, where s, and s are the start and
final states of subtrellis i. Thus paths from s, to s5 and
from sy to s5 represent codewords in the overlayed tre-
llis of Figure 6. Overlaying causes subtrellises for sub-
codes to ‘share’ states. Note that the shared trellis is also
biproper, with sy, = 1 and state-complexity profile (1, 0,
1, 0).

The small example above illustrates two important
points. First, it is possible to get a trellis with a smaller
number of states to define essentially the same code as
the original trellis, with the new trellis having several
start and final states, and with a restricted definition of
paths corresponding to codewords. Secondly, the new
trellis is obtained by the superposition of smaller trellises
so that some states are shared. It is shown'>'® that over-
laying of trellises to obtain tail-biting trellises requires
the decomposition of the code C into a subgroup and its
cosets. The subgroup and its cosets correspond to struc-
turally identical subtrellises and overlaying is advanta-
geous, if and only if it is possible to choose coset leaders

a 5, S,
0 0 0 _A
5, s K 0 s; 1
5, 0 4 0 S s 1 % 4 05,
1 i 1 1
s 53
Figure 5. Minimal trellises for (¢) ¢ = {0000, 0110}, and (») & =

{1001, 1111}.
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satisfying certain conditions. It is shown'’ that for a
given linear code it is possible to reduce the maximum
state complexity to the square root of the corresponding
complexity in the minimal conventional trellis using
techniques equivalent to overlaying.

Two questions that naturally arise at this point are,
first, whether there are KV and BCJR-like constructions
for tail-biting trellises and secondly, if there is a counter-
part to Theorem 1 for tail-biting trellises. Koetter and
Vardy'®? in a series of articles have extended the notion
of a span and shown that a product construction exists for
tail-biting trellises. In the next section we develop a
framework for a modified BCIR construction and show
that there is an affirmative answer to the second question.

We first define a circular span'® of a codeword. Let
c=(c;,cy...c,) be a codeword such that ¢; and ¢; are
nonzero, i <j and all components between i and j are
Zero.

Then [/, i] is said to be a circular span of the code-
word. Note that while the linear span of a codeword is
unique, a circular span is not, as it depends on the con-
secutive run of zeros chosen. Given a codeword and a
circular span [j, /], there is a unique elementary trellis
corresponding to it. If the code symbols are from F,, then
the trellis has g states from index O to index i— 1, one
state from index i to index j, and g states from index j + 1
to index n. If the start states are numbered from 1 to ¢
and final states likewise, only 7 to i paths are codewords.
Any linear tail-biting trellis can be constructed from a
generator matrix whose rows can be partitioned into two
sets, those which are taken to have linear span, and those
taken to have circular span'®. The tail-biting trellis is then
formed as a product of the elementary trellises corre-
sponding to these rows. We call this trellis a KSKV tre-
llis, as it uses a modified KS construction due to Koetter
and Vardy'®. We will represent such a generator matrix
as G= [%], where G is the submatrix consisting of rows
with linear span, and G, the submatrix of rows with cir-
cular span. Koetter and Vardy'® have shown that for sev-
eral definitions of minimality, including s.,,-minimality,
the spans chosen for the rows of the generator matrix
must satisfy the condition that no two of them start at the
same position and no two of them end at the same posi-
tion. If this condition is satisfied, then G is said to be in
minimal span form. Thus the problem of constructing a
minimal tail-biting trellis is then reduced to finding a basis

[s55 53]

[s,, 53]

Figure 6. Trellis obtained by overlaying trellises in Figure 5« and b.
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for the subspace constituting the code, and a choice of
spans, such that the corresponding elementary trellises
yield a product that corresponds to a minimal tail-biting
trellis under the appropriate definition of minimality.

A trellis T is non-mergeable if there exist vertices in
the same vertex class of 7 that can be replaced by a single
vertex, while retaining the edges incident on the original
vertices, without modifying ((7). Koetter and Vardy'’
have shown that if a linear trellis is non-mergeable, then
it is also biproper.

Obtaining dual tail-biting trellises

Let C be an (n, k) linear code over F, with generator matrix
G with row set {g;, g2,..., g}. Let submatrix (G, contain
the vectors of linear span and (G, contain the vectors of
circular span. Let H =T[hy, h; ... h,] be the parity check
matrix, where h; denotes column i. The algorithm BCJR-
TBT?! constructs a non-mergeable linear tail-biting trellis
T, given G and H.

Informally speaking, the algorithm after constructing
the BCJR-labelled trellis for the subcode consisting of
the rows of linear span, adds states and edges for linear
combinations of each row g, with circular span, in turn,
by offsetting BCJR-like label computations with a state
vector that is formed by beginning the label computations
for g at the start of the circular span and proceeding in a
circular order, rather than beginning at time index 0 and
proceeding in linear order, as is performed for rows of
linear span. The intermediate generator matrix which is
formed by including one row of circular span at a time is
called Gy, Let {g;) denote the subspace generated by g..

Algorithm BCJR-TBT

Input: The matrices G and H.
Output: A non-mergeable linear tail-biting trellis 7=
(V, E, F,) representing C.

Initialization: G, =G,. Let {dy} < ~ as follows:
< if xe{g,), g; is a row of G, with
ijhj _ g:/.8
dy = = circular span[a,b]
0 otherwise.
Step 1: Construct the BCJR-labelled trellis for the sub-

code generated by the submatrix G;, but using the matrix
H instead of the parity check matrix for the code G,. Let
Vo, V1 ... V, be the vertex sets created and £, E,, ... E, be
the edge sets created.
Step 2:  for each row vector g of G,

for each x € {g), y in the rowspace of Gy,.

{

Let z denote the codeword x +y.

let d, = d, +d,.

Vo=V,=Vouw {d.}.
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i
Vi=V,uid,+Y zh f1<i<n.
j=1

There is an edge e = (u, z;, v) € E,ue V,_y,
i1

ve V,1<i<n,iffd,+Y zh, =u and
j=1

Gint = Gint + g.

The following properties of the resulting trellis 7 are
proved in Nori and Shankar®.

(i) The trellis 7 is linear and non-mergeable, and
represents C.

(i1) The trellis 7 is isomorphic to the KSKV trellis,
iff G is in minimal-span form and results in a non-merge-
able product trellis.

From the properties above and from the result of Koetter
and Vardy' that all linear tail-biting trellises arise from
product constructions, we conclude that all non-mergeable
linear trellises can be obtained by using the algorithm
BCJR-TBT on an appropriate generator matrix.

Example 2: Consider the (7, 4) Hamming code defined
by the parity check matrix /7 and the generator matrix G
(annotated with spans):

1 00 01 1 0]@6]
G:0100011(6,2]
00101 1 1|37
0001 1 0 15

—_
o
o
o

=

Il
O = =
—_ =
—_

o
o O
o

o

The BCIJR-TBT construction for this choice of spans
is associated with the rows of G and is illustrated in Fig-
ure 7.

Note that this choice of spans is not good from the
point of view of minimizing the value of the maximum
state complexity (su.x) of the tail-biting trellis. It has
been chosen to illustrate that the BCJR-TBT is depend-
ent on the form of the generator and parity check matri-
ces chosen, unlike the trellis produced by the BCIR
construction for the conventional case.

We will now describe the algorithm BCJR-TBT*
that takes G and H as inputs and computes a non-merge-
able linear tail-biting trellis 7 for the dual code C* (ref.
21).
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o1 a1y

a0y

iy

Figure 7. BCJR-TBT for given spans.

Algorithm BCJR-TBT*

Input: The matrices G and H.
Output: A non-mergeable tail-biting trellis T = v, E,
F,) representing (.

Initialization: Vijo<i<n=Eili<i<n= ¢.
for eachy=(y1,»2, ..., ¥n) € c.
{
0 if1<i<]
T _ _ n
letd =(d,d; ... dp) s.t. d; = Zngi’j otherwise,
Jj=a

where g, € G has circular span (a, b].
V(): Vn = V() [ {d}

i
Vi=V:u d+Zyj(gj,1,gj,z--~gj,k)T -
j=1
Thereisanedgee=(u,z,v)e E,ne V.,
ve V,1<i<n,iff

i
d+Zyj(gj,l,gj,z,...,gj,k)T =u, and
=1

i
T
d+Zyj(gj,lagj,29“'agj,k) =V
=

Example 3: The BCJR-TBT" construction for the
Hamming code from Example 2 with choice of spans S
for the generator matrix is illustrated in Figure 8. It can
be seen that the dual trellis has the same state-complexity
profile as the primal trellis in Figure 7.
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Figure 8. BCIR-TBT' for given spans.

The following results are proved in Nori and Shankar®.

(i) The trellis T isa non-mergeable linear trellis that
represents (.

(i1) The state complexity profiles of T and T" are
identical.

We thus have the following theorem:

Theorem 2. Let 7 be a non-mergeable linear trellis,
either conventional or tail-biting, for a linear code C.
Then there exists a non-mergeable linear dual trellis Tt
for ", such that the state-complexity profile of T is
identical to the state-complexity profile of T.

Finally, we know that for tail-biting trellises there are
several measures of minimality. If any of these defini-
tions requires the trellis to be non-mergeable, it immedi-
ately follows that there exist under that definition of
minimality, minimal trellises for a code and its dual with
identical state-complexity profiles.

Decoding on tail-biting trellises

We now propose an optimal decoding algorithm15 that
makes critical use of the fact that tail-biting trellises can
be viewed as the superposition of subtrellises that share
states at certain time indices. We first describe two algo-
rithms on which the optimal algorithm is based, the Viterbi
algorithm mentioned earlier and the A* algorithm, well-
known in the artificial intelligence community.

The Viterbi algorithm

Assume that a cocdeword ¢ of length » is transmitted
over the unreliable channel with input alphabet 4 = [,
and output alphabet B. Define
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f/x): B—[0,1]Vxe [,

If B is a discrete set, the channel is completely charac-
terized by ¢ known probability mass functions; if B is
continuous, say B =R, then f(./x) are continuous prob-
ability density functions. To simplify the notation, assume
B is discrete. The quantity f{y/x) is the probability of re-
ceiving symbol y given that symbol x was transmitted.
Let y be the received vector. The optimal decoding strat-
egy is one that finds a codeword ¢ = (cy, ¢, ... ¢,) that
maximizes Pr{y/c}. Assume that all codewords are
equally likely to be transmitted and that each symbol
transmitted over the channel is affected independently by
the channel noise. Then ify = (v, s, ... ¥») we have

Priy/et = [riren.
i=1

Maximizing this probability is equivalent to minimizing
the sum

7

Y —log(f(yi /e

i=1

over all codewords. If we relabel each edge e in the trellis
for the code C by I'(e) = -log( f(v/c))), then finding a
codeword that maximizes the probability above is the
same as finding a shortest path from s to f through the
trellis where the edge lengths are given by the function
I'(.). This is exactly what the Viterbi algorithm computes.
Since the trellis is a regular layered graph, the algorithm
proceeds level-by-level, computing a survivor at each
node; this is a shortest path to the node from the source.
For each branch b, leaving a node at level i, the algorithm
updates the survivor at that node by adding the cost of
the branch to the value of the survivor. For each node at
level i+ 1, it compares the values of the path cost for
each branch entering the node and chooses the one with
minimum value. There will thus be only one survivor at
the goal vertex, and this corresponds to the decoded
codeword. For an overlayed trellis we are interested only
in paths that go from s; to f;, 0 < i <t, where ¢ is the num-
ber of overlayed subtrellises.

The A* algorithm

The A* algorithm is well-known in the literature on arti-
ficial intelligence™. The A* algorithm uses, in addition to
the path length from the source to the node u, an estimate
h(u, f) of the shortest path length from the node u to the
goal node in guiding the search. Let Ly(u, /) be the short-
est path length from u to fin 7. Let A(u, ) be any lower
bound such that A(u, f) < Ly(u, f), and such that h(u, 1)
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satisfies the following inequality, i.e. for u a predecessor
of v, l(u, v) + h(v, ) = h(u, ). If both the above condi-
tions are satisfied, then the algorithm A*, on termination,
is guaranteed to output a shortest path from s to f. The
algorithm is given below.

Algorithm A*
Input: A trellis 7= (¥, E, I'), where V is the set of verti-
ces, E is the set of edges and /'(u, v) 20 is a length for
edge (u, v) in E, a source vertex s and a destination vertex
f, and an estimate h(u, 1) for the shortest path from u to f
for each vertex u € V.
Output: The shortest path from s to f.
/*p(u) is the cost of the current shortest path from s to u
and P(u) is a current shortest path from s to u */
begin _
S« @, S{s}, ps) < 0,P(u)y < (),VueV,
p(u) = +eo, Vu # s,
repeat
Let u be the vertex in S with minimum value of
p) +hw, /).
S Sufut; S<S\ul;
if u=fthen return P( f);
for each (u, v) € E do
ifve Sthen
begin
p(v) < min(p(u) + I'(u, v), previous (p(v)));
if p(v) # previous (p(v)) then append (u, v) to
_P(u) to give P(v);
() = (S)vivi;
end
forever
end

Our algorithm is a two-phase algorithm that uses a
Viterbi trial in the first phase to deliver estimates which
are used by an A* algorithm in the second phase. It has
been proved in Shankar et al.” that these estimates sat-
isfy the properties which guarantee that when the 4* algo-
rithm terminates, it indeed delivers the shortest codeword
path in the tail-biting trellis.

We first define the notation we will be using. Let T3 be
the tail-biting trellis and 7¢ the conventional trellis for
the code under consideration. Let sy, s, ... s; be the set of
start states and f}, f2, ... f; be the set of final nodes of the
tail-biting trellis. The ¢ sub-trellises are denoted by
T, Ty, ... T,, with sub-trellis 7; corresponding to sub-code
G. The estimate or lower bound for a shortest path from a
node u in a sub-trellis to the final node f; in that sub-trel-
lis is denoted by A(u, ;). A Viterbi trial on the tail-biting
trellis finds shortest paths to the destination nodes
J1,fas ... fr from any of the source nodes sy, 57,...5. A
survivor at any intermediate node u is a shortest path
from a source node s; to u. A winning path or a winner at
node f; is a survivor at node f; and its cost is denoted by
h(s;, f;), as it turns out to be a lower bound on the cost of
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a shortest path from s; to f. (Note that such a path need
not start at s;.) Let us term the codeword that would be
the final survivor if Viterbi decoding was performed on
subtrellis 7; alone, as the Tj-codeword survivor. We term
a survivor on the tail-biting trellis, which corresponds to
an s; — f; path, a codeword survivor, and one that corre-
sponds to an s, — f; path, i # j, a non-codeword survivor.

The two-phase algorithm

The two-phase algorithm uses a structure called a heap.
For purposes of this discussion, a heap stores a set of ele-
ments which can be linearly ordered and can deliver the
minimal element in constant time. The size of the heap is
the number of elements it stores. Elements can be added
to the heap and the cost of restructuring the heap so that
it can deliver the minimal element in constant time is
logarithmic in the size of the heap.
The two phases of the algorithm are described below.

Phase 1:

Execute a Viterbi decoding algorithm on the tail-biting
trellis, and obtain survivors at each node. It is easy to see
that a survivor at a node u has a cost which is a lower
bound on the cost of the least cost path from s; to « in an
s;—1; path passing through u, 1<; <t If there exists a
value of k for which an s, —f; path is an overall winner,
then this is the shortest path in the original trellis T¢c If
this happens, decoding is complete. If no such s; — f; path
exists, go to Phase 2.

Phase 2:

(i) Consider only subtrellises 7; such that the winning
path at 7} is an s, — f; path with i # j (i.e. at some interme-
diate node a prefix of the s;—f; path was ‘knocked out’
by a shorter path originating at s;), and such that there is
no s — f; path with smaller cost. Let us call such trellises
residual trellises. Let the estimate h(s;, f;) associated with
the node s; be the cost of the survivor at f; obtained in the
first phase.

(i1) Create a heap of r elements where 7 is the number
of residual trellises, with current estimate h(s;, f)) with
minimum value as the top element. Let j be the index of
the subtrellis with the minimum value of the estimate.
Remove the minimum element corresponding to 7; from
the heap and run the 4* algorithm on trellis 7; (called the
current trellis). For a node u, take hi(u, f;) to be h(s;, f;) —
cost(survivor(u)) where cost(survivor(u)) is the cost of
the survivor obtained in the first phase. The quantity
h(u, f;) satisfies the two properties required of the esti-
mator in the 4* algorithm.

(iii) At each step, compare p(u) + A(u, f;) in the current
subtrellis with the top value in the heap. If at any step the
former exceeds the latter (associated with subtrellis, say,
Ty), then make 7} the current subtrellis. Insert the current
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value of p(u) + h(u, f)) in the heap (after deleting the
minimum element) and run the 4* algorithm on 7} either
from start node s; (if 7; was not visited earlier) or from
the node which it last expanded in 7). Stop when the goal
vertex is reached in the current subtrellis.

In the best case (if the algorithm needs to execute Phase
2 at all), the search will be restricted to a single residual
subtrellis.

We have run simulations of the algorithm on several
tail-biting trellises for block codes™ on an additive white
Gaussian noise (AWGN) channel. Below, we give the
parameters for the well-known”’ Golay code for the con-
ventional as well as the tail-biting trellis given in Calder-
bank et al.””.

Extended (24, 12) binary Golay code

Tail-biting trellis:

Number of branches = 384; Number of states = 192;

State complexity profile=(4, 4, 4,4, 4,4,4,4,4,4,4, 4).

Conventional 12-section trellis:
Number of branches = 2728; Number of states = 1065;
State complexity profile=(0, 2, 4, 6, 6, §, 8, 8, 6, 6, 4, 2).

Figure 9 shows the number of nodes at which computa-
tions are performed using our algorithm as a function of
signal-to-noise ratio (SNR), the latter being a measure of
how noisy a channel is (the higher the SNR, the more reli-
able the channel). The algorithm displays a curious prop-
erty. The average number of nodes examined is always
less than twice the number of nodes in the tail-biting trel-
lis, thereby showing that effectively the average computa-
tion is less than two rounds of the tail-biting trellises
(with some additional low overheads incurred by the
sorting and heap operations). Typically, most approxi-
mate algorithms iterate around the tail-biting trellis for a

Nodes-expanded
50

2 3
SNR in dB

Figure 9. Number of nodes examined in the two-phase algorithm for
the (24, 12) Golay code.
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finite number of iterations, and it is observed that the
decoder eventually locks onto a path closest to the recei-
ved codeword”. The number of such iterations is typi-
cally around 4 or 5. Here, we see that after an amount of
computation, which on the average is less than two
rounds of the tail-biting trellises, we get the optimal de-
coded codeword. Detailed simulation results have been
reported in Shankar et al.”’.

Conclusion

Connections between algebraic and combinatorial views
of linear block codes have been described. It is shown
that viewing a tail-biting trellis as a coset decomposition
of the group representing the code with respect to a sub-
group satisfying special properties, leads to a decoding
algorithm that appears promising from the viewpoint of
computational complexity. Two problems that merit fur-
ther study are the complexity of the problem of finding
the syax-minimal tail-biting trellis, and a theoretical study
of the performance of the two-phase decoding algorithm.
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