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We have developed a simulation technique to obtain the
dynamic spectra of electromagnetic signals propagating
through an inhomogeneous magnetoplasma. The Max-
well’s equations and equation of motion are solved to
determine the expression for wave fields. By expressing
the excitation source in terms of Dirac delta function,
the exact frequency—time dependence of the propagating
non-monochromatic signal is computed for different
magnetoplasma models. The results are further used
to obtain the dynamic spectra of whistler mode waves
propagating through different regions of the terrestrial
magnetosphere, which have wide applications in the
diagnostics of magnetospheric parameters. It is interesting
to observe that the technique used under various condi-
tions simultanecously explains low dispersion whistlers,
nose whistlers, precursors and proton whistlers. Finally,
we attempt to explain whistler mode waves observed
particularly at low latitude Indian ground stations.

THE return stroke of lightning discharge is known to generate
electromagnetic signals in wide frequency range in all direc-
tions. Part of the signal energy is reflected back from the
ionosphere and propagates in the space between the earth
and the ionosphere, while a part of the signal energy pene-
trates the ionosphere and propagates in the magnetosphere
along the geomagnetic field lines in a very low frequency
(VLF) band (® < ®,, where o is the signal frequency and
, is the electron gyro frequency) with little attenuation.
These naturally occurring, right circularly polarized waves
in low frequency range (@ <€ ) called whistlers provide
a powerful ground-based technique for probing the mag-
netosphere’. The analysis of dispersion of these radio signals
in the audio frequency range that ‘whistle’, yield information
about the medium parameters such as electron density, total
electron content of a flux tube, electron temperature,
magnetic field and large-scale convective electric fields
in the magnetosphere’.

Whistler mode waves were first observed by telephone
operators during the First World War’, and subsequently
studied by Eckersley* and Barkhausen’. Storey® made syste-
matic observations and explained various features using
magnetoionic theory of wave propagation. Since then,
huge amount of data concerning whistler waves and related
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VLF emissions is available mostly from mid- and high-
latitude regions”®. Relevant data from low-latitude regions
are meagre and mostly come from Indian and Japanese
stations'”. The rate of whistler occurrence is quite low at
low latitudes, although the thunderstorm activity is quite high
near the equatorial region, which is the natural source of
VLF waves in the space plasma"'®'". Whistler occurrence
at low latitudes is controlled by the presence of fewer ducts,
curved geomagnetic field lines, plasma inhomogeneities
and attenuation/amplification of waves during propagation
from the source to the observation point.

The VLF waves received on the earth’s surface propagate
along the geomagnetic field lines. Amplitude measure-
ments at the conjugate points showed that VLF waves
propagate almost without attenuation. The propagation mode
at the mid- and high-latitudes is ducted mode, whereas at
low latitudes it is non-ducted, pro-longitudinal mode’.
Ohta er al.", using three-dimensional ray tracing for the
realistic ionospheric/magnetospheric model, had shown
that whistler-mode waves at low latitudes could propagate
parallel to the geomagnetic field lines without appreciable
attenuation and one can easily observe one-hop and three-
hop whistlers.

Signals propagating at finite angle to the magnetic field
suffer a large attenuation and hence are dissipated in the
magnetosphere. However, VLF waves can propagate in
longitudinal mode and get dispersed because of frequency
dependence of their group velocity. In magnetized (ani-
sotropic) plasma, we considered longitudinal propagation
of VLF non-monochromatic waves, which exhibit a charac-
teristic dispersion. Moreover, group velocity further depends
upon the plasma density and magnetic field strength of
the ambient medium. In order to explain the shapes of the
signal on spectrograms, earlier workers have either used
approximations'” or different extension methods were applied
using the results of the monochromatic solution'*"”. None
of these studies could account for complete and precise
determination of the space—time functions of the electric
and magnetic field strengths resulting from an arbitrary
excitation source.

In this article, we present the full wave analysis'® to derive
the whistler-mode signal propagating longitudinally through a
one-dimensional, inhomogeneous, weakly ionized magne-
toplasma, in which wave energy dispersion is caused by
interaction between electrons and wave fields, and dissi-
pation of energy is caused by collisions between electrons
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and neutrals. The Maxwell’s equations, continuity equation
and equation of motion are used to develop the appropriate
wave equation, which is solved by using the technique of
Laplace transformation. In consequence, we obtain the
expressions for electric and magnetic fields as a function
of frequency and time for a given source current. We consider
weakly inhomogeneous magnetoplasma in which electron
density and magnitude of the magnetic field of the ambient
medium are considered to vary gradually in space and
this variation is taken along the direction of propagation
of the wave, which is also the direction of the magnetic field
(Figure 1). In the present formulation, only the magnitude
of the external magnetic field is assumed to vary during
wave propagation, however, variation in the direction of the
magnetic field is not taken into account.

Here, a simulation technique has been developed to
compute numerically the whistler-mode signal as a function
of space, time and frequency for a given model of magne-
toplasma, with special reference to the terrestrial magneto-
sphere. We discuss some of the properties of recorded
whistler-mode waves at the ground-based Indian stations
located at different latitudes and longitudes. Further, the effect
of variation of collision frequency on the spectra of the
observed whistlers at low-latitude stations is studied.

In addition, the dynamic spectrum of the whistlers recorded
at mid- and high latitudes usually contains the nose fre-
quency, at which the group delay time of whistler propa-
gation is minimal, whereas the nose frequency does not
appear on the spectrogram of whistlers observed at low-
latitude stations. At low latitudes, nose frequency is of
the order of 100 kHz, which cannot be observed at the
ground station due to high attenuation at such a high fre-
quency, because the attenuation of VLF waves propagating
through the ionosphere is minimum for wave frequencies
~5kHz and it increases as wave frequency increases or
decreases. However, the nose frequency is an important
element in whistler analysis, especially in the determination
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Schematic model used in computation of whistler-mode wave propagating through inhomogeneous magnetoplasma.

of the path of propagation. The present technique yields
complete spectrum, including nose frequency and hence
is quite useful in probing. Because with the known nose ex-
tension techniques, calculation of nose frequency is possible
but the error introduced in the estimation is quite large.

Further, one of the interesting and intriguing naturally
occurring VLF phenomena is that of whistler precursors,
discrete VLF emissions which are observed before the
whistlers with which they appear to be associated. Pre-
cursors appear on frequency—time spectrograms as rising
tones. When the signal partly reflected from the equatorial
region is received on the earth’s surface, it resembles a
one-hop whistler. If the gap between the spectra of one-
hop whistler and precursor is very small, then both may
combine and we get spectra closely resembling hooks.
Simulation of the precursor is another important feature
of the work presented; the dynamic spectrum of precursors
could not be properly explained otherwise. The spectrum
of the precursor is numerically computed by considering
parametric reflection of parallel propagating whistler-mode
waves when wave frequency becomes equal to the lower
hybrid resonance frequency. The latter is geomagnetic field
and plasma density dependent. The waves are parametri-
cally reflected from two points located before and after
the equator.

Here, we also replicated proton whistlers that are electro-
magnetic waves observed in the ionosphere, as a rising
tone following short fractional-hop electron whistlers and
that asymptotically approaches the proton frequency at
the satellite. Proton whistlers are mostly detected in the alti-
tude range 1000-2000 km by satellite-borne VLF receivers'’.
They are the dispersed forms of the original lightning im-
pulse that propagates as left-hand polarized ion-cyclotron
waves. The dispersion arises from the effects of ions on the
wave propagation in the ionosphere, and therefore, hydrogen
ion concentration, electron density and proton gyrofre-
quency can be determined from the dispersion analysis of
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proton whistlers. The proton whistlers are simulated consider-
ing propagation of non-monochromatic signal through
multi-component plasma existing in the ionosphere/inner
plasmasphere. Earlier proton whistlers are explained by con-
sidering polarization reversal of the right-hand polarized
signal into the left-hand polarized signal at the crossover
frequency in the upper ionosphere.

Theoretical formalism

We consider a transient current source in plasma-free
medium, which generates wide spectrum of electromag-
netic fields. These waves while propagating through the
plasma medium interact with the electrons and ions pre-
sent there. The Maxwell’s equations govern the propagation
of the wave, whereas the coupling of wave field with the
medium is governed by the momentum and continuity
equations. These equations are solved in closed form to
obtain the expression for wave fields.

In the derivation of wave fields, we consider the source
of signal (lightning discharge) to lie in region ‘1’ as shown
in Figure 1, in which the plasma is absent and hence medium
‘I’ has no significant interaction with the signal. Figure 1
shows the location of excitation inside the half-space ‘1°,
i.e., 0 <x <x« during the time interval 0 << #;; where
x+ < xp, Xy being the boundary surface separating the free
space and plasma medium. The direction of excitation
or source current is taken parallel to the z-axis, i.e.
Jy(x,t) = Jy(x,1)é.. The medium 2’ is supposed to be an
infinite half space embedded by the magnetoplasma.

The plasma density and dc magnetic field are considered to
vary in the x-direction, while collision frequency (v.) is
taken to be independent of space. The interaction of signal
with the plasma medium is governed by the equation of
motion and Maxwell’s equations, which form a close set
of equations. The velocity of the charged particle v is gover-
ned by the momentum equation:

mé;—v—i-mvc\T:q(E—i-v_xE), D
t

where B = Bgo + Bi(r, t), Bro is the steady state magnetic
field taken to be in the x-direction, E(r, t) and B(r, f) are
the electric and magnetic fields of the wave. In general,
|B1| < |Bro| and hence it is neglected. Writing eq. (1) in
component form and following the procedure of Kamke'®",

we obtain the solution in the following form:
y, = {C +[LE, @) de 1 )
L m

vt :
v, =e (G coswyt+ C,sinw,r)

- )

+ij(py(r)e sinw, (£ —1)d,
OJb ;
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v, =€ ¥ (Cy cos®,t+ C, sinw,t)

) @)

+Lj(pz(r)e sine, (t—1)d,
OJb ;

where

cpy(r)=%[E;(r)+vcEy(r)—wbEz(r)],

0. () =%[E;(r)+vcEZ(r)+wbEy(r)].

The homogeneous terms of the above equations do not con-
tain the contribution from the excitation source and hence
they are not real signals. Therefore, these parts will be eli-
minated in the computation of current. Substituting the
expression for velocity components, the expressions for
current components are obtained as,

J,=¢qNv, :sowf,e_VC’ |:JEX(7,T)eVCTdT1, (5
t
1 (0F, _
J, =g’ {—[=Le ™V sinw, (r—1)dt
d P {wb J ot
1 _ .
+—v, j E,e " sinw, (t—1)dt (6)
OJb f

—jEZe‘Vc(H) sin®, (¢ —r)dr},

t

1 0E
J =g,02{—[—2e™ D ginw, (t -1 )dt
0 p{wb! o b )

1 _ .
+—v, [ e sinw, (t—1)dz (7)
0,

+ jEye_VC(H) sin®, (t—r)dr}

t
Substituting the above equations into Maxwell’s equations,

- - — E - — oH
VxH:J+soaa—]f and VxE:—poa—Ij,

we obtain the following differential equations:

oH
o, oMy =g, wze_VC’jEx (7Fo)e’ dt + IE, ,
dy oz P ot

t
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o, ok,
oOf, 9H, s{ jat V(H)smwb(t—r)dr\

Jdz Odx o,

2
®
+—pvchye‘Vc(H) sine, (1—1)dt

oE
2 —V,(—1) .z _ =y
ijEZe sin®w, (t—t)dt + > },

t

(8)
oH, o, )
. { j — e P sino, (1) de
0)2
+—L2y |E %P ging, (1—1)dt
wbvc! 1€ Sine,(f—T)
E
+(x)§jEy &+ sine, (¢ 8;} )
OE, OE,  9H, ™
» 0z M
0E, O o,
X _ z _ _ , 9
o 0y s ©
o on_ o

x> o 0o

Taking time derivative of eq. (8) and using eq. (9), we

obtain
]:0.

1 O’E
- E +
c ot
Equation (10) describes plasma oscillations and hence for
a plane wave signal propagating in the x-direction, we con-

sider £, =0, and ai:aiz 0.
)y )z

(10)

The remaining electric field components are obtained
as:

’E t OF
y_ 1 m}f(x)la—rye%(”)coswb(x)(t—r)dr +v 07 (x)

O

[E,@e™ ™ cose, ()1~ ) dt 0, (x)07 (x)
0

(1t o’E
jE @) cosw, (x) (¢ —t ) dt + a;y :

(D
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2
8 { ( )JaEZ Veli=e) cos®, (x)(r—1)dt +Vc(x)§(x)

jE )™ o

cos(x)b () (r—7)dt +(x)b(x)(x) (x)
0%E,
o |’

where the wave is assumed to be propagating along the x-
direction. To solve the above differential equation, the
method of Laplace transform is applied only for t — s
transformation and not for x — p transformation, because
angular gyrofrequency (x) and angular plasma frequency
,(x) are arbitrary functions of x due to the inhomogeneity
of the magnetospheric plasma.

In deriving the above equations, generality of the solution
is retained by considering the excitation at ¢ = 0, so that at
t <0 there is no signal in the plasma. Thus the following
initial conditions are satisfied:

j E, @)™ cosa, (x)(1—1)dr +
0

(12)

0E (x,t) i
E, (x,t=0)=¢,,(x)=0; ——— =¢, (=0,
ox o
oE, (x,1) .
E,(x=0,0)=¢,,(x)=0; | T (x) =0.
=0

For a weak or quasi-inhomogeneous medium, W.K.B.
method of solution is applied, where the propagation factor
given for homogeneous plasma forms the basis of the in-
homogeneous solution®”'. This implies that if P; is a pole
and solution of wave field then,

[ p(x, $)dx
eP(S)X : NN
(s & jo)

The Laplace transform of eqs (11) and (12) after using the
above boundary conditions reduces to,

2
202E (p.s)=| 2 (s+v) 2
cp y(p S) |:wp(x)(s+vc)2+w§(x)+s (13)
E, (pr5) -2 ()0, () — ) E (p.5)

(5+v,)* + @7 (x)

and

2
ZPZEAPADZ{QEU? (o ve) +s21

(s+v,)" +03 (%)

(s+v,)

E,(p,s)+0; (x)o,(x) (14)

(s+v,)* +0; (x)

E,(p,s)+c’[ peg,(s)+elo,(5)].
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where ¢,,(s) is Laplace transformed form of
JE, (x,1)
ox x:O.

Rearranging the above equations, poles are obtained as>,

Pro3a(%,8) =

@) (D[ +V,]* +57[{s+v }7 +0; (0)]+ 1)

JO ()0, ()5 +V. ]

[s+v 1> +0; (x)

+1
C

Equation (15) represents four poles leading to four waves
in the medium. Substituting s = jw, the four poles are rewrit-
ten as

02 (@2 +02 -0)+on,0>
-+ . P b b*p
pl,z___] 2 2 :

c W, -0

| Ve @y 0"+ ¥ 20@; ~07)+00,]

2 2 2 2 2
00,0 +0" (@, +0, —07)

vZ+2jmv,

1+ 3

o] —

p _'T-l (mmbm§+m4)—m2(mg+m§)
3,4 B :

2 _ 2
0, -0

1+Vc2(031;2 —m2)+jvc[2m(m§ —m2)+m§mb] (16)

(mmbm§+m4)—m2(m§ +me)

2 .
1+V” +2jov,
m,f—mz

where ®, and ®, are space-dependent.

The field components, corresponding to poles p, and
P2, belong to whistler-mode signal. This is verified by de-
riving the polarization of the signal where we obtain,
Eyx,s) = jE(x,s). Thus, the complete expression for
E,(x, s) is obtained as™,

czao (x,8)a,, (x,5)a,(s)
by (x,s)

{pl (x,5)+ 1 (S)} s
eO

E, (x,5)=

a(s)

[pr (x,8)— p3 (6, )]y (x,8) = s (x,5)]

a7

a,(s) o

[P (9= PRI (65) — pa (1,5)]

|:_p1 (x5 + 40 } e
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In the above, we clearly see that there are two components
of E,, one propagating in the forward direction and the
other is the reflected signal propagating in the opposite
direction. Similarly, £, also has two components and is
obtained as:

E.(x.5)= czam (x,8)a,(x,5)a,(s)
A by(x,s)

L’I(X’S)Jr B lez (r.9)= (X,S)} [r(sic
eO

a(s) ay(x,5)

[ (x,8)— p3 (.S Py (x.8) — pa (%,5)]

{_pl(x’sﬁ al(S)lez(x,S)_ aB(x,S)} G

a(s) ay(x,5)

[p1 (x,8) = p3 (0, )]y (3,8) = po (%,5)]

(18)

>

where a; and b, used in eqs (17) and (18) are given below:

ay (x,8) ==, (N0, ()[s+Vv,],

a..(%,5) =[s+V I’ + 0 (x)

ay(s)=e, ()= B(s), ay(s) =e.q (s) = A(s),
ay(x,8) =0, ()[s+v I +5 (s +v,. I’ +0; (%)),
ay(x,5) = {[s 4V, I’ +@; ()},

by (x,5) = {[s+V,. Jo, () (0)F +@ ) (s +v,.T*
+5H sV, I +0; (0} +20; (s +v, T

SH{[s+v I+ o5 (x)}

by (x,5) = 2¢*{[s +v, ] +0; ()} o) (D[s+v, ]

+52{[s+v I’ + 07 (x)}}
by(x,5) = cH{[s +v, . +@ (x)}*.

After rearranging the terms and considering the lower
limit of the integrals as x = xq, (x is the starting point of
medium ‘2’), the field components for p; and p, = —p; are
obtained as

[ Pi&s)dg

E,(x,5)=j [ay py +ay]e®

_
4p,(x,s)

(19)
- n&.s)dg
_[_azpl +a1]e o ’
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and

[ mese

E (x,5)= [aypy +a,1e”

4py(x,5)
. (20)
- p&s)dg
—[-a,pi+ale ™

The magnetic field of the whistler-mode wave is obtained
from the Maxwell’s equations as,

i, () =22 g, 1)
OS
P (x,5)
H, (x,8)=——"——E(x,5). (22)

0

Substituting the values of £,(x, s) and E(x, 5), we obtain®

[ 21 .5)ds

1
H,(x,5)=——<[a,p; +q ]e”
4u,s

(23)
-[ pE.5)dg
_[_azpl +a1]e o s
. [ e
H_(x,8)=—j [a,py +ay]e”
4 OS
(24

- p&5)d8
—[-a,pi+ale ™

Considering only forward propagating terms of field
component, and substituting p,(®) = —jK;(®), s =jo the
field components are rewritten as,

iR
£ (x,0)= a, (MK, (x,0)+ ja(w)le ™
(x, ) 4K1(w)[2( K, (x,0) + ja (@)]
- K
=ELe ™ )
and
K€ o
Krw) ., I8
H,,(x0)=——""""SFe ® : (25)

0
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In a low loss medium (v, <€ m), the spectral Poynting vector
is assumed to be constantlé, and hence we can write

S~ (B, = (B 2 = const = (47,

0

(26)

where (H,,,)* is the complex conjugate of 1,,, n;(x) is the
refractive index of the medium, Z; is the wave impedance
for vacuum and A (®) contains the unknown initial condi-
tions characterizing the influence of the excitation.

The final form of the field components is obtained by solv-
ing the mode coupling equations at the boundary surface
A;, which separates medium ‘2’ containing inhomogene-
ous plasma and medium ‘1° which is plasma-free medium
containing the excitation source. Considering that the
modes arising in the medium are not changed”™, we obtain

—Eiyg = JZoHyy + JHy

—EpgtEg =ZoHyy + Hy @7
Eg+ELg=Eyy +E, .y,

Eiyg = JEyw = JEy N

where subscripts R, W, N and G denoted for reflected
mode, whistler mode, non-whistler mode and mode directly
generated from source-current respectively. Representing
the excitation source by a Dirac delta function J; (x, f) =
Lo0(x)0(7) and using the constancy of Poynting vector in
a weakly inhomogeneous medium, we obtain the whistler-
mode signal propagating through an inhomogeneous mag-
netoplasma as>’,

Z, e /K (xy,0)
Esz(xﬂt):_ﬁ j Iy(®) ﬁ
o, [N

in

j{mt—jKl(i w)dg

ky (@) 0 Lw

ko (@) + K (x),0)

and

[

1 K (x,
HZym(x’t):E j Ixo(w)"#(:;))

min

. (28)
K j{mt—f](l(i ,m)di}
1(x09w) e 0 dOJ,
ko (@) + K (x,0)
where 7,4(®) is the amplitude of excitation current,
ky = 2, and
c
. 2
- W (X
Kl(x, w):ko-\/l— 2{ ]Vc} p( )
o {{o-y ]+, ()}
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in simplified form.

The above result for two-component plasma (the effects
of the motion of ions are also taken into account) for a
lossless medium consisting of electron and proton reduces
to:

k.
EZzew(x t) - j xO( ) ]i((xO’w))
o 1 (29)
_ k@) e
@)+ () xp{]{wt xjokl(a,w)d&Hdw
and
Zy k3 (x;,
By (X,1) :_E J 1 (@) ;3(()2) 0)))
O (30)

ky (@)
ko (@) + k3 (xp,0)

exp{ {wt— [ &5, @)dE H

where subscript e is used for electron whistler and p is used
for proton whistler.

o, (0} o7 (0}

010, () -0} 0] (x)+o0}

ey (x,0) :ko(w).\/1+

and

for (0} fo; ()}

o] ()-0} ol; ()+o}

ey (x,0) = ko(w).\/1+

where, ®,,®, are electron’s plasma frequency and gyro-
frequency of the electron respectively, whereas plasma
frequency and gyrofrequency of the proton are represen-
ted by @, and o, respectively.

Computational technique

The above formalism is used to evaluate the dynamic
spectrum of whistler-mode waves propagating longitudi-
nally through the terrestrial atmosphere. We have chosen
the case of terrestrial atmosphere because measured dynamic
spectra under different conditions are available and we
can easily compare the measured and numerically simulated
results and validate the technique used in the evaluation
of the electric fields as a function of space and time.

In evaluation of the above expression, we require electron
density and magnetic field distribution along the path of
integration (propagation). For the magnetic field we have
taken dipole variation of terrestrial geomagnetic field;
however, the diffusive equilibrium model DE-1 is con-
sidered for the electron density distribution®’, with appro-
priate parameters, viz. electron density, electron
temperature and ion abundance ratio like N(O") = 90%,
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N(He")=2% and N(H")=8% at reference height
(750 km), where the signal is supposed to enter in to the
magnetosphere. At the reference height, the particle num-
ber density (N.r) and electron temperature (7,.¢) are taken
from the satellite-observed data®. The integration along
the path of propagation is carried out using Simpson
quadrature integration method.

In this manner, the electric field is calculated for the
whole frequency range (0 < ® < ®;) for each frequency
component separately. For evaluation of the dynamic
spectrum, we have used the basic theory of signal processing.
Concentrating on sampling theorem, discrete Inverse Fast
Fourier transforms of N frequency points are computed to
get the temporal variation of the wave field. We take the
original vector of data f; and rearrange it into bit-reversed
order, so that the individual numbers are in the order not
of j but the number obtained by bit-reversing j. We combine
adjacent pairs to get two-point transforms, then combine
adjacent pairs of pairs to get four-point transforms, and
so on, until the first and the second halves of the whole
data-set are combined and the final transform is obtained.
Each combination takes of the order of N operations, and
there are evidently log, N combinations, so that the whole
algorithm is of the order of log, N.

Furthermore, the dynamic spectrum of signal or time-
frequency mapping involves mapping of a signal (i.e. a
one-dimensional function of time) into an image (i.e. a
two-dimensional function of time and frequency) that
displays the temporal localization of the spectral compo-
nents of the signal. Therefore, to derive the dynamic spe-
ctrogram of the signal we have used Short Term Fourier
Transform (STFT) technique, which involves chopping of
the signal into short pieces, and then Fast Fourier Transform
(FFT) is carried out piecewise. Moreover, STFT repre-
sents a sort of compromise between time—and frequency-
based views of a signal. It provides information about
both when and at what frequencies a signal event occurs,
although this information can be only obtained with limited
precision; the precision is determined by the size of the
window, which is governed by the uncertainty principle.

Simulated results

Whistlers

Figure 2 a shows the dynamic spectra of whistlers com-
puted from full-wave model for Varanasi (L = 1.07), Nai-
nital (L =1.17) and Gulmarg (L = 1.28). The dispersion
of the wave depends upon path length, magnetic field and
electron-density distribution along the path of propagation.
Hence it varies from station to station. The zero frequency
dispersion of the computed spectra is calculated and
found as 5.8, 13.8 and 25.6 "2 corresponding to Varanasi,
Nainital and Gulmarg respectively. The dispersion is cal-
culated for the magnetospheric path only, which is twice
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Figure 2.

Varanasi with different inter-particle collision frequencies.

the dispersion produced during propagation from the refer-
ence height to the equator. In this computation dispersion
produced during ionospheric path is not taken into account.
The dispersion of observed whistlers at Varanasi, Nainital
and Gulmarg is 12, 19 and 24 s'? respectively’®?’. If the
correction is made for the ionospheric path of propaga-
tion®®?®| then the observed dispersion value reduces to 5,
11 and 17 s"* for Varanasi, Nainital and Gulmarg respecti-
vely. This shows that the simulated whistlers resemble closely
to those observed at the low-latitude Indian stations.

The dynamic spectra shown in Figure 2 b, provide the
simulated results for lossless as well as lossy medium for
Varanasi. Instead of space-dependent collision frequency
(v.) we have calculated for three constant collision fre-
quencies, viz. v, =20, 50 and 80 Hz. From Figure 25 it
is noted that the lower frequency part of the spectrum dis-
appears showing that the effect of collision is not equally
strong for the whole frequency range considered. We also
note that when the collision frequency becomes appreci-
able, then at low latitudes whistler waves could appear as
sferics because of larger attenuation at lower frequencies.
Thus low-latitude whistler waves propagating during the
conditions of enhanced collisions may appear as sferics.
The major part of the propagation path of low-latitude
whistlers lies in the upper ionosphere, where field-aligned
plasma irregularities are abundantly present which affect
the propagation of the VLF waves through the processes
such as scattering, reflection, absorption, etc. To decipher
these processes, simultaneous measurements of VLF
waves and electron density fluctuations should be carried
out.

Nose whistlers

The dynamic spectra of whistler-mode waves when extended
to higher frequencies exhibit a nose-like spectrum. Usually
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a, Dynamic spectra of whistler-mode signal simulated for Varanasi, Nainital and Gulmarg. b, FFT spectrum of computed whistlers for

group delay time decreases with increase in frequency. At
a certain frequency, group delay time becomes minimum
and further increase in frequency increases the group delay
time. The frequency at which group delay time becomes
minimum is known as nose frequency. Whistler recorded
in India does not show appearance of nose frequency,
which plays an important role in the whistler analysis,
especially in the determination of the path of propagation.
In the absence of nose frequency on the dynamic spectrum,
extension methods are used to estimate nose frequency
and hence path of propagation of recorded whistler'*?.
Nose extension method developed for the analysis of
whistlers is not suitable for the whistlers recorded at low-
latitude stations, because nose frequency lies in the range
of hundred kHz whereas the observed dynamic spectra
mostly lie in the frequency range 1-10 kHz. Because of
the errors introduced in the estimation of nose frequency,
low-latitude whistlers are seldom used for probing the
medium. We have applied full wave analysis and simulation
technique to study the properties and observability of the
nose frequency of non-nose whistlers recorded at low-latitude
stations.

In this technique, the electron density, electron temperature
and L-values are fixed by comparing the observed dyna-
mic spectrum® with theoretically evaluated spectrum in
the lower frequency range. Then these input parameters are
used to reproduce the full dynamic spectrum of the whis-
tler, including nose frequency. Figure 3 a shows the simulated
whistlers with extended frequency range corresponding to
whistlers recorded at Varanasi on the 9 March 1991. A
clear variation in nose frequency is seen. It is found that
the nose frequency increases with decrease in L-value™.
Figure 35 shows the effects of variation of electron number
density on dispersion and nose frequency. Curve (ii) is
simulated for electron number density 7, = 1.895 x 10%cm’
at reference height, while curves (i) and (iii) are computed
for 10% increment and decrement in n,. Comparing these
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a, Simulated whistlers corresponding to observed whistlers at Varanasi® and extended to higher frequency range, including nose fre-

quency. b, Dynamic spectra of simulated whistlers: (i) electron density increased by 10%, (ii) normal electron density 7.r= 1.895 x 10* cm™, and

(iii) electron density decreased by 10%.

three curves of Figure 3 b, we find that the nose fre-
quency f, remains almost constant in all the three cases,
as f, depends only to a small extent on the ionization dis-
tribution’', while dispersion is different for curves a, b
and c, which is calculated as 26.6, 25.9 and 25.1 respecti-
vely. Therefore, variation in the electron density along
the path of propagation does not affect the nose frequency,
although dispersion value changes™.

Precursors

Precursors are riser-type signals observed on the dynamic
spectrum preceding two-hop whistlers™, which are supposed
to be triggered in some way by energy from the same
lightning discharges that caused the accompanying whis-
tler. The triggering mechanism remains unexplained because
precursors exhibit several properties that are difficult to
reconcile with available theories of generation mechanism.
We have used the concept of parametric reflection to ex-
plain the dynamic spectra of precursors™.

In parametric reflection, a signal propagating in whistler
mode along the geomagnetic field line may get reflected
when the wave frequency becomes equal to the lower hybrid
resonance frequency” ( fimr) which is given by

1 1 1
+

2 T 2 2w,
Orpr  Op; T O, biPbe

where ©,;, ®,, are gyrofrequency and plasma frequency of
ions, while ®;, is gyrofrequency of electrons.

In the case of dipolar geomagnetic field geometry, as the
signal propagates towards the equator it encounters decreas-
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ing magnetic field and, hence it is likely that the lower
hybrid resonance reflection condition may be satisfied
near the equator. Due to the symmetry of the dipole field,
we find that there are two regions for the parametric reflection
of a ducted whistler signal of a fixed frequency, which
are situated symmetrically relative to the equatorial plane
(Figure 4 a). The whistler, partially reflected from L, level,
produces a falling tone spectrum, whereas part of the signal
partially reflected from L, has a rising tone spectrum
forming a hook-like shape on the spectrogram.

The whistler signal contains a frequency band and hence
the whole signal will be reflected back from a range of
arc length along the path of propagation, depending upon
the lower and upper cut-off in the frequency of whistler wave
packet. Thus, reflection point for different frequencies
should be considered different. To make the computation
simpler we have considered that the whole signal is com-
pressed at f'=5 kHz and accordingly, the reflection point
is concentrated in a small arc length specified by fiur =
5 kHz. However, in real situation, the reflection coefficient
will be frequency-dependent, which is not considered in
the present case.

Figure 4 b shows the dynamic spectra of reflected signal
from L;, L, and two-hop whistler for L =2.0 and figr =
5 kHz. The reflected signal from L;, resembles the frac-
tional-hop whistler, whereas the rising or precursor-type
signal reflected from L, lies between 0.63 and 0.89 s. The
corresponding two-hop whistler lies between 0.95 and
1.22 s. The dispersion of precursor’s dynamic spectrum
changes as the location of L, along the field line changes.
If the reflection takes place from a point closer to the equator
then the dispersion decreases, whereas if the reflection
point moves away from the equator then dispersion increases.
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Figure 5. Dynamic spectra of electron and proton whistler clearly de-
picting the enhancement of group time delay at © = ;.

The shape of the spectrogram can also be obtained from
group time delay considerations. Arrival time for different
frequency components is evaluated separately and time
versus frequency plot gives the spectrograms. The group time
delay for the signal reflected from L, can be written as™,

4 L
TRlzzji, while 7, =2 | ds_

0 Ve(®) 0 Ve (®)
where v, is the group velocity of whistler wave, ds is the
path length along the geomagnetic field line, and L, and
L, are the locations of parametric reflection at the lower
hybrid resonance frequency fi .

Calculated group time delay 7%, = 0.05, Tz, = 0.90 and
Tiwonop = 0.94 s at frequency f= 10 kHz, while computed
time delays from dynamic spectrum are 7% =0.05,
Ty =0.89 and Tiyonep = 0.95 s at the same frequency.
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From computed time delays, Tz = Tiwohop — Tr1, Which con-
firms that reflection levels L, and L, are symmetrically situ-
ated on both sides of the equator (Figure 4 a). It is also seen
from the dynamic spectra that the time between causative
sferic and precursor at any frequency is greater than that
between the precursor and the two-hop whistler at the same
frequency™®. However, the delay between the sferic and trigger
point of the precursor is greater than the delay between
the trigger point and whistler at the same frequency’ .

Proton whistler

VLF wave observation on-board rockets and satellites
shows simultaneous presence of right-hand and left-hand
polarized mode. Right-hand polarized mode is known as
electron whistler, whereas left-hand mode is known as proton
whistler. To explain the dynamic spectrum of proton whis-
tlers, it was assumed that the right-hand polarized wave
modes transforms partly or entirely to left-hand polarized
ion-cyclotron whistlers as they pass through the crossover
region'’. However, the process of mode conversion and
its efficiency are not properly known. In the present case, we
consider that the proton whistlers arise as a result of wave
propagation through multi-component plasma. The pres-
ence of ions facilitates the propagation of left-hand mode.

In the case of multi-component plasma, right-hand polar-
ized mode propagates in the frequency range 0 < ® < w,,
whereas left-hand polarized mode propagates in the fre-
quency range 0 < ® < m; and group velocity for the two
modes are different. Thus one obtains two dynamic spectra
corresponding to electron and proton whistler mode (Fig-
ure 5). It is noted that as @ approaches to oy, group velocity
becomes quite small leading to large values for travel time.
A small change in wave frequency causes large change in
travel time. This is clearly visible in the spectrum of the
proton whistler.
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Summary

In conclusion, we have successfully modelled the dynamic
spectra of whistler-mode waves by solving Maxwell’s
equations using full wave theory. The computational method
incorporating simulation technique produces whistlers,
precursors, nose whistlers, and proton whistlers observed
at ground stations in India, and hence it offers a more
realistic description of different wave modes present in
the magnetoplasma. Moreover, detailed analysis further
determines the path of propagation which mainly lies in
the ionosphere and in the inner magnetosphere, where the
plasma processes are quite different and geomagnetic field
lines are found to be more curved compared to mid/high
latitudes. The influence of weak inhomogeneity along the
path of propagation is included and by considering the
collision frequency (collisions between electrons and
neutrals), we have accounted for losses in dispersive media.
It is encouraging to note that all the above described phe-
nomena are simulated with the same computational code
and with the help of same input parameters.

In the present method, plasma density and temperature
distribution in the magnetosphere play a significant role
and hence accurate measurements/models would give more
reliable parameters of the wave and medium. Further, we
have considered parallel propagation which is a limiting
factor because, in real situation, waves may propagate
with certain wave normal angle. In such a situation our model
is not valid. However, we are in the process of develop-
ing the mathematical model and computations for finite
wave normal angle.
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