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The computational identification of the low energy
structures of a peptide from its sequence alone has
been a problem of major interest for many years. It is
not an easy task even for small peptides, due to the multi-
ple-minima problem and combinatorial explosion. A
number of conformational search algorithms have been
developed in the past for this purpose. We have deve-
loped an algorithm that addresses this problem. In
statistical experimental design, mutually orthogonal
Latin squares (MOLS) are used to systematically sample
the space of the variables. This allows the experimenter
to conduct the experiment with a relatively small number
of runs, instead of examining all possible combinations
of values of the variables. We considered whether the
problem of searching for minimum energy molecular
structure on the potential energy surface could also be
similarly solved by MOLS sampling. This has led to
the development of a conformational search algorithm.
In this article, we briefly review the work carried out
in our laboratory using the MOLS search technique over
the last decade.

Background

THE computational identification of the optimal three-dimen-
sional fold of a peptide (or protein) from its sequence,
particularly if no reference is made to other known struc-
tures, is a complex problem and has received a great deal
of attention. A number of computational techniques have
been developed for this purpose'™®. In general, these techni-
ques work on the assumption that the equilibrium structure
of the molecule is one that corresponds to the minimum
of a suitable potential energy function. Consequently, the
techniques have two essential components. The first is a
model (representation) of the structure along with an appro-
priate potential energy function. There are several repre-
sentations (such as all-atom models, simplified models,
etc.) widely used in these energy calculations. The model
and energy functions are dependent on each other. In the
all-atom models, all the atoms, including hydrogen, are
used to represent the structure, and each atom is considered
an individual interaction centre in the calculations. Some-
times the hydrogen atoms are removed from the representa-
tion, e.g. a methyl group would be modelled as a single
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‘pseudo-atom’ or ‘united atom’. In even more simplified
models (or virtual atom models), each amino acid residue
is represented by one or two interaction centres (e.g. lattice
models, bead models, etc.). Several potential energy func-
tions or force fields (AMBER9, CHARMMIO, ECEPP“, etc.)
have been developed for the all-atom models, and are
commonly used. Several other energy functions (for the
simplified models), such as the residue—residue effective
potential’, are also in use today.

The second component is a conformational search algo-
rithm for searching the conformational space (or energy
hyper surface) of polypeptides and identifying low energy
conformations, of which there may be many, or just one
with the lowest energy. A number of conformational search
algorithms have been developed in the past and periodi-
cally reviewed”™. Here we give a brief digest of some of
the methods.

In most of these methods, it is assumed that the native
(i.e. naturally occurring) conformation corresponds to the
point on the potential energy surface with the lowest energy
value, i.e. the global energy minimum (GEM). Thus, the
main goal of conformational search is to identify this
point. This search is generally treated as a global optimi-
zation problem in which the potential energy function is
the objective function, and the torsion angles or coordinates
that are used to represent the conformation of the polypeptide
chain are the variables. The task is then to vary the values
of these variables and find the point where the objective
function has the global minimum value. However, this is
not an easy task because the multidimensional energy sur-
face of even small peptides consists of an astronomically
large number of points, with several minima, separated by a
multiple-scale distribution of energy barriers. It resem-
bles a rugged geographical landscape with many scattered
hills (energy barriers) and valleys (minima) having various
heights and depths. The computational search for the
GEM conformation therefore could get trapped in a local
minimum. This is called the ‘multiple minima problem’.

In structure prediction and conformational analysis,
particularly of small flexible peptides (e.g. enkephalins),
it may be important to find all the relatively small number
of low energy (local) minima, in addition to the global
minimum. This is because the multiple minima may possibly
correspond to different conformational sub-states necessary
for biological activity. Also, the GEM conformation may
not be the (experimentally determined) native structure,
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because empirical energy functions commonly used are
rather approximate, such as, for example, in their treatment
of the solvent interactions. Moreover, even with accurate
potential functions, the GEM may not be the most highly
populated minimum?, due to the shape of the energy sur-
face — a deep and narrow minimum may be less populated
than a broad, but slightly higher, minimum. Under such
circumstances, it is necessary to analyse as many different
low energy conformations as possible. This is why con-
formational search methods are usually interested in finding
not only the GEM on the PES, but also all minima whose
energies are of the same order of magnitude as the GEM.

To locate the GEM or to locate more than one minimum,
it is usual practice to generate a large number of starting
conformations equally distributed on the energy surface,
minimize them using local optimization techniques'® to
the nearest local minima, and then throw away the duplicates.
However, even for small peptides of, say, five residues,
having about a hundred atoms, finding the GEM or all low
energy conformations in a multi-dimensional PES is a compu-
tationally demanding problem. An exhaustive search is
impractical because the volume of the search space in-
creases exponentially with the number of degrees of freedom
(usually the dihedral angles), i.e. with the size of the
molecule. From a computational point of view, such problems
are related to non-deterministic polynomial time (NP)
hard problems'”, in that the total number of possible con-
formations is an exponential function of the total number
of degrees of freedom. It is widely assumed that it requires
an exponential amount of time to solve such problems.
This phenomenon is commonly known as ‘combinatorial
explosion’”. Therefore, we need some specialized confor-
mational search (optimization) algorithms that can explore
the complete conformational space and obtain all the low
energy conformations, at tractable computational cost.
Several such conformational search algorithms have been
developed in the past for peptides and proteins™®. These
algorithmic strategies are commonly known as conforma-
tional search techniques, and they are sometimes used to
generate initial starting structures for subsequent conven-
tional minimization, using, say, the conjugate gradient algo-
rithm. Some of these are briefly described below.

Conformational search techniques

Conformational search techniques can be classified broadly
into two categories; stochastic and deterministic methods.
Stochastic methods (Monte Carlo method, simulated an-
nealing, genetic algorithm, etc.) rely on probabilistic de-
scriptions to aid in locating the global minimum, and
there is no natural endpoint to the procedure. Whereas de-
terministic methods (systematic search method, etc.) provide
a certain level of assurance in locating the global minimum
and there is a defined endpoint to the procedure. Some of
the commonly used conformational search methods are listed
here with a brief description.
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Systematic (or grid or exhaustive) search methods

In these methods, each dihedral angle involving rotation
about a single bond of a molecule is systematically in-
cremented by a fixed amount (e.g. 30°) until all possible
combinations of dihedral angles for the chosen increment
have been generated. Each combination is subjected to a
local energy minimization. The search becomes impracti-
cally large for smaller increments, and the method is limited
to very small molecules or polypeptide segments'*.

Build-up procedures

Build up procedures are based on the assumption that each
fragment is conformationally independent of the other
fragments in the molecule. The polypeptide chain is divided
into fragments. Ensembles of structures are determined
for each of these small fragments, and joined to form the
overall conformation"’.

Monte Carlo methods (the Metropolis algorithm)

Monte Carlo methods are stochastic techniques, in which
the energy E, is calculated first for an arbitrary conformation.
By randomly changing the dihedral angles (coordinates in
Cartesian space), a new conformation is generated and its
energy E is calculated. This new conformation is accepted
or rejected depending on the Boltzmann factor

BE = e—(E—EO)/RT.

The BF value is compared with a random number (RN)
between 0 and 1. If BF > RN, this new conformation is
accepted; otherwise, it is rejected. This process is continued
until a set of low energy conformers has been generated.
Several modified Monte Carlo methods have been applied
for peptides and proteins'®'”.

Simulated annealing methods

Simulated annealing is based on a connection between
statistical mechanics and the process of crystallization. If
a physical system is heated until it melts, and then cooled
slowly, the entire arrangement can be made to produce
the most stable (crystalline) arrangement, and not get
trapped in a local minimum. Kirkpatrick and co-workers'®
first applied this strategy to computational optimization
of a multivariable function. The same phenomenon can
also be applied to the Monte Carlo Metropolis sampling by
establishing the correspondence between the energy and
the objective function of the optimization problem. The
method is widely used for the conformational search pro-
blems of molecules'*?.
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Genetic algorithms

The genetic algorithm is derived from the principles of natural
evolution, where an initial (parent) population is a set of
conformations that are randomly generated for a molecule.
The fitness of each member of the population is then cal-
culated using a fitness (energy) function. A new (children)
population is then generated from the parent population
(with a bias towards the fitter members), commonly using
three operators, viz. selection, crossover and mutation. The
cycle is repeated until user-specified termination conditions
are met and the best fit population is finally obtained. Le
Grand and Merz?', and Schulze-Kremer®” have reviewed
the application of the genetic algorithm in peptides and pro-
tein structure prediction.

Distance geometry methods

A molecule is described by a distance matrix whose elements
d;; are the distances between atoms i and j. A matrix of
upper and lower bounds for each interatomic distance is
calculated. Values are then randomly assigned to each in-
teratomic distance between its upper and lower bounds.
The distance matrix is converted into a trial set of Carte-
sian coordinates by a process called embedding and then
subjected to a minimization to find a conformer. The appli-
cation of distance geometry to modelling and prediction of
polypeptides has been reviewed by Taylor and Aszodi™.

Smoothing/deformation methods

Smoothing methods rely on the assumption that the global
minimum of a deformed energy hyper surface can be
traced back to the global minimum of the original function.
In these methods, the energy hyper surface of a molecule
is smoothed (or deformed) by successively removing en-
ergy minima until only the global minimum remains. This
is carried out by applying certain mathematical operators
(e.g. diffusion equation). The minimum is easily located
using one of the standard minimization methods. How-
ever, the position of the single minimum in this deformed
function is usually different from that of the global minimum
in the original one, and a reversing procedure is employed
to trace back from the single minimum in the final deformed
function to the related minimum in the original function
which is (hopefully) at the global minimum. A number of
smoothing procedures have been developed and applied
to peptides and proteins***.

Molecular dynamics

In molecular dynamics, one begins with a conformation
that is a minimum. The atoms in the molecule are typically
constrained using a force field. At regular time intervals,
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Newton’s second law of motion is solved for all atomic
degrees of freedom. New positions and velocities of the
atoms are calculated, the atoms are moved to these new
positions and the cycle is repeated. By performing this
process for a number of time steps, the dynamic behaviour
of the molecule at the desired temperature can be repro-
duced. At equal time intervals, conformations are selected
from the trajectory and minimized. Use of an elevated
temperature allows the molecule to climb over potential
energy barriers to reach new regions of the PES that may
contain lower-energy minima than the current region.
Molecular dynamics is computationally expensive, because it
requires a time step of the order of 1 fs, and is often limited
to peptides”?°.

Apart from the above methods, a number of other search
methods have been developed' ™. Some of these are not
only limited to polypeptides and proteins, but also can be
applied to other systems. Sometimes hybrid search methods,
which combine two or more of the above, are used*®.

MOLS conformational search technique

The conformational search method developed in our labo-
ratory searches the PES in an apparently exhaustive manner
to locate all the low energy conformers. This method is based
on the technique of using mutually orthogonal Latin squares
(MOLS) to sample the conformational space as in the field
of experimental design. The method has been described
elsewhere in detail””. Here we briefly describe only the
basic idea behind the method.

In the statistical experimental designs™ ~*, a variable of
specific experimental interest is referred to as a factor, and
its possible values are referred to as levels or treatments.
Every experiment comprises a set of experimental units
(often called plots or runs). The treatments are distributed
or applied to the experimental units using a design such
as MOLS design and yields of the plots are then analysed
using statistical techniques such as analysis of variance
(ANOVA), to finally arrive at a strategy to maximize the
yield or to compare the effect of different treatments or
levels. In other words, MOLS are used to systematically
sample the space of the variables. This allows the experi-
menter to finish the experiment with a relatively small
number of runs (M°) instead of examining all possible
combinations of values (M") of the variables, where N is
the number of variables and M is the number of possible
values of each variable. We have cast the problem of
searching for the minimum energy molecular structure on
the PES as a problem in experimental design. We identify
the factors (i.e. variables of interest) as the conformational
variables (usually the torsional angles, but other variables
are also possible). The treatments or levels of the factors
are their possible values (often 0 to 360°). The experimental
unit is the computer model of the molecule. The use of
MOLS experimental design gives M” sub squares (i.e. ex-
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periments or plots). Each plot has a set of treatments for
the factors of the experimental unit, chosen from all pos-
sible combinations of the values of the variables. There
are thus M* combinations (or molecular conformations) to
be calculated. A typical MOLS design is shown in Figure
1. The experiment consists of setting of all the conforma-
tional variables of the molecule to a specific set of values
and calculating the potential energy. Thus, the response
or yield of each ‘experiment’ in this case is the potential
energy of the molecule. We obtain A4 values of the poten-
tial energy corresponding to M> conformations systemati-
cally chosen to sample the entire conformational space.

In agricultural experiments, the next step in the procedure
is to analyse the yields using ANOVA or similar variance
analysis procedures, to identify the variables and their
values that contribute most significantly to the yield. We
have modified this method of analysis. We take Boltz-
mann weighted averages of different sets of variables to
identify the optimum value for each variable, and arrive
directly at the best structure. This completes one cycle of
calculations which will identify one low energy structure.
The structure identified in one run of MOLS may not be
the global minimum energy structure, but could be just one
of the many possible low energy structures of the mole-
cule. We may repeat the procedure using a different set of
MOLS to locate another low energy structure, though often
we simply obtain one of the previously obtained structures
again. After the procedure is repeated a sufficient number
of times (about 1000 for a pentapeptide), we obtain no
new structure but only previously obtained structures, in-

1 2 3 4 5
A1 B2 [ C3 | D4 | E5
aa Bb yeC 5d e
B5 | C1 D2 | E3 | A4
dc ed ae Ba Tb
C4 [ D5 | E1 A2 | B3
Be Ya db €cC od

D3 E4 Ab B 1 c2
eb ac Bd ve da

E2 | A3 | B4 | C5 | D1
vd de €a ab Bec

\Y

Figure 1. An example of a set of mutually orthogonal Latin squares™®,
showing four MOLS of order 5. This can be used as a design for an ex-
periment involving four (N) variables each with five (}) values. Sym-
bols in the first Latin square are A, B, C, D, E. Each of these is repeated
five times to give a total of 25 symbols, which have been arranged in a
Latin square {i.e. each symbol occurs exactly once in each row and ex-
actly once in each column). Similarly, the second, third and fourth
Latin squares have been constructed using symbols 1, 2, 3, 4, 5; o, B, 7,
3, € and a, b, ¢, d, e respectively, in such a way that each Latin square is
orthogonal to the other three Latin squares (i.e. each symbol of one
square occurs once, and only once, with each symbol of the other Latin
squares). One could use a set of M symbols and construct -1 MOLS
of order M. In the peptide structure optimization experiment, each
symbol within the sub square represents a possible value for the corre-
sponding torsion angle, and each sub square represents a possible con-
formation of the molecule.
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dicating that we have identified all the low energy struc-
tures of the molecule. The computations may therefore be
terminated at this point.

As we shall show now, we have successfully applied this
technique to identify low energy structures for a variety
of small peptides at negligible computational cost. The
algorithm was tested on some mathematical functions de-
signed with well-identified optima, as well as on a tetrapep-
tide and a dinucleotide®. The method successfully picked
up the optimal values each time. In the following sections
we describe the further validations, applications, automation
and future directions of this new conformational search tech-
nique.

Preliminary validations

In order to verify whether the MOLS search was truly exhaus-
tive, and that all low energy conformers of a molecule
could be picked up, it was applied to a test peptide mole-
cule (Ala);. The results were compared with those from
an exhaustive search. A molecule of this size (three resi-
dues) was chosen for the comparison, since an exhaustive
search (for comparative purposes) becomes impractical
for a molecule bigger than this size. At the same time, the
MOLS search does not really have any advantage for a
molecule smaller than this. (The exhaustive search took
786 min of CPU time, and the MOLS search took only
19 min CPU time, both on a single 650 MHz Pentium III
processor.) The comparison (Table 1) corroborated the
fact that the MOLS search algorithm was exhaustive, fast
and had not missed any low energy structure®”.

The algorithm was next applied to model homopoly-
peptides (polyalanine and polyglycine) of various lengths.
The results for one of them, viz. (Ala)s, are shown here. A
total of 1500 structures were generated using the ECEPP/3
force field''. This took about 3 h on a single 1.8 GHz
Pentium IV processor. The (0, W) values of all the struc-
tures obtained by the MOLS method fall in the allowed
region of the Ramachandran map (Figure 2), which shows
that the obtained structures are stereochemically sound.
In other words, the method is successful in avoiding un-
physical conformations and in identifying optimal ones.
The conformation with the lowest energy among 1500 is
a right-handed o-helical one. This conformation has been
shown as most stable for polyalanine by earlier stud-
ies'”***° The method also identifies other regular structures
for this pentapeptide such as right-handed 3, helices,
2.2, helices36, B-turns”, y—turns38 and extended conforma-
tions. When classified according to the Lewis criteria™,
about 5% of conformations is helices (R; 3 < 6 A), 1% is fully
extended (R;;~ 11A), 58% is extended (R;.3>7 A),
and remaining are folded (at least one R, ;s <7 A) con-
formations. R;;.; is known as characteristic distance (i.e.
the distance between the C* atom of residue i and the C*
atom of residue i + 3).
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Table 1.

Comparison of complete grid (or exhaustive) search with MOLS search for (Ala);. The last column specifies RMSD between

representative structures obtained by complete grid search and MOLS search. It is clear that the two sets of structures are the same
(for details see Vengadesan and Gautham®’)

MOLS search

Systematic search

Cluster Average

Cluster rank size energy (kcal/mol)

Cluster
rank

Cluster Comparison

RMSD (A)

Average energy
(kcal/mol)

size

48
73
40
64
71
78
30 1

—7.38
-7.17
-7.03
—6.96
—6.84
—6.78
—6.02
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—6.96
62 —6.85
468 —6.79
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0.05
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287
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Figure 2. Ramachandran map for (Ala)s, plotted for the 1500 optimal
conformations obtained by repeated application of MOLS procedure.
Contours in the map were calculated for (Ala), using the ECEPP/3 en-
ergy function''. Three contour levels have been shown corresponding
to the energy levels 10.4, 12.4 and 18.4 kcal/mol. Crosses (x) represent
discrete conformations picked up by MOLS method. Stars (*) are the
same structures after a few cycles of gradient minimization.

Further tests on pentapeptides (Met-enkephalin, Leu-
enkephalin, (Aib)s) and decapeptides again showed that
the method is able to identify the previously determined
experimental and theoretical structures successfully. For
(Aib)s, a total of 1500 structure were generated using the
ECEPP/3 force field''. The Ramachandran map was used
to characterize the 1500 structures. Since o-aminoisobutyric
acid has two methyl groups attached to the C* atom, the
allowed region in the Ramachandran conformational space
is more restricted. All the structures fell in the low energy
regions of the map. The lowest energy conformation
among 1500 is the 3, helical conformation (Figure 3), as
observed in crystallographic studies***' and other con-
formational analysis studies®. The residue Aib is known
to favour both right-handed and left-handed helices*. Both
these helices were present among the structures generated.
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The energy difference between the lowest energy confor-
mation between left and right-handed 3, helices was only
0.04 kcal/mol. a-helices, 2.2, helices, B-turns, y-turns and
extended conformations are other conformations identified.

We also examined the sampling quality of the MOLS
search algorithm using the sample overlap procedure®™.
According to this procedure, if two conformation samples
of the same system generated by two different sampling pro-
tocols (e.g. different initial conditions or different methods)
overlap and occupy the same conformation space, then
the sampling procedure is exhaustive. On the other hand,
if the conformation samples do not overlap or have little
overlap, then the sampling is incomplete. Evaluation of
the overlap between two samples can be carried out with
the aid of principal component projections through a joint
projection onto the same low-dimensional principal sub-
space. The two samples generated for (Ala)s by the MOLS
technique occupy almost exactly the same regions as
shown in Figure 4, indicating that the conformation sample
covers the entire available conformation space.

Applications

Conformational studies of peptides

The MOLS technique was applied for detailed conforma-
tional studies of the two neuropeptides: Met-enkephalin
and Leu-enkephalin®. Numerous studies on these neuro-
peptides and their analogues have been performed using
various techniques to define the biologically active struc-
ture or structures, and elucidate the mechanism of action
at the receptor site* *. In general, the studies indicate two dif-
ferent structural forms of enkephalins. One is a folded con-
formation and the other is an extended structure. Both the
forms are a large family of structures, the members of
which differ in the location and type of bend in the back-
bone, and in the extent of conformational variability in
the side chains.
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The ECEPP/3 force field'' was used in the MOLS pro-
cedure. A set (1500) of low energy structures was obtained
for each pentapeptide. The set of low energy structures of
each peptide was analysed in terms of the minimum energy
structures, structural motifs, comparison with crystal struc-
tures, backbone hydrogen bonding pattern, probability
distribution of dihedral angles, aromatic—aromatic inter-
actions and unique structures™. The technique located
conformations that had been identified by experimental

Figure 3. Stereo view of lowest energy structure of (Aib)s obtained by
MOLS technique. Energy of the conformation is —1.2 kcal/mol and
structure is right-handed 34, helical stabilized by two hydrogen bonds
Aib*(NH) — Aib'(CO) and Aib*(NH) — Aib*(CO).

N

o

2nd Prinicpal axis (A

3rd Prinicpal axis (A)

3002 A 0 1 2 3 83 -2 1 0 1 2 3

1st Prinicpal axis (A) 1st Prinicpal axis (A)

N

3rd Prinicpal axis (A)
o

'
N
o

P 12 3 4 5 6 7 8
Energy bins of size 2 kcal/mol

-1 0 1
2nd Prinicpal axis (A)

'
N

Figure 4. Two different conformation samples (consisting of 1500
conformations each) of (Ala)s simultaneously projected onto three two-
dimensional planes [{@), (b), and (c)], each figure representing a pair
from the first three principal axes {which together account for more
than 41% of the variance in the data). Open circles represent conforma-
tions from the first conformation sample, filled triangles from the second.
d, Distribution of energies in the two (Ala)s conformation samples.
Number of conformations per energy bin of size 2.0 kcal/mol for con-
formation sample 1 (black bars) and sample 2 (white bars).
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methods, as well as other theoretical methods. In addition
there were some new tightly folded conformations. Figure 5
shows two conformations obtained by the MOLS proce-
dure, which are similar to the GEM structure of Met-
enkephalin identified by Li and Scheraga'®. Some of the
low energy structures identified in the MOLS technique
corresponded to the fully extended conformations seen in
X-ray crystallography studies™. The MOLS structure closest
to one of these is shown in Figure 6. However, these
MOLS structures are not the ones with the lowest energy
among the 1500 structures. This may be because the extended
conformation is stabilized in crystal packing by intermole-
cular hydrogen bonds. The force field used in the MOLS pro-
cedure has not considered such intermolecular interactions.

Figure 5. Stereo view of two closest MOLS structures of Met-enke-
phalin superimposed on the global minimum structure {(shown in white)
identified by Li and Scheraga'®. RMSD (for all atom superposition) and
energy values of these two structures are 1.8 and 1.5 A, and ~10.1 and
—9.0 kcal/mol respectively.

Figure 6. Stereo view of one of the closest extended MOLS struc-
tures superimposed on crystal structure of Met-enkephalin {Griffin ef
al.®®, shown in white). RMSD is 1.7 A and energy of the MOLS struc-
ture is 2.6 kcal/mol.

CURRENT SCIENCE, VOL. 83, NO. 11, 10 JUNE 2005
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The conformations and their distribution are similar for
both enkephalins. Several studies® indicate that the folded
conformation binds to the p-receptor and extended con-
formation to the d-receptor. The present results have
identified both types of conformations. However, the frac-
tion of folded structures was low compared to extended con-
formations. This may indicate that the latter occur much
more frequently than the former, though folded conforma-
tions have the lowest energies. The results also indicate the
flexibility inherent in the enkephalin molecules, since
three different families of conformers, extended, folded and
tightly folded, have been observed, all with low energies.
Such flexibility is also indicated by the results of other
experimental and computational studies™ *'.

Mapping potential energy surface of peptides

The MOLS technique has also been applied to map the
potential energy landscape of Met-enkephalin and Leu-
enkephalin®. Samples obtained from the MOLS technique
were utilized to visualize the energy landscapes using
various order parameters: principal coordinates projection
with a minimal energy envelope procedure®, Hamming
distance™, and radius of gyration. The positions of experimen-
tal structures were also identified on the energy landscape
of each peptide. Figure 7 shows the minimal energy envelope
of the landscape for Met-enkephalin. The energy landscape of
both peptides possessed a significant amount of roughness
and resembled a broad funnel. This indicates that there is
no deep minimum in the energy landscape, and that the funnel
is wide even at the bottom. The partial folded conformations
(mixture of 2.2, helices, or combinations of y-turns) could
be intermediates during the folding process — they occur

o
]

Energy (kcal/mole)
&
!

-10

2nd Principa) ays (A)

Figure 7. Energy landscape obtained by minimal energy envelope
procedure for Met-enkephalin®. The two principal axes indicate con-
formational similarity, and the vertical axis reflects relative energy.
Letters A (5 — 2 pB-turn), B (4 — 2 B-turn), C (extended), and D (a-heli-
cal turn) marked on the energy landscape correspond to the experimen-
tal and theoretical minima.
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in all different energy ranges and in all positions in the
landscape.

Comparing the effects of different conformational
parameters

The MOLS algorithm was also used to compare the effect
of the different conformational parameters, and identify
the most significant ones”'. The traditional ANOVA techni-
que™ is used to analyse the MOLS samples and it helps
identify the equality of the effect of torsion angles on the
conformational potential energy. The results of the analyses
of few pentapeptides and decapeptides show that different
torsion angles contribute differently to the conformational
energy. In general torsion angles at the ends of the peptide
chain do not play a significant role in determining the
molecular potential energy corresponding to a particular
conformation, while angles in the middle do. In particular
for the smaller peptides, and to a much lesser extent for
larger ones, torsions that control interactions between
bulky amino acid side chains exert a greater influence on
the energy. A feature common to all peptides studied is the
greater significance of ¢ angles as compared to Y angles.
For example, the complete analysis of variance for Met-
enkephalin experiment is summarized in Table 2. It is
clear from Table 2 that the variable ¢4 has the greatest effect
on the conformational energy. Variations in this angle affect
the interactions between the two bulky aromatic side
chains of Tyr' and Phe®. Other angles that strongly affect
the conformation occur at the centre of the molecule ¢,,
Vs, 03, U3, 04, Wy, 05. All these affect the relative orienta-
tion of the two bulky aromatic groups. Among these ¢,,
03, 04 and ¢5 show the greatest effect. This is probably re-
lated to the fact that in the Ramachandran map, ¢ has a
more restricted range of values than y. These results were
consistent while the experiment was repeated by choosing
a different set of MOLS.

Automation

We have automated the MOLS procedure and written a
computer program to carry out the different tasks. The
whole procedure consists of five main tasks, viz. building
the initial peptide molecule, generation of conformational
and energy parameters, generation of optimal conformations
by MOLS search technique, minimization and clustering.
Programs (PDBGEN, PARGEN, MOLS, MINIMIZ,
CLUSTER) have been written in FORTRAN 77 to perform
all these tasks. They have been combined with a GUI so
that user-interaction is simplified. This program package
can be used to generate a complete set of optimal conforma-
tions for any linear peptide by just giving few inputs such
as sequence, number of cycles (structures), force field option,
etc.
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Table 2. Analysis of variance for Met-enkephalin experiment’'. The degree of significance of each variable is specified using P-
value (small values indicating a greater effect of the corresponding variable) with its significance code (***, P <0.001;
* P <0.05; NS, P2>0.5) in columns 6 and 7

Source of variation Degrees of freedom  Sum of squares Mean square Fy P-value  Significance code
0 36 515.2 14.3 0.6000 9.71 x 107" NS
vy 36 660.8 18.4 0.7696 8.35x 107" NS
02 36 3108.3 86.3 3.6198 1.08x 107" ok
2 36 1239.1 34.4 1.4430 4.53 x 107 *
03 36 2347.5 65.2 2.7338 277 x 1077 HE
3 36 2142.1 59.5 2.4946 3.59 % 107 ok
04 36 9238.2 256.6 10.7582 3.33x 107" HE
Yy 36 1321.0 36.7 1.5383 231 %107 *
s 36 3421.4 95.0 3.9844 1.38x 107" ok
s 36 958.0 26.6 1.1157 2.95x 107" NS
Error 1008 24043.8 23.9

Total 1368 48995.6

Initialize the communications environment

Build initial model peptide (PDBGEN)

Generate topological information (PARGEN)

Allocate data to each processor

If | am processor 0
Do MOLS search (MOLS) and minimization (MINIMIZ) for allotted data
Receive the results of other processors
Do clustering (CLUSTER)

Else
Do MOLS search (MOLS) and minimization (MINIMIZ) for allotted data
Send the results to processor 0

End if

Close communications

Figure 8. Pseudo code of MOLS procedure parallelization.

The parallelization approach is widely used in conforma-
tional search algorithms’*™* to speed up the conformational
search and reduce the computation time. This kind of ap-
proach requires a parallel program, a parallel (or cluster)
computer and parallel programming paradigm (message
passing). The MOLS algorithm may be parallelized at
different levels. We adopted the domain decomposition
approach (SPMD model) for parallelization of MOLS
procedure, in which the data (no. of cycles of the MOLS
procedure) are divided into pieces of the same size and
then assigned to different processors. Each processor then
works only on the portion of the data that is assigned to
it. Since the code (i.e. instructions applied to the data) is
identical on all processors, the processors can operate in-
dependently on large portions of data, with less communica-
tion. Since the MOLS search (MOLS) and minimization
(MINIMIZ) are time-consuming tasks in the MOLS pro-
cedure, they are parallelized as shown in the pseudo code
(Figure 8).

We followed an inexpensive method of Beowulf clus-
ter concept™*”” (http: //dune.mcs kent.edu/~parallel/equip/
beowulf/) for building a parallel computer with little special
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hardware. We used Pentium-based PCs with Linux OS
they were inter-connected via Local Area Network (LAN)
and free message-passing software such as parallel virtual
machine (PVM)”’, and several implementations of mes-
sage-passing interface’’; MPICH, LAM MPI. Initially we
built two-nodes cluster computer and used PVYM and MPICH.
Later we built five-nodes and nine-nodes cluster computers
and used LAM MPI. In the nine-nodes cluster, each node
has the following specifications: single 1.8 GHz Pentium
IV Processor, 40 GB hard disk, 256 MB RAM and Intel
(R) PRO/100 fast ethernet. The Red Hat Linux version
7.3 was installed on all nodes. The nodes are connected
through LAN by 16 Port 100Base TX Switch (DX-5016PS).
A single monitor, keyboard and mouse are connected to
all nodes via a KVM switch (MAXPORT-ACS-1216A).

The performance of the MOLS parallel implementation
was examined on the cluster computers for the test case
pentapeptide (Ala)s. Five hundred structures were gener-
ated, i.e. the number of cycles was set as 500. This job
took 4 min 40 s to generate 500 conformations on the nine
nodes cluster computer. The same job took 39 min 14 s
on a single processor computer. The degree of parallelization
was analysed using two measures, time speedup and effi-
ciency (i.e., the percent of parallelization)”. For the
above test problem speedup = 8.4 and efficiency = 0.93.
This shows that the performance of the parallel algorithm
is efficient and the parallel program spent much less time
for communication. Table 3 shows the performance of paral-
lel algorithm as a function of number of nodes. Initially
the running time decreases sharply, but after about six
processors the fall is not large, i.e. because with every
processor added, the additional resource committed to the
task, as a fraction of the entire task, becomes less and less, i.e.
1/7 is not much smaller than 1/6. The quality of the paral-
lelization depends on how evenly the workloads are dis-
tributed among different computers and how much time is
spent on data transfer between them. From Table 3 it can
be clearly seen that the parallelization is high and with
greater than 90% efficiency up to nine nodes.
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Table 3. Performance of parallel MOLS program as a function of the number of nodes
No. of nodes Total no. of cycles No. of cycles per node Running time** (min) Speed-up Efficiency
1 500 500 39.14 1.0 1.0
2 500 250 19.26 2.0 1.0
3 498* 166 13.11 3.0 1.0
4 500 125 10.27 3.8 0.9
5 500 100 8.06 4.8 1.0
6 498* 83 6.59 5.6 0.9
7 497* 71 5.54 6.6 0.9
8 496* 62 5.18 7.4 0.9
9 495% 55 4.4 8.4 0.9

*Total number of cycles is less than 500 to ensure that number of cycles per node is the same integer number for all nodes.

**Largest time taken by any node.

Problems and future of the work

The MOLS algorithm has three main advantages over other
structure search techniques.

1. The search is unconstrained and is accomplished at little
computational cost. Computational complexity of the
algorithm scales (only) as the fourth power of the size of
the molecule.

2. The method lends itself easily to parallelization, which
would further speed up the computation.

3. The method can be used to find the optimum of a wide
variety of functions because there are no major assump-
tions regarding the form of function.

There are, of course, the following limitations in extending
the procedure directly to larger molecules.

1. Each variable must have the same number of levels
and the number of levels must be a prime power.

2. The number of levels must be greater than the number
of variables.

3. The basic assumption of the MOLS design is that there
are no interactions among the variables.

The first two are not the major limitations. The chief
problem is the basic assumption of the independence of
the factors, which is true only to a limited extent. Thus,
though the possibility of extending the method to larger
peptides, and to ab initio protein structure prediction is
obvious, the success of any such scheme would depend
on several factors, including the development of an appropri-
ate potential function. Application of the present form of
MOLS procedure to several peptides of various lengths
showed that the method was successful for peptides of
length less than ten residues, and that it has to be refined
and modified further for longer peptides. Possible ways to
extend the method for longer peptides and other features
are now discussed.

Including secondary structure information

The secondary structure of polypeptides can be predicted
with high accuracy®, and it would be useful to utilize
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these predictions in the MOLS conformational search algo-
rithm in some manner. For example, this information can
be used as biasing functions. Alternately, the predicted secon-
dary structures could be first built. MOLS could then be
used to position the secondary structure elements optimally.

Utilization of other experimental knowledge

The present MOLS algorithm is purely an ab initio tech-
nique with no inputs other than the amino acid sequences.
Exploring the ways to incorporate partial or full
experimental information that we may have about the
structure of polypeptides will improve the results. For
example, the use of residual dipolar couplings’’ from NMR
experiments will help recognize the native conformations.

Build-up approach

The MOLS technique successfully predicts structures for
short peptides (<10 residues). A long polypeptide chain
can be divided into fragments of length about 5 to 10 residues,
and then the set of low energy conformations of each
fragment obtained from the MOLS method can be combined
to form a complete polypeptide chain conformation by a
‘build-up’ approach".

Developing hybrid algorithms

It has become common to combine two or more conforma-
tional search algorithms together to improve the perform-
ance of conformational search, because each algorithm has
its own strength and weakness™. Similarly, the MOLS algo-
rithm can be combined with other available algorithms,
such as genetic algorithms®'?*, etc.

Using a simplified model

The present MOLS procedure uses an all-atom represen-
tation for the molecule. Simplified models’ such as united
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atom model, bead model, lattice model, etc. are in common
use for protein structure prediction. One can use any of
these simplified models for longer peptides in the MOLS
procedure.

Refinement of the energy function and parameters

In most of the applications of the method described above,
even though experimental conformations were present in
the set of predicted low energy conformations, they could
not be distinguished from other conformations on the basis
of the energy values alone. This problem could be overcome
by developing a filtering function to discriminate the native
from the non-native or near native conformations.

Choice of appropriate temperature

The temperature used in the Boltzmann weighting function
was set by default to 3 K. This may not be appropriate for
all sizes of peptides.

Inclusion of solvent effect and intermolecular
interactions

The present procedure never included any solvation model
and intermolecular interactions in the energy function.
The empirical energy function used here has a set of para-
meters calculated from crystal structures of amino acids
and has been refined to adjust rotational barriers close to
experimental values. Thus, it is expected that these para-
meters include hydration and intermolecular effects. In-
clusion of intermolecular interactions and solvent effects
by either an implicit or explicit solvation model might im-
prove the results.

Modelling loop regions in the proteins

Modelling the loop regions of a protein is considered as a
bottleneck in the protein structure prediction (specifically
in comparative modelling). The MOLS algorithm can be
used to predict the conformation of these loop regions.
Initial attempts show that the method can predict loop
structures with less than 1 A RMSD with the corresponding
crystal structures (V. Kanagasabai and N. Gautham,
2005, unpublished.) However, the predicted structures
that were closest to the crystal structures could not be
discriminated from the other conformations on the basis
of energy values alone.

Application to other molecules

The MOLS algorithm is presently applied to polypeptides.
However, the algorithm is not limited to any molecules
and thus can be applied to other molecules such as polynu-
cleotides, organic molecules, etc.
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Prediction of ligand structures in drug design

The most daunting task in the structure-based drug discovery
process is the one of designing or finding a suitable
molecule which can bind to the required region of the
target. Conventional database searching methods can only
suggest drug candidates among known structures. In the
absence of known drug structures, the MOLS algorithm
can be used to generate libraries of conformations and pick
up an optimal 3D model to fit the target.

Latin cubes approach

Latin cubes can be used in the place of Latin squares of
the conformational search algorithm.

Application to cyclic molecules

The MOLS method is currently applied to linear molecules
only. However, it can be applied to cyclic molecules with
a little modification.

Apart from this, the method has many potential appli-
cations. For example, the representative models obtained
from the MOLS method can be used for solution and re-
finement of peptide crystal structures. Another possible
application is in the area of drug design. The docking of a
candidate drug molecule at its target site may be optimized
simultaneously with the structure of the drug molecule.
Some of these possibilities are being explored further in
our laboratory.
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