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' ... the enormous success of mathematics in the natural 
sciences is something bordering on the mysterious and ... 
there is no natural explanation for it. ' 

-Eugene Wigner 

ONE of the most fascinating features of the intellectual deve
lopment of the human species is the role that mathematics has 
played in it, not only as an academic discipline but also as a 
powerful instrument for understanding the external world and 
coping with it. In today's popular imagination, this role is cap
tured by images of some absent minded Einstein-like profes
sor whose indecipherable scribblings on the blackboard lead, 
mysteriously, to astounding practical consequences. But the 
role of mathematics in human thought is much more perva
sive than that. It is not limited just to instances of sophisti
cated mathematics being used to discuss modem physics, 
design computers, plan satellite orbits or study the structure 
of economic models. Down-to-earth race course bookies, far 
removed from the world of science, rely on elementary prob
ability theory in offering their bets, as do hard headed insur
ance companies in making their billion dollar profits. In fact 
practically everyone finds the need to use some mathematics, 
at least at the level of elementary arithmetic, such as addition, 
subtraction and multiplication, which are essential for day-to 
day life. Conversely, illiterate labourers in our country 
are continually being exploited by employers and shopkeep
ers because of their inability to perform these simplest of 
mathematical manipulations. 

Thus the need for mathematics is really widespread, all 
the way from arithmetic in day-to-day life to the most 
esoteric concepts of topology and group theory employed 
in physics. But what remains intriguing even after more 
than two millennia of mathematical applications at differ
ent levels is the underlying issue of why mathematics 
'works' in the real world and the way in which it works. 
Indeed, it is not a priori obvious that mathematics should 
work at all in the physical world, for reasons we will explain 
shortly. Not only is there no comprehensive or universally 
accepted theory explaining the success of mathematics in 
science, but any attempt to unravel this question in some 
logical fashion is fraught with difficulty. One can get tan
gled up in issues as varied as the evolution and functioning 
of the human brain, the role of the environment in deve
loping it, the distinction between the 'inner' and the 
'outer' world and so on. Many people have worried about 
this question, including some great minds, but there has 
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been no unique and established answer. An example of such 
an attempt is the essay (which contains the quote given at 
the beginning of this article) entitled 'The unreasonable 
effectiveness of mathematics in the Natural Sciences' by 
Eugene Wigner, one of the most distinguished theoretical 
physicists of the 20th centuryl. 

Clearly, we cannot attempt here to give definitive answers 
to this riddle that has been tackled by so many people 
without reaching conclusive answers. Rather we will share 
some of our own thoughts on this question. We will also try 
to give those who have not had the opportunity to ponder on 
this issue some flavour of why the applicability of mathe
matics to the real world is indeed puzzling and merits expla
nation. 

Is mathematics a science? 

Perhaps one should begin with that old adage that 'Mathe
matics is the queen of all sciences'. Queen she certainly is. 
Mathematics represents one of most profound constructs 
of the human mind and fully deserves royal status. The 
author views mathematics with respect bordering on awe. 
But is she the queen of sciences? Is mathematics even a 
science? Science, whether it be physics, chemistry or biology, 
is supposed to study what is called the physical or exter
nal world 'out there', the entire spectrum varying from 
celestial bodies to chemicals, metals, gases, living organ
isms, plants, animals, molecules and sub-atomic particles. 
The observations and experiments which form the basis of 
science are expected to have an objective reality of their 
own, independent of the human observer and his psycho
logical predispositions. (This criterion holds in a fairly 
straightforward sense for most of science. For systems in 
which quantum principles play a major role, it still holds 
in a statistical sense when appropriately generalized to 
ensembles.) 

If science deals with the natural world 'out there', mathe
matics by contrast seems, at least at the working level, to 
be a construct solely of human minds. You could put a 
group of mathematicians in a closed room denied of all 
contact with the external world except for their pencil and 
writing pads (many of them do not even need that!) and 
they can still make progress in their subject and create new 
mathematics. Correctness or incorrectness of a mathematical 
statement, given a set of hypotheses, is decided by the 
fraternity of mathematicians and not by the physical world 
outside. To quote Keith Devlin, a mathematician who has 
done a lot of work to popularize the subject, ' ... for all that 
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mathematical research feels like discovery, I firmly be
lieve that mathematics does not exist outside of humans. 
It is something we, as a species, invent. I don't see what 
else it could be ... ,2. 

How does it happen that a subject like mathematics, 
seemingly constructed and policed entirely by the 'inner 
world' of human minds, ends up being such a successful 
tool in describing and indeed harnessing the external 
physical world? Is it that the physical world has some intrin
sic 'mathematical order', which then instilled in human 
brains the basic concepts of mathematics and logic through 
the evolutionary process? In other words, did the human 
mind learn about mathematics from the external world 
rather than the other way around? 

The miracle of mathematical consensus 

To pursue this further, consider the closely related issue 
of how mathematics, even by itself, manages to exist as a 
human discipline. Let us elaborate on this a little. The very 
existence of mathematics seems to rely not so much on 
the external physical world, but on the presence of a com
mon mental understanding among human beings on what 
is 'logically correct' and what is not, on what 'follows' from 
a set of hypothesis and what does not. Without such a un
derstanding and universal agreement on logical reason
ableness, mathematics cannot exist as a subject. Most times 
such agreement on the logical validity or otherwise of a 
proof is immediate among practising mathematicians. 
Other times, in exceedingly complex mathematical work, 
the correctness of a step (or series of steps) may not be 
easy to determine. For instance in the initial 1993 version 
of Andrew Wiles' proof of Pierre de Fermat's conjecture, 
there were apparently some gaps in argument discovered 
by colleagues and reviewers. Of course once this was pointed 
out Wiles agreed and tentatively withdrew his claim of having 
proved the historic conjecture. Subsequently Wiles him
self was able, with the benefit of related work and sug
gestions by others, to find ways of proving the missing 
elements and offered the complete proof. This has since then 
withstood the scrutiny of the community. But that whole 
process took about a year!3 (To digress for a moment, this 
story is one more illustration of the nobility of mathema
ticians as a community. At least as far as outsiders could 
tell, it supported Wiles in completing the missing links in 
his proof, rather than indulge in tasteless quarrels of pri
ority and credit through a whole year of uncertainty about 
this coveted proof.) From the point of view of our article, 
this story tells us something about the nature of mathe
matics - that even in a mental construct as complex as Wiles' 
proof, a large number of human beings (in fact all mathema
ticians with sufficient expertise to scrutinize the proof) 
agreed with one another, first that the original proof car
ried some extremely delicate flaw and subsequently that 
the new version was complete. 
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The interesting question here, and indeed with all mathe
matical literature and applications is: what is responsible 
for such agreement between all these people of diverse 
nationalities and background on such complex issues? If I 
may be permitted some caricature, what made them all so 
united in shaking their heads in criticism when Wiles' 
first proof was scrutinized, and then nodding their heads 
in agreement when the revised proof came? The same set 
of people would never show such unanimity in other mat
ters, such as their political views, or their choice of what 
is the best piece of art or music. 

The key players in the Wiles-Fermat theorem came from 
such diverse origins as England, Europe, the US and Japan. 
Their early lives and backgrounds were undoubtedly very 
different. They were not of the same detailed racial material, 
except in the larger sense of being humans. It is not as if 
they had some specific life-experience in common, some 
incident that happened to all of them, which predisposed 
them all to such agreement. In any case mathematics at the 
level of Wiles' proof is so abstract and far removed from 
day-to-day experiences that lifestyles can hardly matter. 
From where, then, comes such unanimity about which ar
guments are logically valid and which are not? 

In this context it is useful to compare mathematics with 
music, one of the other great creations of the human mind. 
As with mathematics, appreciation of music again involves 
a commonality of taste and sensibility on the part of large 
numbers of people. But in some sense it is less universal. 
Music at the highest and most sophisticated level, whether 
it be Indian or Western classical music, was developed as an 
abstraction of various folk tunes of the region, religious 
songs, hymns and other sounds of the local environment. 
Therefore its appeal can be more localized. In my own 
experience, I have known many serious scholars and afi
cionados of Indian music to be quite immune to the great
ness of Bach or Beethoven. Conversely I have also known 
both performers and music professors in the West (particu
larly prior to the 'sixties before likes of Ravi Shankar and 
the Beatles led to some 'globalization' of Indian music) to 
be unable to appreciate Indian music, in part because of its 
sliding notes, unfamiliar scales and its non-insistence on 
absolute pitch. Also, as acts of creativity musical compo
sitions are ultimately personal. To quote Devlin again, 'If 
Beethoven had not lived, we would never have heard the 
piece we call his Ninth Symphony. If Shakespeare had not 
lived, we would never have seen Hamlet. But if, say, 
Newton had not lived, the world would have gotten calculus 
sooner or later, and it would have been exactly the same! ,4 

Thus even compared to music and other forms of art, all 
of which are profound human mental constructs and require 
a commonality of sensibility among vast numbers of people, 
there is a greater universality about mathematical logic. It 
is almost as if it has some 'external objective truth' which 
may take great human cleverness to uncover but whose 
validity is independent of that individual. The approach 
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towards the proof of a result and its style and notations 
may be characteristic of that person, but not its core content. 

These questions about the very existence of mathematics 
give us a possible clue on the relation between mathemat
ics and the sciences. This very fact that the same basics of 
mathematical logic inhabit human minds of all nationali
ties and cultures may indicate that it is some sort of an 
inheritance of the collective human experience already at 
a very early and primitive level. If that is true, it may also 
make plausible that mathematical ideas, abstracted by 
human beings from nature in the first place, are then able 
to help in understanding nature. 

Incorrigibility of mathematical results 

A completely different family of explanations for why 
mathematics is so relevant to the physical world could go 
roughly as follows. In these scenarios, the external world 
is not necessarily orderly or mathematical but the human 
mind chooses to study, as quantitative science, only those 
aspects of the external world that are amenable to man-made 
mathematical laws, ignoring the rest as 'non-science'. Or 
alternately one may argue that mathematics is used as a 
way of classifying physical phenomena and extracting 
idealizations of them amenable to quantitative analysis. In 
pursuing this class of explanations, it may be useful to re
call Douglas Gasking's essay 'Mathematics and the world,s,6. 
In discussing the fundamental differences between mathemat
ics on the one hand and empirical sciences on the other, 
Gasking argues that while mathematical propositions are 
'incorrigible' by our experience, scientific propositions 
are corrigible. That is, while scientific laws are constantly 
open to correction in the light of newer observations, no 
empirical observation of the physical world can alter any 
statement considered a truism by mathematicians. The 
correctness or otherwise of the latter is decided entirely by 
the 'internal' rules of mathematical logic. Gasking's asser
tion may sound too strong, and we may need to think long and 
deep to satisfy ourselves whether it is always true. But 
simple examples in mathematics already illustrate his asser
tion. 

Consider, for instance, the theorem from Euclidean geo
metry that the sum of the angles of a triangle add up to 
180°. Suppose you want to verify this theorem empiri
cally by drawing a triangle on some surface. The theorem 
will never be vindicated to 100% accuracy by your meas
urement. For one thing, all real life measurements will 
unavoidably be subject to observational errors. Besides, 
even if you take pains to keep measurement errors very 
small you may still find that in some situations the sum of 
the angles of your triangle do not even approximately add 
up to 180°. When this happens a mathematician will not 
discard or correct Euclid's theorem. Rather, he will point 
out that the theorem holds only for triangles drawn on 
planes and that it is your fault that the surface you have 
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used is not planar. (For instance, you might have drawn 
your triangle on the surface of a football.) The same 
holds for the familiar Pythagorus theorem which states 
that the sides of a right angled triangle obey the relation 
a2 + b2 

= c2
. It too has never been verified with 100% ac

curacy for the same reasons, viz. that measurements will 
always have instrumental errors and that the surface on which 
the triangle is drawn will, in real life, never be a perfect 
plane. Such empirical non-verifiability of a mathematical 
theorem to perfect accuracy never leads us to doubt the 
correctness of the theorem. The theorem is considered 
correct provided some conditions (hypotheses) are met, 
conditions which are mentally idealized, but not strictly 
available anywhere in nature! 

This is true even for absurdly simple examples from 
basic arithmetic involving only integers, so that fractional 
errors in observation do not come into play. We have the 
mathematical statement that 20 + 10 = 30. Now, suppose 
a boy's mother places a plate of20 hot freshly fried samosas 
on the dining table for some guests who are expected and 
a few minutes later brings from the kitchen another batch 
of 10 more samosas. As per the mathematical result men
tioned, one expects altogether 30 samosas on the table. But 
what if the mother, upon seeing the boy standing nearby 
with a guilty look, decides to double-check and finds only 
28 samosas? Any attempt on the boy's part to wriggle out 
of the situation by modifying the mathematical proposition 
to read 20 + 10 = 28 will not work. His mother will con
sider the original mathematical result 20 + 10 = 30 to be 
sacrosanct and there may follow a painful investigation, 
right in front of the arriving guests, into where the 'miss
ing' samosas went. 

The above example may appear far too trivial in the context 
of our serious discussion. After all everybody would agree 
that there were indeed 30 samosas in existence altogether, 
as required by the addition rule, and the missing two can be 
'accounted for'. That is because we are so accustomed, in day
to-day life, to the total number of objects being conserved. 
But this need not always be the case. If we were dealing 
with, say, nO mesons instead of samosas, their numbers can 
fail to add up even without any guilty parties gobbling 
them up, since the number of nO mesons is not conserved 
(these elementary particles can be created or destroyed 
through their mutual interaction). If you placed 20 high 
energy nO mesons in an empty box, added 10 more and 
looked at the system a little later, you may well find 28 or 
32 nO mesons in the box. But as a mathematical result, 
20 + 10 always equals 30. It is in this sense that mathe
matical propositions are incorrigible no matter what you 
observe in the physical world. Any deviation from the 
prediction of a mathematical statement will be attributed 
to the deficiencies of the physical system (instrumental 
errors, curvature of the surface, the boy's inability to resist 
gobbling up samosas, etc.). We have deliberately chosen 
very elementary examples from basic arithmetic and geome
try to illustrate this point in the simplest possible context, 
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but the same holds also for possible physical realizations of 
any mathematical theorem, however complex. 

If mathematical results have a sanctity of their own re
gardless of whether or not they are accurately realized in 
physical applications, then how does mathematics end up 
being so valuable in the real world? The above examples 
point to one important way in which mathematical results 
tell us something about a physical system. The failure of 
an empirical observation to agree with some mathemati
cal prediction can indicate the extent to which the physical 
system did not accord with the hypotheses that went into 
the mathematical result. This can be made quite quantita
tive. For instance, if you draw a very small triangle the 
difference between 1800 and the measured value of the 
sum of its angles can be used, after correcting for meas
urement errors, to get a quantitative measure of the local 
curvature of the surface on which it is drawn. 

This also tells us something about the nature of mathe
matical predictions for the real world. If you had to pre
dict the sum of the angles of a triangle (let us denote it by 
S) drawn on some unknown surface somewhere in the uni
verse, mathematics would have no prediction at all for it 
without further information. Those angles may add up to 
180 0 or they may not! It all would depend, among other 
things, on the curvature of that surface. Thus, a mathemati
cal prediction about any system in the physical world re
quires other input information about the system. In the above 
example you need to know the curvature of the surface at 
every point on it. Now, one way to specity the curvature is 
to give the measured value of S for all different triangles 
drawn on the surface! If you do that, then that particular 
theorem has no predictive content but is only a definition, 
i.e. a classification index for the curvature of surfaces. In 
particular, Euclid's result the S = 180 0 has no predictive 
value at all unless you know that the surface is a plane. But 
once a surface is established as a plane to some high accu
racy, then all the other theorems of Euclidean geometry do 
contain many other predictions about triangles, circles and 
other figures drawn on that surface. 

From this one sees that the nature of mathematical appli
cations to any physical system involves correlating differ
ent properties of that system with one another through 
logical connections. Is this giving us some new informa
tion about those systems or is it just a case of some hidden 
tautology? For instance it will really take an infinite number 
of measurements to ascertain that any finite region of a 
surface is truly a plane. You would have to check the cur
vature at every infinitesimal (tiny) sub-region in that region, 
say, by drawing tiny triangles and measuring the value of S 
around each point. Therefore to be sure that the numerous 
theorems of plane geometry are applicable to a given sur
face you really have to first provide the infinitely many 
pieces of information that go into ascertaining that it is 
indeed a plane. Similarly, if you wish to make completely 
certain predictions with 100% accuracy about the properties 
of photons and electrons using quantum electrodynamics 
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(QED), you first need to know that the system of electrons 
and photons does obey the Lagrangian of QED at every space 
time point, which again amounts to giving as input an infi
nite amount of information! 

In actual practice of course that is not the way we use 
mathematics for real systems. We use a combination of appro
ximations and 'modelling'. We assume that a given physi
cal surface is a plane, apply some plane geometric theorems 
and see if the answers agree with measurements to some ac
ceptable accuracy. Similarly we assume that electrons and 
photons obey the QED Lagrangian and other postulates of 
quantum field theory, calculate scattering cross sections 
using mathematical techniques, and then look for agree
ment with observation. Clearly this requires the ingenuity 
of the scientist in finding a good model for a given sys
tem, being conversant with the mathematical techniques 
needed for deriving the consequences of that model and 
having a large number of samples and observations to verify 
various predictions. 

This also raises the reverse possibility that even dis
coveries in pure mathematics, at least in its early days, were 
made possible by the availability of physical systems that 
were fairly accurate manifestations of the postulates underly
ing that mathematics. For instance, the theorems of Plane 
Geometry were discovered by Euclid because the lines, 
triangles and circles that people dealt with in his time were 
drawn mostly on planar (flat) surfaces such as table tops. 
Important early applications of geometry were in land 
surveys and architecture which again involved plane vertical 
walls, pillars and land (the earth is flat to a high accuracy 
within the size-scale of farms and towns). Thus the various 
theorems of plane geometry were vindicated by numerous 
empirical observations (within the accuracy of measure
ments). Once the conclusions of a theorem are empirically 
obeyed in many cases, then it becomes useful even in those 
cases where there is some disagreement, as discussed earlier. 
A piece of land on which Euclidean theorems are not 
obeyed is presumably not planar, and one could then try 
to rectify this by land filling and so on. 

(But if Euclid had been a creature living on highly curved 
membranes, soap bubbles and rumpled bed sheets, it is 
doubtful if he would have discovered his geometrical 
rules. Of course the theorem that the sum of the angles of 
a planar triangle add up to 1800 would still have been a tru

ism. But, for creatures living on highly curved surfaces, 
this truism may only eventually emerge as a special case 
of some more complicated theorems they discover. Similarly 
if the universe had consisted solely of (highly intelligent) 
nO mesons or photons, whose numbers are not conserved, it is 
doubtful if they would have discovered our elementary 
rules of addition and subtraction. For that matter, even the 
concept of numbers may not have been discovered in such 
a world where the number of objects has no sanctity!) 

Such considerations tend to support the possibility raised 
earlier, that the content of mathematics (or at least its early 
simple branches) was developed in response to the physi-
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cal environment of human beings. Indeed, as we trace the 
growth of modern physics we can see the parallel symbi
otic growth in mathematical methods and results. 

The physics-mathematics symbiosis 

From its beginning 'modern' physics (i.e. of the seventeenth 
century and beyond) has been very closely related to mathe
matics. In fact the organizational separation that prevails 
between the two subjects in today's academic community 
was simply not there in the early days of science. Both sub
jects were viewed as part of the larger pursuit of natural 
philosophy. Often the same people worked on both areas 
even at the highest levels. Newton, in order to make precise 
his laws of motion and obtain exact consequences from them 
had perforce to also to learn and invent aspects of differ
ential calculus. Similarly in order to calculate the gravita
tional force of large bodies, starting from the force between 
point-masses required the development of integral calcu
lus. (Incidentally the controversy between Newton and Leib
nitz on credit for discoveries in calculus is well known. But 
as Herbert W. Turnbull, the British algebrist, points out, 
long before Newton, another member of the physics pan
theon, Kepler, in effect must have used some techniques 
of infinitesimals in calculating areas bounded by curved 
orbits. Recall his Law on equal areas swept by planets. He 
apparently developed these methods in part to estimate 
the volume of wine-casks!7) Returning to Newton, although 
he is generally listed among the great physicists, he was of 
course also a great mathematician of his time, and the title 
of his magnum opus was in fact Philosophiae Naturalis 
Principia Mathematica (Mathematical Principles of Natural 
Philosophy). Similarly, as an undergraduate I first encoun
tered the name of Gauss in connection with physics - the 
Gauss theorem as used in electrostatics. It is only later in 
life that I found mathematicians claiming this great man 
as their own, and as it turns out, with justice, given the huge 
contributions he had made to pure mathematics. In the mind 
of the common man too, the distinction between mathe
maticians and theoretical physicists is blurred. Was Einstein 
a physicist or a mathematician? To me he was undoubt
edly a physicist, but in popular parlance his name is syn
onymous with mathematical genius! 

The further advancement of physics beyond classical 
mechanics to cover electricity, magnetism, sound and light 
waves were all made possible by corresponding devel
opments in the theory of ordinary and partial differential 
equations. The derivations of the results were greatly simpli
fied by the use of complex variable theory. For a long time 
after that there were continuing instances of physical devel
opments motivating new areas and results in mathematics, 
such as symmetries in physics spurring the growth of group 
theory, Brownian motion leading to functional integrals 
and the Weiner measure (which in turn facilitated Feyn
man's formulation of quantum mechanics) or most recently 
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the use of non-abelian gauge theory combined with super
symmetry in particle physics set the stage for important 
results in modern mathematics through the work of Witten 
and others. 

Such a symbiotic mutually supportive growth in our under
standing of the physical world on the one hand and our disco
veries in mathematics on the other, renders less mysterious 
the successful application of the latter in understanding and 
coping with the world. But as mathematics has grown 
more and more abstract in the past 50 years and farther 
removed from human experience, instances of such synergy 
between mathematics and physics become rarer. Correspon
dingly most of modern mathematics was developed, not 
from physical examples, but from exerting the power of 
logical thinking inherent in the mathematician's brain. As 
we have remarked earlier the basic framework of logic on 
which all mathematical results rest must be a very general 
attribute assimilated by the human brain fairly early in 
human history - or else it could not enjoy the kind of 
universality it does. It seems incredible that the machinery 
for constructing the excruciatingly abstract areas of today's 
modern mathematics could have evolved from primitive 
human experience of the external world. Besides, even the 
broad contours of when and how, in biological terms, the 
'software' of mathematics (or is it actually the hardware 
in terms of neural connections?) was loaded into human 
brains in the evolutionary process are not available. At which 
stages of human history did the rules of logic and axio
matic deduction, common to all branches of mathematical 
thinking, get imbedded in human minds? Alternately, if the 
development of mathematics in humans had nothing to do 
with the environment, why then is it so successful in descri
bing aspects of the external world? 

So we are back to questions with which we had started. 
We have done no more than elaborate on the issues without 
arriving at firm conclusions. But, as we said in the begin
ning, established and universally accepted answers to these 
questions are not available. We still do not fully understand, 
to use Wigner's phrase, the 'unreasonable effectiveness' of 
mathematics. 

Mathematics and good taste 

We would like to conclude with a somewhat judgmental 
comment on the use of mathematics in other branches of 
knowledge. A crucial ingredient in such use in any science 
or social science is a sense of taste and proportion in the 
choice of the mathematics to be used. Such taste has not 
always been displayed and its importance has not been 
emphasized as much as it should have been. Historically, 
mathematical methods were first used to any substantial 
extent only in physics and astronomy. By the end of the 
nineteenth century, the theoretical underpinning of all of 
physics and physical engineering was mathematics based. 
The precision of analysis and accuracy of prediction that 
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this brought to physics were impressive. Gradually but inevi
tably, this led to a trend among other fields of knowledge 
as well, of emulating physics in the practice of using mathe
matical formulations. Today chemical, biological and envi
ronmental sciences include many significant sub-fields that 
employ mathematical techniques. In social sciences, quanti
tative empirical data and their statistical analysis are used 
to substantiate and augment qualitative and intuitive theo
ries. In economics, advanced ideas of game theory and even 
topology come into play. Management theorists employ 
complicated optimization techniques. 

By and large this trend had desirable consequences. More 
and more subjects were driven by this development towards 
including quantitative forms of analysis as part of the field. 
The use of mathematical formulations and equations also 
induced further precision of thought. But, for all the advan
tages it offers, there is also a negative side to such wide
spread use of mathematical methods and 'models' in more 
and more fields. It can give rise to a misguided impression 
that a piece of work heavy with mathematical equations 
necessarily contains results commensurately useful or rele
vant to the system it has set out to study. Conversely, it fosters 
a feeling that people who do not explicitly use mathematical 
methods and symbols are less precise or rigorous in their 
thinking. Not infrequently this leads to some snobbery asso
ciated with the use of mathematical methods. These methods 
with their mysterious symbols and equations are used to 
overwhelm others not fluent in them. Such trends can be 
injurious to the healthy development of a field. They can 
distort priorities, deflect attention away from the really 
important issues relevant to the subject matter and should 
be curbed. It must be remembered that most pioneers and 
deep thinkers in any field are blessed with intrinsic powers 
of precision and analysis regardless of the formal level of 
mathematics they employ. Neither Freud nor Karl Marx 
nor Darwin employed any mathematical techniques in their 
gigantic path-breaking work. (One could even argue that it 
is your 'average good' scientist for whom the mathemati
cal language is more important. It keeps him on the straight 
and narrow path of logic and prevents him from wandering 
into vague or internally contradictory statements. Mathe
matical equations expose such follies.) 

As a corollary to this, even in those areas where some 
mathematics is truly needed and useful, a sense of good 
taste has to prevail to avoid excess. There is a level of mathe
matical formulation appropriate to any given problem. Using 
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a more sophisticated version would not only be a case of 
cracking peanuts with a sledgehammer, but can often obfus
cate the real issues. Of course there are many topics, par
ticularly in physics, which genuinely and unavoidably require 
advanced mathematical machinery. When Dirac first for
mally codified quantum theory he had to employ the canvas 
of infinite dimensional vector spaces and operators. There 
is no significantly simpler, less complicated, mathematics 
that can comprehensively describe the broad array of new 
physical and philosophical ideas that quantum theory 
contains. (The alternate but equivalent formulation by 
Feynman using path integrals - a method whose core idea 
was suggested by Dirac himself - is in its own way equally 
complicated, with basic quantum results like the Heisen
berg uncertainty principle requiring very gingerly treatment 
of the jagged 'paths'). Einstein's General Theory of Relati
vity again had to unavoidably use the differential geometry 
of curved 4-dimensional space-time. Similarly, the theory 
of elementary particles and their strong and electro-weak 
interactions has to unavoidably use quantum non-abelian 
gauge fields. All this is fine, as long as the criteria of mini
mality and unavoidability characterize the choice of the 
mathematical apparatus used to study a problem. Anything 
less will not do the job and anything more will be wasteful, 
if not detrimental. 
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