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The recognition of seismic signals from the back-
ground random noise and identification of various
phases in a seismogram are studied from the variation
in fractal dimension, D, obtained from Hurst’s R/S
rescaled range analysis of seismograms. A rapid change
in fractal dimension occurs with change in seismic
attributes in a seismogram, although the nature of
change varies from trace to trace with varying signal-
to-noise ratio and with varying frequencies. The appro-
ach is based on the fact that noise has higher fractal
dimension than the seismic signals. This method, when
applied to the earthquakes in Bhuj and Koyna region
of peninsular India, explains the origin of the com-
plexities of the observed waveform, interpreted in
terms of degree of heterogeneities of the lithosphere
from the variance fractal dimension. The above find-
ings are supported by previous studies of frequency
dependence of seismic wave attenuation in the region.

THE accurate detection of arrival times of various seismic
phases in a seismogram is of prime importance in seis-
mology. This is particularly the case with seismic refrac-
tion and tomographic studies, where travel times of the
first arrival are used to determine the seismic velocity
structure of the medium. In local earthquake analysis, we
get many reflected phases and dominating coda waves that
characterize the structural heterogeneities of the medium.
The detection of first-arrival seismic data reduces to the
problem of differentiating the signal from the background
random noise. Several methods both in time' * and frequ-
ency domain™® for locating a first motion in a seismo-
gram have been published. The time-domain standard
STA/LTA procedure’ makes use of one or more charac-
teristics functions (CFs), which are new time series dif-
ferent from the original data stream. The changes in CF
indicate the presence of phase arrivals. The algorithm is
based on the ratio of the current value of the characteri-
stic functions to an ambient value and the event is decla-
red if their ratio exceeds some threshold value. The
ambient value of the CF is a long-term average (LTA) of
the signal calculated using a low-pass digital recursive
filter. The current value of the CF is based on the short-
term average (STA), which is usually computed over a
few samples to ensure a quick response to any changes in
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the CF. Stewart” used a modified data envelope based on
the derivative of the data, where slope changes are em-
phasized. Anderson’ looked for peaks between zero-
crossing and compared them with the LTA. An event is
declared when the peak exceeds a multiple of the LTA
and the associated zero-crossings are sufficiently separated.
Similarly, the method of Shensa’ is based on the power
spectral density (PSD). Mele® described a different app-
roach in frequency domain of the signal; the average
power spectral densities within eight overlapping fre-
quency bands in the range 0.2-8.0 Hz constitute the cur-
rent values to be compared with the LTAs in the same
frequency bands. Nath and Dewangan’ proposed a met-
hod for detection of seismic reflections from seismic
attributes, with special emphasis on thin-bed delineation
through fractal analysis. Joswig® used a pattern-match-
ing scheme based on the PSD as a function of time. Ervin
et al’ and Ramananantoandro and Bernitsas'’ have des-
cribed algorithms for automatic picking of refraction
first-arrival times that rely on the comparison of the trace
with its immediate neighbours. Detectors and filters based
on the eigenvalues and eigenvectors of the three-com-
ponents variance matrix have also been constructed' ",

Here, I have introduced the R/S rescaled range analy-
sis by Hurst et al.'® for computing fractal dimension of
the waveform recorded by a seismic station, to charac-
terize a seismogram, in differentiating the signal from its
noise level. The approach is based on the fact that noise
is recognized to have higher fractal dimension than the
seismic signals. Thus, the fractal dimensions may be used
as a quantitative measure of the degree of heterogeneity
of the underlying medium. Dimri'” has carried out the multi-
fractal and wavelet approach to study the aftershock sequ-
ence of Bhuj earthquake and computed fractal dimension,
D =2.26 from seismic h-value. The present study shows
a variation in D values estimated from R/S analysis by
Hurst'®; and this need not be equal or even positively cor-
related with one another, as fractal dimensions obtained
by different methods generally reflect different aspects of
scale invariance.

Data

The data used in this study are one aftershock of Bhuj
earthquake recorded at station Rapar (23.571°N, 70.408°E)
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in its epicentral region and one local earthquake recorded
at station Maneri (17.3415°N, 73.7953°E) at Koyna in
peninsular India. Stations Rapar and Maneri are part of
NGRI local networks deployed in Bhuj and Koyna regions
respectively. The data are recorded at sampling frequency
of 100 Hz. To know the effect of background noise on
the value of D of the waveform, I have studied both the
raw data and their filtered versions in suitable frequency
range (1-10 Hz for local earthquakes). The seismograms
are corrected for instrument response before analysis so
as to get the ground velocity.

Method

Observed seismograms contain noise, which are random
time series. Some properties of such series can be studied
by the Hurst component /. Since the introduction of frac-
tals by Mandelbrot'®, the analysis of fractal dimensions
has been widely used in several applications. This analysis
is suitable for application to seismic data because of the
ability of the fractal dimension to differentiate noise from
signal patterns within the data. There exist several different
methods to measure the fractal dimension of the wave-
form like divider method'’, box-counting method, etc.
Here, rescaled range analysis by Hurst'® is used in comput-
ing fractal dimension of the waveform by determining the
R/S value within windows of different sizes of the wave-
form. The R/S for the given sampling of the random series
is asymptotically given by a power law of the form:

Rt) _n
R@) oo 1
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where R(7) is the range which is the difference between
the minimum and maximum ‘accumulated’ values or cumu-
lative sum of X(#, ) at discrete integer valued time ¢ over
a length of time sampling T, S is the standard deviation
estimated from the observed values X(f), and H is the
Hurst exponent. The value of H = 0.5 corresponds to the
normal distribution sampling; other values correspond to
the various degrees of correlation, which can be interpre-
ted in terms of persistent coefficient. The ranges 0 < H <
0.5 and 0.5 < H < 1.0 of Hurst exponent characterize anti-
persistence and persistence behaviours respectively. R and
S are defined as:

R(7) = max X(¢,t) — min X(#,7) , (2)
l<t=<zt l<t=<zt

where ¢ is the discrete time accepting integer values and T
is a length of the sampling (also called as time lag).
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and for the cumulative average value, we get

X(I.T)=t[§(ll)—(§>t]
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Equation (1) is obtained by normalizing the range R on
the standard deviation S of the data estimated from obser-
ved values X(#) for the chosen sampling &(#), and < & > is
its mean value on the segment containing T samples. The
Hurst exponent is related to fractal dimension by the fol-
lowing relation:

D=2-H, (6)

which is obtained from the slope of the plot of (R/S) val-
ues against the window size T in log-log space®.

Results and discussion

The basis of the present first-arrival detection algorithm
is that a change in / is expected when the seismogram
encounters some changes in seismic attributes like ampli-
tude, phase and frequency. This ultimately brings a change
in D along the length of the seismogram. Figures 1 and 2
show the algorithm applied to seismograms recorded at
Bhuj and Koyna region respectively. First the approximate
region of the seismogram containing the first arrival is
selected manually. Then, a window of suitable length is
moved progressively along the seismogram through points
A, B and C. The Hurst exponent, H, and the fractal dimen-
sion, D, in all windows A, B and C of the seismogram are
calculated and are plotted at the location of the maximum
time of the window. It gives rise to the variation in fractal
dimension along the trace (Figure 1 »). The windows A, B
and C yield estimates of /7 = 0.157 (D = 1.843), H=0.257
(D=1.743) and H = 0.6508 (D = 1.349) respectively. This
can be explained in terms of persistent (or anti-persistent)
behaviour. The result suggests that window A positioned
with background noise shows non-correlated, anti-per-
sistent (random) behaviour (/ <0.5), while window C
within the part of the signal presents persistent and corre-
lation behaviour characterized by > 0.5. Figure 1 ¢ shows
that the real signal, in general, has low D value due to
good correlation, whereas noise has higher fractal dimen-
sions due to its poor correlation. The poor correlation may
be due to lack of a consistent pattern of seismic phase arri-
vals in the data. However, the absolute value of the fractal
dimension measured on different seismograms may vary
depending on the signal-to-noise ratio, on the amplifica-
tion of the signal, and on the sampling frequency. Also,
determination of an optimum window length is important,
as fractal analysis is sensitive to window length. The rea-
son for change in both D and / values along the seismo-
gram is not only the presence of the signal in the sampling
considered, but slow variations of the correlated noise itself.
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Figure 1. Schematic illustration showing the variation in fractal dimen-

sion D along the seismogram recorded at station Rapar (23.571°N,
70.408°E) and Bhuj (15 February 2000, 12 h, 7 min, 2 s). a, The working
window is manually selected to contain the first break and is moved
progressively through windows A, B and C along the trace. b, Variation
in the value D from windows A to C along the trace. ¢, Plot of log(R/S)
versus log(t) both for typical background noise and seismic signal. The
lines identify the range of the best fit by which D is calculated.

CURRENT SCIENCE, VOL. 87, NO. 5, 10 SEPTEMBER 2004

a
24000.00 An earthquake of Koyna-Warna region (M 3)
|~ Working Window ———————
- -
20000.00 —§
16000.00 —
12000.00 —|
8000.00 —
4000.00
0.00 10.00 20.00 30.00 40.00
Time (sec)
2
b
AMD= 188
()
1.8 <
D (D= 1.875)
1.6 <
!
14 4
1.2 T T T
30 40
0 10 Th‘.’&u)
18 — )
¢ Koyna
12 —~
-
¢
8 -
0.8 — Noise
D=188
/’./lw
A .
T I T I T I T I
0 04 12 16

08
log (window size)
Figure 2. Same as Figure 1, but for the seismogram recorded at Maneri
(17.3415°N, 73.79.7953°E), Koyna region (23 September 2002, 11 h,
38 min, 28 s).
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The effect of non-stationary sampling of the signals com-
posed of segments of differing spectral characteristics
may also contribute to the observed change. The relation-
ship between the spectral amplitudes in different frequ-
encies allows, for the fractal detector, a complete analysis
in a broad frequency range of seismic waves. The results
of the present study, when combined with the detailed
study of Withers et al*' to all kinds of seismic phases,
ultimately infer its good sensitivity to even weak signals.
Moreover, the fractal method has the ability to differen-
tiate phases within a single event. The results of this ana-
lysis can be applied to a set of phenomena related with
differentiation of similar signals of different nature. This
study demonstrates that the relevant information on frac-
tal and discrete properties of the system are contained in
the seismic signals. The variation from anti-persistent to
persistent behaviour in Hurst exponent along the length
of the seismogram is consistent with the lack of a consis-
tent pattern of seismic phase arrivals in the data, as men-
tioned earlier. The results of the same analysis applied to
an earthquake recorded at Koyna region are shown in
Figure 2 a—c. The results are also consistent with those
shown for Bhuj earthquakes; the value of D is almost
constant before the window reaches the first arrival along
the seismogram (Figure 2 @). When it reaches the first arri-
val time, the value of D decreases quite rapidly and again
assumes a near constant value in coda area depending on
the strength of the signal present. Thus, the first onset on
the seismogram brings a rapid decrease in D values on
the fractal dimension profile along the seismogram. In
order to access the effectiveness of the method, the pat-
tern of the fractal dimension has been analysed for noisy
(Figure 3 @) record of the seismic wave. There is a de-
crease in value of the D over the portion of the seismo-
gram dominant in the signal, which is evident from Figure
3 b. The changes in phases inferred from the nature of
fractal dimension may also describe the detailed structure
of the medium. The fractal dimensions obtained by dif-
ferent methods generally reflect different aspects of the
scale-invariance, and need not be equal to or even posi-
tively correlated with one another. For example, the capa-
city dimension D, estimated by box-counting methods,
measures the space-filling properties of a fracture set with
respect to changes in grid-scalezz. The correlation dimen-
sion, D, defined by Grassberger and Procaccia®, mea-
sures the spacing or clustering properties of a set of points,
and has also been applied to earthquake epicentres“'zs,
Thus the R/S method of fractal analysis is successful in
identifying seismic events from its attributes on the basis
of the change in the value of fractal dimension, along the
seismogram. The method works well for a broad range of
frequencies, including both body and surface waves. The
method works quite well in identifying the events even
with noisy waveforms. The real signal is differentiated from
the background noise by its low fractal dimension value.
The nature of change in fractal dimension values indi-
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Figure 3. Behaviour of the pattern of fractal dimension in case of (@)
noisy data and (b) its variation along the trace.

cates the nature of seismic wave attenuation through the
underlying medium in a wide frequency range and also
explains the origin of the complexities of the observed
waveform. This inference can be interpreted in terms of
degree of heterogeneity of the lithosphere, which is beyond
the scope of this article.

The advantages of the fractal approach over classical
methods lie in detecting the surface-reflected and depth-
reflected phases just form a single seismogram, without
the need for array data and without constraint on velocity
control. The efficacy of the method lies in pulling out the
signal in the complex coda, which gives the nature of the
heterogeneities of the medium. The efficiency of the met-
hod needs to be tested with gradually decreasing order of
signal to noise and more importantly, in case of first arri-
val detection, with signal-to-noise ratio of one or less than
one. Thus, the strength of the signal detection becomes
more enhanced by the fractal approach than the conven-
tional classical methods.
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