RESEARCH COMMUNICATIONS

sent in the pollen grains of four dominant wind-pollinated
allergenic palm species from India. Our study will help to
select few cross-reactive allergens, which carry most of
the IgE-epitopes, for simplified patient-tailored allergen
immunotherapy of palm pollen-sensitive individuals.
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Here we present the geochemical features and put
constraints on the gneisses forming the basement
(Gneiss-1, 3.0 Ga) and the so-called gneissic enclave
(Gneiss-2, 3.5 Ga) from the Bastar craton. Both
Gneiss-1 and Gneiss-2 have similar geochemical fea-
tures including similar REE fractionated patterns and
also bear an affinity with a 10% garnet amphibolite
source. The geochemical features of the gneisses have
been explained by invoking subduction-related mag-
matism for the petrogenesis of their protoliths. No
field evidence has been found to suggest that the two
gneisses represent two separate generations. The diffe-
rence in their age may arise from different techniques
used for their dating. In the absence of any compelling
evidence in favour of their being two distinct genera-
tions, we consider them to be a single rock suite.

THE Bastar craton is a prominent Archaean terrain in the
Central Indian Shield (CIS) consisting of gneisses, grani-
toids, supracrustals (older and younger) and the basic
intrusives in the form of mafic dykes and dyke swarms'~
The Archaean component of the Bastar craton is domi-
nantly represented by gneisses, which are intruded by
granitoids and mafic dykes during the Proterozoic. The
gneisses are the most abundant rock type of the craton
and form the basement for the younger suite of rocks.

On the basis of radiometric dating two generations of
the gneisses have been reported within the craton. The
oldest suite of gneisses (zircon U-Pb age of 3.5 Ga)* are
of high alumina trondhjemitic affinity. We term these
gneisses as Gneiss-2. These bear a very restricted spatial
distribution and occur as enclaves within granites of
2408 Ma* (zircon U-Pb age) old around Markampara of
southern Bastar® (Figure 1). The second suites of gneisses
(Pb—Pb isochron age of 3.0 Ga)>® are the gneisses of
granitic composition which forms the basement for the
younger supracrustal suites of rocks of the craton. We
term these gneisses as Gneiss-1. In this paper we present
the geochemistry (major, trace including REE) of the
gneisses (Gneiss-1) covering the whole craton and com-
pare with the available data of Gneiss-2 and discuss their
genesis.
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Figure 1.
tion of samples.

Rock samples of Gneiss-1 have been collected from
throughout the craton. From the point of view of a repre-
sentation of spatial distribution covering the whole craton
and a representation of maximum geochemical variation,
we have carried out the geochemical analysis on 15 selec-
ted samples of Gneiss-1. Because of nearly uniform geo-
chemical characteristics, only four representative samples
of Gneiss-1 are given in Table 1 along with published
data of samples of Gneiss-2 for comparison. Whole rock
major elemental analyses were carried out at the Wadia
Institute of Himalayan Geology, Dehra Dun by XRF
(Siemens SRS-3000 sequential X-ray spectrometer) tech-
niques. The accuracy of minor oxides is less than 5% and
the precision is better than 1.5%. Trace elements includ-
ing the rare earth elements (REE) were determined at Na-
tional Geophysical Research Institute, Hyderabad by ICP-
MS techniques using Parkin Elmer Sciex ELAN DRC-II
machine. The precision of ICP-MS data is <5% RSD for
all the REE®, International standards of USGS, GSJ were
used for calibration and testing of accuracy. The data for
Gneiss-1 and Gneiss-2* are compared and plotted in dif-
ferent geochemical variation diagrams. Both the gneisses
exhibit striking similarities. Gneiss-1 is more siliceous
with greater variation of Si0, (69.65 <810, £74.59 wt%)
averaging 71.5 wt% Si0,. Gneiss-2 has restricted variation
of Si0, (69.01 £8i0,<69.51 wt%) with average of
around 69.14 wt% SiO‘z‘. The Al,O; abundance of the
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Simplified geological map of Bastar craton, central India’. Inset: Map showing major Archaean cratons of India. Numbers refer to loca-

Gneiss-1 is 12.76 < Al,05 £ 15.44 wt% with average of
14.26 wt%, while that of Gneiss-2 is 14.67 < Al,O5; <
15.81 wt% with average ~15 wt%. The molar alumina
saturation index (A/CNK) values for the Gneiss-1 and
Gneiss-2 is >1 and thus can be categorized as peralumi-
nous. The observed peraluminosity of the gneisses can be
explained by greater degree of assimilation of crustal
material or early crystallization of hornblende. Both the
gneissic suites are poor in ferromagnesian content (Fe,O5+
MgO + TiO, averages 3.19 wt% for the Gneiss-1 and
4.43% for the Gneiss-2) and thus have low Mg# (averages
29 for Gneiss-1 and 27 for Gneiss-2). The Rb/Sr values
of Gneiss-2 averages (.2 while that of Gneiss-1 averages
0.9. Both the values are within the spectrum of typical
island arc rock values of <1.0. The average concentration
of Y (23 ppm for Gneiss-1 and 9.3 ppm for Gneiss-2), Yb
(1.5 ppm for Gneiss-1 and 0.66 ppm for Gneiss-2), Sm
(4.3 ppm for Gneiss-1 and 7.5 ppm for Gneiss-2) and Nd
(22.5 ppm for Gneiss-1 and 41 ppm for Gneiss-2) of both
the gneisses is similar to that reported for the Archaean
felsic rock suites from various cratons’'* and were inter-
preted to represent a volcanic arc tectonic setting of
emplacement. The normative An-Ab-Or diagram''
(Figure 2 b) shows the distribution of Gneiss-2 over gran-
ite and trondhjemite domains, while Gneiss-1 shows dis-
tribution over the granodiorite domain. The calc-alkaline
character, typical of arc magmatic feature, is demonstra-
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Table 1. Representative major (wt%) and trace (ppm) element analyses of basement gneisses

(Gneiss-1) and enclave gneisses (Gneiss-2), Bastar craton

Gneiss-1 Gneiss-2*

Sample no. RB13 RBI15 DK29 GD42 55 60 63
SiO, 74.59 70.13 69.92 70.2 69.27 68.7 69.01
TiO, 0.15 0.27 0.16 0.23 0.35 0.43 0.45
ALO; 13.15 15.25 14.49 14.45 14.67 15.81 15.59
Fe, 0% 1.72 3 2.1 1.99 2.87 3.6 3.54
MnO 0.02 0.03 0.03 0.02 0.02 0.03 0.03
MgO 0.34 0.66 0.47 0.59 0.54 0.67 0.71
CaO 1.38 2.44 1.75 2.1 3.45 2.45 2.72
Na,O 3.39 4.62 5.62 4.83 3.97 4.38 4.43
K,O 4.3 2.73 1.3 2.02 2.78 2.79 2.26
P,Os 0.03 0.08 0.02 0.03 0.1 0.13 0.12
LOI 0.02 0.66 2.36 2.37 1.82 0.68 0.66
Total 99.09 99.87 98.25 98.83 99.84 99.67 99.52
Cu 1.34 2.33 1.7 1.23 NA NA NA
Ni 10.64 7.98 12.15 9.08 NA NA NA
Co 51.27 4.96 43.82 33.84 NA NA NA
Sc 2.24 3.58 5.93 2.73 NA NA NA
Zn 29.18 42.35 44.8 46.55 NA NA NA
Ga 13.94 17.63 23.86 18.14 NA NA NA
Pb 27.06 95.66 27.78 28.29 NA NA NA
Cr 13.11 288.34 11.91 6.52 NA NA NA
Th 7.8 12.98 18.77 45.73 NA NA NA
Rb 108.97 88.25 91.99 62.06 NA NA NA
U 1.72 4.43 12.68 2.41 NA NA NA
Sr 224.86 367 208.69 379.26 NA NA NA
Y 13.26 20.05 30.79 13.74 9.16 9.16 9.58
Zr 178.77 351.32  309.48 427.13 NA NA NA
Nb 8.96 9.81 27.42 9.87 NA NA NA
Ba 1122 946.89 75.09 546.97 NA NA NA
v 7.4 15.89 5.9 7.82 NA NA NA
La 12.52 28.28 23.46 54.55 67.00 85.00 78.00
Ce 27.50 58.55 51.49 107.52 104.00 133.00  117.00
Pr 3.55 7.00 6.44 12.63 10.00 13.00 11.90
Nd 11.27 21.15 19.89 37.80 35.00 48.00 42.00
Sm 2.58 3.79 4.39 6.38 6.12 8.64 7.80
Eu 1.08 1.00 0.35 0.80 1.16 1.23 1.15
Gd 1.82 2.90 3.60 4.93 13.80 4.80 4.50
Tb 0.34 0.50 0.72 0.69 0.41 0.52 0.48
Dy 1.82 2.55 3.53 2.61 1.83 2.01 2.20
Ho 0.33 0.47 0.65 0.36 0.34 0.39 0.45
Er 1.04 1.52 2.07 1.0 0.98 0.89 0.94
Tm 0.17 0.26 0.35 0.12 0.11 0.12 0.12
Yb 1.14 1.81 2.42 0.76 0.74 0.64 0.62
Lu 0.2 0.31 0.41 0.12 0.12 0.08 0.08

Total iron as Fe,Os;; LOI, Loss on ignition; NA, not available; Mg # = 100*Mg/Mg+Fez+,

*after ref. 4.

ted in the K-Na—Ca diagram'> by both the gneisses,
where they plot along the calc-alkaline differentiation
trend (Figure 2 a).

The multi-elemental patterns (Figure 3) show enrich-
ment of large ion lithophile elements (LILE) to about
hundred times primordial abundances with severe deple-
tion of P and Ti and minor depletion of Nb except for one
sample (DK29). These trace element characteristics are
commonly observed in subduction. Such trends can be
explained by the melting of the subducted slab. Since the
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large ion lithophile elements (LILE) are soluble in aque-
ous solutions at high pressure it adds these elements in the
melts generated from the slab'®'’. Thus the melts gener-
ated from the subducted slab would be highly enriched in
LILE compared to high field strength elements (HFSE).
The selective depletion of P and Ti in the gneisses (Fig-
ure 3) indicates that one or more mineral phases removed
Ti and P without causing greater depletion of other
HFSE. Although Ti is the principal constituent of rutile
and P of apatite, at high-pressure both Ti and P may have
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enhanced solubility in garnet'’. Garnet retained at the site
of partial melting thus can act as a repository for Ti and
P, and can explain the depleted nature of these elements
in the spidergram (Figure 3)"". In the Rb vs Y + Nb tectonic
discriminant diagram (Figure 4), the Gneiss-1 samples
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Figure 2. a, K-Na—Ca diagram and b, Normative Ab—An—Or classifi-
cation scheme of gneisses of Bastar craton. Calc-alkaline (CA) and
Trondhjemite (T}j) trends in @, are from ref. 15, while the fields in b, are
from refs 13 and 14. Data of Gneiss-2 are from ref. 4.
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Figure 3. Primordial mantle normalized multi-element patterns for
Gneiss-1 of Bastar craton. Normalizing values are from ref. 19.
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Figure 4. Rb vs Y + Nb tectonic discriminant diagram for Gneiss-1
of Bastar craton. Fields of volcanic arc granite (VAG), syn-collision
granite (Syn-COLG), within plate granite (WPG) and ocean ridge gran-
ite (ORG) are from ref. 18.
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plot within the volcanic arc granite indicate that the pro-
toliths of the gneisses might have been emplaced in an
arc-related tectonic setting. In the absence of some selec-
tive incompatible trace elemental abundances of Gneiss-2,
we cannot compare the incompatible elemental behavior
of Gneiss-2 on the multielemental spidergram with that of
Gneiss-1 and also check the plot of Gneiss-2 on the tec-
tonic discrimination diagram. The chondrite normalized
REE patterns for both the gneisses show highly fraction-
ated trends (Lan/Yby = 8-51 for Gneiss-1 and Lax/Yby =
6-83 for Gneiss-2 along with negative Eu anomaly (Fig-
ure 5). The patterns also exhibit heavy REE (HREE)
depletion and concave upward shape with curvature of
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Figure 5. Chondrite normalized rare earth element patterns for the
gneisses of Bastar craton. Av.EnGn** represent an average of three
samples of Gneiss-2 data®. Normalizing values are from ref. 19.
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Figure 6. Y vs Sr/Y diagram for the Bastar gneisses. Curves are

drawn from ref. 9. I and IIl are partial melting curves of an average
Mid-Oceanic Ridge basalt (MORB) and an Archaean Mafic Composite
(AMC) leaving an eclogite restite. I and IV are partial melting curves
of MORB and the AMC leaving a 10% garnet amphibolite restite. Data
of Gneiss-2 from ref. 4.
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the HREE. These geochemical features are typical of Ar-
chaean felsic rock suites reported from different cratons
around the world®'?. To assess the degrees of partial
melting and to constrain the source characteristics, both
Gneiss-2 and Gneiss-1 of the craton are plotted on the St/
Y vs Y diagram (Figure 6). Four melting curves modelled
after Drummond and Defant’ presuming different sources
including an average MORB and an Archaean mafic
composite computed from Archaean basaltic and komatitic
basalt are superimposed on the diagram. Most of Gneiss-
1 and Gneiss-2 except two samples plot along the melting
curve-II (Figure 6) correspond to partial melting of an
average MORB leaving a 10% garnet amphibolite restite.
This implies that an Archaean oceanic slab while sub-
ducting might have undergone higher degrees of partial
melting leaving amphibolite and/or eclogite to generate
the magma for the protoliths of the Bastar gneisses. Such
a derivation of Archaean felsic magma is now well con-
strained by experimental and geochemical data by
Martin'®'! and from the neighbouring Bundelkhand cra-
ton'?,

We have not found any field evidence such as cross
cutting or intrusive relationship of one gneiss into the
other to suggest that Gneiss-1 and Gneiss-2 are of two
separate generations. The difference in radiometric age of
Gneiss-2 (zircon U-Pb age of 3.5 Ga) and Gneiss-1 (Pb—
Pb isochron age of 3.0 Ga) may arise from different tech-
niques used for dating these rocks. The Pb—Pb isochron
age for the Gneiss-1 (3.0 Ga)s’6 can be considered not so
reliable for the Archaean rocks, whereas Gneiss-2 (3.5 Ga)
was dated following the zircon U-Pb techniques® which
is considered more reliable for an Archaean terrain. Thus,
in the absence of any compelling field evidence in favour
of two distinct generations of gneisses, we consider the
Gneiss-1 and Gneiss-2 as cogenetic and comagmatic.
This result is supported by similar geochemical character-
istics and apparently common petrogenetic processes that
Gneiss-1 and Gneiss-2 appear to have undergone.
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