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for the past shaking events in the
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Soft sediment deformation structures are observed in
the laminated sediments and sandy part of the 150 m
thick palaeolake profile exposed along the Chhidu Nala
near Garbyang village in the Tethys zone of Kumaun
Himalaya. The deformed, laminated sediments and
sand are separated by gravel. We observed both pene-
contemporaneous and post-depositional deformational
patterns. The deformation may have taken place due
to thixotropy and fluidization causing visco-plastic
failure of the mud, and density inversion between mud
and sand due to liquefaction, was probably triggered
by earthquakes. This gave rise to soft sediment folds,
dykes, faults, load and pseudo-nodule structures in
mud, silt and sand. The study area lies in the seismi-
cally active zone of the Kumaun Himalaya.

QUATERNARY deposits form an important source of infor-
mation on the frequency and distribution of the earthqua-
kes'. In seismically active regions, the soft sediment
structures (seismites) are important indicators of the past
seismic activity”’. However, several classifications have
been proposed using morphic or genetic parameters®. A
direct relationship between earthquake occurrence and the
resulting deformation of the sediments has been invoked
by various workers”°. Soft sediment deformation struc-
tures are employed for the earthquake recurrence™”®. This
communication presents some possible ‘scismites’ recorded
from the Tethys zone of the Kumaun Himalaya.

Neotectonic movements resulted in the blocking of
ancient drainages and formation of lakes throughout the
Himalayan belt, such as Karewas of Kashmir”'’, Ladakh'" "
and Kumaun Himalaya”. Likewise, the Garbyang palaeo-
lake in the Kumaun Tethys Himalaya was probably for-
med due to the neotectonic activity along the Trans-
Himadri Fault (T-HF) that blocked the river Kali, form-
ing a lake for about 11 km from Garbyang to Gunjilj‘16
(Figure 1). The deposits, about 150 m in thickness, consist
of gravel, sand, laminated sediment and morainic depo-
sits (Figure 2). A number of levels of soft sediment struc-
tures are observed in the laminated sediments and sand,
separated by gravel.

Soft-sediment deformation features in the Garbyang
palaeolake can be distinguished as (a) penecontemporaneous
deformation and (b) post-depositional deformation. The
post-depositional features present in deformation of the
affected sediment are termed as penecontemporaneous
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deformation'’. This group consists of two categories, viz.
metasedimentary (or post-depositional) and early diagene-
tic deformation'®. Metasedimentary deformation is induced
after the deposition of the overlying layer of sediment,
whereas early diagenetic deformation occurs before the
deposition of the overlying sediment layer. On the other
hand, the post-depositional deformation structures are
formed during the compactional stage of the sediment.

The first deformed unit in the Garbyang sequence, obser-
ved at 6.2 m above the base of the profile (Figure 2), is
identified as recumbent folding (Figure 3 a). The folds have
amplitude of a few metres laterally and vertically, with
hinges of the folds in the horizontal to sub-horizontal plane.
The lower limbs of the folded laminae are marked by
several small-scale normal faults exhibiting visco-plastic
failure of laminated sediments (Figure 3 a). The deforma-
tion in the laminated mud and silt was probably triggered
by the endogenic sources. The saturated sediments may
have, thus folded along susceptible planes. Such recumbent
folds are experimentally produced as a horizontal shear'"?"
or due to slope failure®’. (See also R. K. Pant ez al., unpub-
lished DST project report, 1999, p. 61.)

The second level of deformation as intrusion of dark
mud into the coarse sand is observed at 10.4 m above the
base of the profile (Figure 2). It is 30 cm thick mud layer
extending laterally and vertically for a few metres
(Figure 3 b). The thickness of the intruded material
increases towards the bottom source mud layer. Due to
the intrusion, sand pseudo-nodules are developed. It may
be stated that when a coarser and denser sediment over-
lies a finer and lighter sediment, it results in density
inequilibriumzz. The intruded sediments are highly viscous
and discordant, suggesting shear stress and reverse den-
sity gradation due to differential porosities of coarse sand
and cohesive mud. The mud overlain by the sand is intru-
ded upwards in the form of irregular veins due to density
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Figure 1.

Location and geology of the study area.
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gradient and shear stresses, because of the differential
porosity of the two lithologies”.

Another example of the metasedimentary deformation
(Figure 4), represented by sand pseudo-nodules, loading,
fold and faulting of the sand and mud laminae is obser-
ved at 128 m above the base of the profile (Figure 2).
Pseudo-nodules are observed at the interface between sand
and mud units. These have lateral extension of 3-5 cm. A
few sand nodules attached to the parent sand bed exhibit
load structures. The mud laminae show development of
synclinal fold due to loading phenomenon by overlying
gravelly sand. The sediment layer lying below the mud
unit is pinched due to loading. An anticlinal fold is
observed in the mud unit overlying the gravelly sand. The
limb is displaced by normal fault, which in turn may have
caused a change in thickness of the underlying gravelly
sand. The pseudo-nodules and the development of folds
may have taken place by loading and density inversion.
The faulting phenomenon is restricted to the deformed
part, suggesting a syn-deformational event.

What are interpret as early diagenetic deformation
(Figure 5 @), is observed at 82 m above the base of the
sediment profile (Figure 2), which shows influx of boul-
der-sized rock fragments. The disturbed unit is about
1.5 m thick and confined between parallel, undeformed
laminated sediments. The deformation by influx clasts
may have formed irregular convolutes and flames in the
laminated sediments. The disturbed unit representing the
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Figure 2. Litho-column of the Garbyang profile and various levels of
soft-sediment deformation structures.
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normal faults in the sediment layers, is restricted between
undeformed laminated sediments indicating a syn-sedi-
mentary deformational event. The presence of massive tree
trunks and huge rock boulders suggests external trigger-
ing. Such a shaking, which may have been responsible for
falling tress in the Garbyang sequence, is used to determine
the timing of earthquake occurrence™.

The faults observed in a deformed unit (Figure 5 b)
constitute the post-depositional deformation. Both the
normal and reverse faults show displacement. The

Figure 3. a, Recumbent folding in the mud. b, Mud dyke intruding
into the overlying sand (arrow indicates pseudo-nodules).

Figure 4.
and sand.

Fold (F) and pseudo-nodules (indicated by arrow) in mud

CURRENT SCIENCE, VOL. 87, NO. 3, 10 AUGUST 2004



RESEARCH COMMUNICATIONS

Figure 5. a, Convolutes and faulting in laminated sediments;
b, Faulting due to post-depositional deformation.

faulting in the sediments takes place because of the
shaking effect™*.

Soft sediment structures discussed here are produced by
shaking effects. The deformed sediments occur in a basin
extending for about 11 km from Garbyang to Gunji. Since
the deformed units are laterally extended for several kilo-
metres and are bounded by completely undeformed sedi-
ments, it is likely that the deformation is produced by
shaking effects and not produced by slope, overburden and
bioturbation. However we are not able to resolve the distance
to the causative seismic sources, with the available data.
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