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The best-known statements on error analysis of the
finite element method are derived using rigorous
mathematical abstractions which are difficult for the
average engineer (who remains the biggest user) to
grasp. There is much merit in being able to re-derive
these using the energy, virtual work and least action
principles that the engineer or physicist is more fami-
liar with. In this article, we attempt to do this, to
obtain Theorem 1.1 and Lemma 6.3 of Strang and Fix,
perhaps the most valuable of all error statements ever
made of finite element elastostatics and elastodynam-
ics. We also looked at some interesting atypical prob-
lems which arise when errors that appear when finite
element discretization is used to solve problems of
interest in engineering and applied science are stud-
ied. The formal mathematical theorems and lemmas
which have been identified in the seminal work of
Strang and Fix, are now re-examined for these atypi-
cal situations using an engineering approach.

IF a poll were ever to be made to identify the greatest
book written on the finite element method, one of the most
obvious candidates would be the seminal Analysis of the
Finite Element Method by Strang and Fix'. Although the
results from this book have been accessible to the mathe-
matical community working on finite element analysis
for three decades now, and has led to a large body of
work, the average engineer, who remains the main user
of the various finite element codes in engineering prac-
tice, still finds it difficult to grapple with the rigorous
procedures of functional analysis required to derive the
various error statements. Even before Strang and Fix,
there was established an excellent tradition of engineer-
ing analysis by de Veubeke’. He started with a three-field
functional for linear elastostatics known as the Hu—Washizu
functional>® which allowed displacements, strains and
stresses to be varied independently. Recently, Prathap™®
enlarged this interpretation to show that if the finite ele-
ment fields and the exact fields are tracked separately,
it is possible to derive a projection theorem relating the
approximate stresses to the error in the strains. This can
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be viewed as an effort to use the energy theorems, the
virtual work or least action principles, as the basis for
deriving the projection theorems and the energy—error
statements that have been handed down to the finite ele-
ment world by the mathematicians. More recently, Liew
and Rajendran’ showed that instead of starting with the
Hu—Washizu functional, the projection theorem can be
derived much more simply from the virtual work principle.
Here, we examine the motivation for this and re-derive
the various error theorems that guide the interpretation
of finite element computation of elastostatical and elasto-
dynamical problems, the most famous of them being
Theorem 1.1 and Lemma 6.3 from Strang and Fix'.

The virtual work approach, in a very generous interpre-
tation, can be traced back to Archimedes’ derivation of
the law of the lever. One can begin to appreciate the
grandeur of Archimedes’ achievement only if one reali-
zes that Archimedes stated the famous F/, = Fyl, law,
where F; is the force applied at a distance /; from the
fulerum and F, is the force applied at a distance /, from
the fulcrum on the other arm of the lever, nearly 18 cen-
turies ahead of the invention of the concept of the moment
of a force about a point. The way Archimedes went about
his derivation, can now be generously interpreted as the
very way the finite element method is stated. If the lever
arm is virtually displaced (rotated about the fulcrum)
through an angle 0, so that the ends of the lever displace
by distances d; and —d, respectively, the work done
is W=Fd, — F,d,. At the point where equilibrium is
achieved, one can invoke the virtual work argument that
W=F\d, — F,d, =0. This together with the statement of
continuity (the lever arm rotates as a rigid body) that the
displacements are related to the lengths from the simple
Euclidean relationship d,/l; = dy/l5, leads to the law of
equilibrium. Note that the equation of equilibrium has
been achieved by invoking only the law of virtual work
and the need to ensure continuity.

This is exactly how the finite element procedure is
implemented today, twenty-two centuries after Archi-
medes. The differential equations of equilibrium are con-
sidered to be equivalent to an extreme or stationary
condition of a functional based on potential energy. The
finite element matrices are obtained by setting up this
total potential energy and ensuring continuity of the dis-
placements, and a variation of this to establish that where
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the virtual work is zero, we get the condition of equili-
brium, and hence the finite element equations for equili-
brium. Strang and Fix' use such variational principles to
study the Ritz and finite element techniques using the
rigorous language of functional analysis. It would be
tempting now to see if these energy approaches can be
extended to make statements about errors originating due
to the finite element discretization problem. The most
insightful statements available so far are Theorem 1.1
and Lemma 6.3 from Strang and Fix'. Our attempt below
will be to re-derive this, less rigorously, but with greater
mechanical intuition, using the virtual work approach.

Virtual work for elastostatics

Following the nomenclature used in Strang and Fix', we
write the weak form in terms of the energy inner product
for the exact solution « to the problem.

a(u, u) = (f, u), (1)
a(u, u"y = (f, u), )

where a(u, u) is the bilinear symmetric functional and
(f, u) is the integral fuf dV-over the system domain V. The
first two virtual work statements refer to the exact solution
of the elastostatic problem. In eq. (1), the trial function
and test function are taken as # and the virtual work argu-
ment establishes that eq. (1) is truly satisfied only when
u is the exact solution at the point of equilibrium. In
eq. (2), we take note of the fact that the test function
u" (the Ritz or finite element solution) need not be the
exact displacement function for the virtual work principle
to be true. For convenience, we take this to be the discrete
finite element displacement field, as long as it is admissi-
ble (i.e. satisfies all the geometric boundary conditions).

It is in the next equation that we take the final step
towards discretization. Using u" for both the trial and test
functions, we get the actual finite element equations, with
the right-hand side leading to the consistent load vector
and the left-hand side representing the stiffness matrix.

a(u”, u"y = (f, u". (3)

Equation (3) will now reflect the error due to the finite
element discretization. We are now in a position to see
how the error e = u — " can be assessed. Comparing eqs
(2) and (3) and noting that the energy inner product is
bilinear, we can arrive at

a(u, ') = aGl', u"),
and from this we obtain the projection theorem
a(u —u", u"y=0. 4)

The finite element solution is therefore seen to be a best
fit or best-approximation solution. In most simple linear
elastostatics cases, this would imply that the strains or
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stresses are obtained in a best fit sense and that there would
be points in the element domain where these stresses or
strains are accurately computed (superconvergence).

From the fact that the energy inner product is bilinear,
we can argue that

h

a(u—u", u— uh) =a(u, u) + a(uh, uh) —2a(u, uh)

=a(u, u) — a(uh, uh) —2[a(u, uh) - a(uh, uh)]

=a(u, u) — a(uh, uh) —2[a(u — u", uh)]

Introducing the result from eq. (4), we get an energy—
error theorem which can be expressed as

a(u —u", u—u"y = a(u, u) — a@”, u"), (5)

i.e. energy of the error = error of the energy.
This leads to a useful statement that as the left-hand
side of eq. (5) is always positive definite,

a(u", u"y < a(u, u). (6)

Thus, in a variationally correct approach, the energy
inner product of the approximate (Ritz or finite element)
solution will always be a lower bound of the exact
energy.

Equations (1) to (6) are a restatement of the equations
covered by Theorem 1.1 of Strang and Fix'. We have star-
ted with three virtual work equations (eqs (1) to (3)) and
this led easily to a projection theorem (eq. (4)), energy—
error theorem (eq. (5)), and a lower bound result (eq. (6)).

Virtual work for elastodynamics

From the foregoing, it is a simple matter to extend these
results to a problem in elastodynamics. Now, the kinetic
energy of motion enters into the picture, and a classical
variational basis for this is already available through the
Lagrangian or Hamiltonian statements, where both poten-
tial energy and kinetic energy enter into the functional.

Unlike Strang and Fix', where the development of the
argument is based on the Rayleigh quotient, we shall
write the weak form in terms of the energy inner product
for the exact solution u to the problem and replace the
loading term f with the inertial force term «’pu. The
earlier equations yield

a(u, u) = wz-(pu, u), @)

a(u, u") = o (pu, u"), (8)

where p is the inertia density of the domain. Again, the
first two virtual work statements refer to the exact solu-
tion of the elastodynamic problem. In eq. (7), the trial
function and test function are taken as u and the virtual
work argument establishes that eq. (7) is truly satisfied
only when u is the exact eigenfunction and ’ is the exact
eigenvalue. In eq. (8), we take note of the fact that the
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test function " (the Ritz or finite element solution) need
not be the exact displacement function for the virtual
work principle to be true, while «° remains the exact
eigenvalue. Again, we take u" to be the discrete finite
element displacement field, as long as it is admissible
(i.e. satisfies all the geometric boundary conditions).

We now take the step towards discretization. Using "
for both the trial and test functions, we get the actual
finite element equations, with the right-hand side leading
to the consistent mass matrix and the left-hand side lead-
ing to the stiffness matrix.

a(u", u") = (@) (pu", "), ©)
This equation will now reflect the error due to the finite
element discretization, appearing both in the eigenfunction
and in the eigenvalue. This makes the assessment of
the errors a trifle more complicated than in the elastosta-
tics case earlier, as there is the error in the eigenfunction,
u— u" as well as the error in the eigenvalue, (oah)2 -
to be assessed. Comparing eqs (8) and (9) and also noting
that the energy inner product is bilinear, we can arrive at

la(u, u") — a(u", u")] - [0 (pu, u") — (&) (pu", )] = 0,
or

a(u - u", uh) —(’pu— (wh)zpuh, uh) =0

(10)

becomes the projection theorem for elastodynamics.

The finite element solution is still seen to be a best
fit or best-approximation solution. However, unlike the
simple linear elastostatics cases, this would imply that
the strains or stresses are only nearly obtained in a best
fit sense. It is no longer possible now to relate the error
of the energy to the energy of the error, as was possible
for the elastostatics case as in eq. (5) earlier. We shall
first take up the error of the energies. From eqs (7) and
(9), we have,

[a(u, u) = au", u")] - [ (pu, u) — (@) (pud", u")] = 0.

(D

We now take up the case of the energy of the errors. For
this, we have

h

a(u—u",u— uh) =a(u, pu) + a(uh, uh) —2a(u, uh)

= o (pu, u) = 208 (pu, u") + (@'Y (pud”, u")

=’ (pu, u) — 260°- (pu, u") + (w)*- (pu”, u")
+ [(&") - &.(pud", u)

= o (pu—pu', u—u" + [(@") - &1(pu", ). (12)

This is indeed Lemma 6.3 of Strang and Fix'. We started
with three virtual work equations (eqs (7) to (9)) and this
led easily to a projection theorem (eq. (10)), and separate
energy—error theorem (eq. (11)) and error—energy theorem
(eq. (12)). Unlike the case for elastostatics, we cannot
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derive a simple relationship between the energy of the
error and the error of the energy. Also, it is not easy
to show that for a conforming and variationally correct
formulation, the discretized eigenvalue would always be
higher than the exact eigenvalue, whereas for the elasto-
statics problem, we did have an elegant lower bound
result (eq. (6)). This is because an eigenvalue problem
does not give a unique displacement field u or u". One
can side-step this issue by introducing into eq. (11), the
idea of a normalized generalized mass, where (pu, u) =
(pu", u"y = 1. This gives us,

(O\)h)2 —w=— [a(u, u) — a(uh, uh)]

What is important to us now is that the error is still governed
by the error in the strain energy, and therefore, as long as
no variational crimes are committed, the orders of con-
vergence for the elastostatic case should apply.

Locking and the best-approximation nature of
fem solutions

Locking is a pathological situation where finite elements
with multiple strain components often display spurious
stress oscillations and very high spurious stiffness™® ',
These come in various manisfestations, e.g. shear locking
in Timoshenko beam elements and Mindlin plate elements,
membrane locking in arch elements, parasitic shear in plane
stress elements, etc.

Recently, Mukherjee and Plrathaplz’13 have extended the
field-consistency interpretation’ using the function space
approach and the argument that a finite element solution
is a best fit projection to explain the origin of the locking
phenomenal. Consider the strain—displacement matrix [B]
which connects the element strain vector {shg} to the
element nodal displacement {6 “} as

("} =[B]{8°}. (13)

We define here the stiffness inner product in an element
e as (x, y) =[{x}7[D]{y} dV, where [D] is the element
rigidity matrix. At the element level, the bilinear function
can be expressed as twice the element strain energy, or
the norm squared of the element strain vector

a(uh, uh)e _ ||£he|| 2 _ <£he, 8hfz>

= (87 [[B1 [DI[B] d¥{5°}. (14)

From eq. (3), at an element level,
a(u", " = au, u"y,

or
™ = <™, ),

or

©}7 [[BY [DIB) V(8 } = (5} [[BY[D]ie} dV,
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where [D] is the element rigidity matrix. For arbitrary
{8}, one gets the normal equation as
[IBY[DI[B1dV {8} = [[BI'[Dl{e“1dV . (15)

e

From eq. (15), it is easy to perceive that finite element
strain vectors in an element {sh“’} are the best fit in the least
square error sense, i.e. they are the orthogonal projections
of the analytical strain vector {€°} onto a function subspace
B, that originates from the element strain—displacement
matrix B. In fact, one may determine the m numbers of
the orthogonal basis vectors {v,} spanning the m-dimen-
sional function subspace B ({v;, v;) =0, i # j) so that the
best fit strain vector in the element can be obtained as the
orthogonal projection from the formula

e i <V',' £€> . .
e }=J_Z=l W{vj} (v, v,y =0 for i=j. (16)

A subspace B for orthogonal projection is field-inconsis-
tent when it cannot be spanned by standard orthogonal
basis vectors'>'"?. Locking occurs when the finite element
formulations effectively project the analytical strain
vector onto such a field-inconsistent subspace resulting
from a field-inconsistent strain—displacement relation-
ship. The approximate (i.e. locked) element strains, obtai-
ned as components of a field-inconsistent projection,
show spurious stiffness properties and strain oscillations.
In shear locking in the Timoshenko beam element, this
is shown as reduced bending strains but violent shear-
strain oscillations'>"?.

Despite the significant errors and the delay in con-
vergence that is produced in locking situations, it can
be shown that the energy—error rule in eq. (5) is still
satisfied'>", since the locked strain vector in an element,
with its oscillating and diminished strain components, is
still the orthogonal projection of the analytical strain
vector onto an inconsistent subspace.

It was also shown'>" that reduced integration can be
employed to eliminate locking by replacing the original
field-inconsistent matrix [B] by a lower order field-con-
sistent matrix [B*], thereby eliminating spurious strain
oscillations and stiffness enhancement arising from field
inconsistency. Under such a situation, and provided no
variational incorrectness is generated through reduced
integration, eq. (15) can be replaced with

[[B DB dV 8 *} = [[B*] [D1{e} dx,  (17)

where the normal equation is generated with respect to
the new field-consistent subspace B*. The element strains
can be then determined from the projection formula in
eq. (16) with the orthogonal basis vectors as the standard
basis vectors that span the subspace B*.
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Lumped mass elastodynamics and the best
approximation nature

The weak form of the elastodynamic differential equation
yields a mass matrix [M™] for an element e from the inner
product with the approximate modal function in the follow-
ing manner.

(pu" u"y=Y [w" piu"y dv
=Y B [N pINTdY 5}

=Y S M, (18)

where [N] is the shape function matrix for the approximate
modal displacement function {uh} = [N]{8°}. The consis-
tent mass matrix for an element is given by

[M1= [[NT p[N1dV .

e

(19)

If the mass matrix is computed according to eq. (19), then
the elastodynamic error eqs (10) to (12) are satisfied, since
it is consistent with the weak form of the elastodynamic
differential equation.

However, for computational convenience, engineers
often use the /umped mass matrix instead of the consis-
tent one. In a lumped mass matrix, all the off-diagonal
elements are equal to zero, and the masses are lumped only
in the diagonal elements of the matrix. With the lumped
mass matrix, the inner product of eq. (18) is replaced by
the expression

LB M 18 =Y Y mi 6,77, (20)
e e I
where m; is the mass associated with the ith diagonal
term for the lumped mass matrix [M ‘] for the element e.
Using the lumped mass formulation effectively replaces

eq. (9) by
a"*,u"M) =™ LY mi 3,7,

or

Za(uh*,uh*)e:(wh*)z_zzmie(sie*)Z, (21)
e e I
where the approximate modal displacement function for the
lumped mass in an element is given by {1"*} = [N]{8°*}
and the corresponding eigenvalue is (wh*)z. If {uh} and
{0"}? are replaced by {#"*} and (0"*)’, then egs (10) and
(12) are violated. In other words, elastodynamic results
of finite element analysis with the lumped mass matrices
are variationally incorrect, with the lumping process
having disturbed the total kinetic energy of the system.

A variationally correct and conforming finite element
formulation for elastodynamics with consistent mass matrix
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always yields eigenvalues (natural frequencies) higher
than that obtained by analytical methods for arbitrary mesh-
ing. This is not necessarily true if lumped mass formulation
is employed. In fact, lumped mass analysis yields eigen-
values which may be lower or higher than the consistent
mass frequencies, but also either lower or higher than
or even equal to the exact eigenvalue, depending on the
position of the nodes'”.

Non-conforming elements and the
energy—error rules

In the foregoing treatment of the use of virtual work and
energy theorems to derive the projection theorems and
the energy—error rules, we have implicitly assumed that
the trial and test functions are admissible ones. Thus, in
a finite element approach, not only are the essential
boundary conditions expected to be satisfied exactly, it is
also expected that across element edges, the continuity
conditions are exactly satisfied. Elements which do not
fulfil this are called non-conforming elements. We can
expect that in such formulations, the theorems we have
derived so far will be disturbed, and that the assurance on
the upper-bound nature described by eq. (6) for elasto-
statics, or as described by eq. (12) for elastodynamics,
will be lost. Thus, our studies with finite element models
of plate vibration using the BFS (conforming) and ACM
(non-conforming) elements showed that while the former
always produced frequencies which were higher than the
exact frequencies, the latter produced frequencies which
could be higher or lower than the exact frequencies".
In other words, boundedness was lost because of the non-
conforming nature of the formulation of the ACM ele-
ment.

Some situations where the best fit paradigm in an
element is violated

Next it will be shown that at an element level, the best fit
paradigm is valid only when the normal eq. (16), that fol-
lows from eq. (15), is satisfied. At a global level, boundary
terms in the weak form vanish due to either zero forces or
vanishing of the test function from Dirichlet conditions.
Therefore, they do not appear in the weak forms for the
global system in eqs (1) and (2). However, at an element
level, the boundary terms do not necessarily vanish, since
vanishing Dirichlet conditions do not necessarily apply
at the element nodes, and there can be nodal reactions
from adjacent elements or supports. Including the work
done due to the displacements at the element boundary,
one can express the weak forms at an element level as

a(u, u)” = (f,u)* + [uR"],, (22)

and
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a(u, u"y = (f, u")* + [W'R,, (23)

where R° represents the analytical nodal reaction forces
acting on the element from adjacent elements/supports.
The terms [uR°], and [1"R°], represent respectively, the
work done by these nodal forces on the exact and test
functions  and " in the element.

If the exact function u of eq. (23) is now replaced
by the finite element test function u" in an element e of
the discretized system, the equilibrium equation at an ele-
ment level is given by

a(u”, u"? = (f, u"* + [u"R"™,, (24)

where now the nodal reaction force at the element level
due to approximation is given by R"™ which is necessary
for the equilibrium of an element having an approximate
test function u” as its displacement. Note that while the
weak forms in eqs (22) and (23) are developed from
the exact differential equation with zero residual, eq. (24)
is developed on the basis of a vanishing integral of the
weighted residual (non-zero) with the test function. Sub-
tracting eq. (23) from eq. (24), one obtains

a(u”, u"® - a(u, u"y° = [W"(R™ - R)),. (25)

Thus it is evident that only for problems in which the
discretization process in finite element analysis conserves
the nodal reactions (i.e. R'=R"), the right-hand side
of eq. (25) vanishes in all the elements. Thus the best
fit paradigm, based on the validity of eqs (15) and (16),
tacitly assumes that finite element approximations do not
disturb the analytical values of the nodal reactions in any
element due to its connectivity to adjacent elements/sup-
ports. In other words, the best fit paradigm for finite ele-
ment analysis remains valid only if no spurious nodal
forces are excited due to the inherent approximation from
the discretization process.

There are cases where the best fit paradigm and there-
fore eqs (15) to (17) are violated by finite element results,
since the right-hand side of eq. (25) does not vanish. One
example is the finite element solution of the non-
eigenvalue Sturm-Liouville-type differential equation for
a bar with axial loading, given by

_d (gl +iku=f.
de|  dx

The bilinear functionals at the element level can be expres-
sed in terms of the stiffness inner products
a(u, utye =||e" |P=(e"e e
and
a(u, uh)e =(e¢ e"°).
Here we need to define the extended approximate and

exact strain vectors and the rigidity matrix for an element
as:
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fe"y = (du"/dx, u™}7, £} = {du/dx, u}”,

| E4 0
[]_0 Il

The term &” in the equation introduces errors in the nodal
reactions in the element, and therefore it effectively
engenders spurious nodal forces from the finite element
discretization procedure. Thus the finite element result
at an element level will not be the best fit as given by
eqgs (15) to (17). It will deviate from the one that is the
best fit given by eq. (17), by an amount exactly equal
to the response due to these spurious nodal forces. This
effect is eliminated completely when &* = 0. An analysis
confirming this violation of the best-approximation nature
in a Sturm-Liouville and a boundary value Dirichlet prob-
lem is reported in Sangeeta er al.'.

In this article, we have looked at some interesting
atypical problems which arise when errors that appear
when finite element discretization is used to solve problems
of interest in engineering and applied science, are studied.
Formal mathematical theorems and lemmas which have
been identified in the seminal work of Strang and Fix'
have been re-examined using an engineering approach for
such atypical situations.

1. Strang, G. and Fix, G. J., 4An Analysis of the Finite Element
Method, Prentice-Hall Series in Automatic Computation, Prentice-
Hall, Englewood Cliffs, NJ, 1973.

2. Fraejis de Veubeke, B. M., Displacement and equilibrium models
in the finite element method, Stress Analysis (eds Zienkiewicz,
O. C. and Hollister, G. S.), Wiley, London, 1965, pp. 145-197.
Also reprinted in Int. J. Numer. Methods Eng., 2001, 52, 287—
342.

10.

11.

12.

13.

14.

15.

16.

. Hu, H. C., On some variational methods in the theory of elasticity

and plasticity, Sci. Sin., 1955, 4, 33-54.

. Washizu, K., On the variational principles of elasticity and plasti-

city, Technical Report 25-18, Aeroelastic and Structures Research
Laboratories, MIT, Cambridge, 1955.

. Prathap, G., The Finite Element Method in Structural Mechanics,

Kluwer, Dordrecht, 1993.

. Prathap, G., Barlow points and Gauss points and the aliasing and

best fit paradigms, Comput. Struct., 1996, 58, 321-325.

. Liew, K. M. and Rajendran, S., New superconvergent points of

the 8-node serendipity plane element for patch recovery, Inf. J.
Numer. Methods Eng., 2002, 54, 1103-1130.

. Tessler, A. and Hughes, T. J. R., An improved treatment of trans-

verse shear in the Mindlin type four node quadrilateral element,
Comput. Methods Appl. Mech. Eng., 1983, 39, 311-335.

. Carpenter, N., Belytschko, T. and Stolarsk, I. H., Locking and

shear scaling factors in C° bending elements, Comput. Struct.,
1986, 22, 39-52.

Prathap, G., Field-consistency and violent stress oscillations in
the finite element method, Int. J. Numer. Methods Eng., 1987, 24,
2017-2033.

Prathap, G., Reduced integration and the shear flexible beam ele-
ment, Int. J. Numer. Methods Eng., 1982, 18, 195-210.
Mukherjee, S. and Prathap, G., Analysis of shear locking in
Timoshenko beam elements using the function space approach,
Commun. Numer. Methods Eng., 2001, 17, 385-393.

Mukherjee, S. and Prathap, G., Analysis of delayed convergence
in the three-noded Timoshenko beam element using the function
space approach, Sadhana — Acad. Proc. Eng. Sci., 2002, 27, 507—
526.

Mukherjee, S., Jafarali, P. and Prathap, G., A variational basis for
error analysis in finite element elastodynamic problems, Research
Report CM 0304, CSIR Centre for Mathematical Modelling and
Computer Simulation, Bangalore, June 2003.

Muralikrishna, R. and Prathap, G., Studies on the variational cor-
rectness of finite element elastodynamics of some plate elements,
Research Report CM 0306, C-MMACS, Bangalore, August 2003.
Sangeeta, K., Mukherjee, S. and Prathap, G., Generalization of the
projection theorem for finite element analysis, Research Report
CM 0305, C-MMACS, Bangalore, June 2003.

Received 7 August 2003

994

CURRENT SCIENCE, VOL. 85, NO. 7, 10 OCTOBER 2003



