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String-searching algorithms are used to find the occur-
rences of a search string in a given text. The advent of
digital computers has stimulated the development of
string-searching algorithms for various applications.
Here, we report the performance of all string-searching
algorithms on widely used biological sequence data-
bases containing the building blocks of nucleotides (in
the case of nucleic acid sequence database) and amino
acids (in the case of protein sequence database). The
biological sequence databases used in the present
study are Protein Information Resource (PIR), SWISS-
PROT, and amino acid and nucleotide sequences of all
genomes available in the genome database. The average
time taken for different search-string lengths consid-
ered for study has been taken as an indicator of per-
formance for comparison between various methods.
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THE problem of pattern matching or string searching is
one of the oldest and most pervasive fields in computer
science. Applications that require string searching can be
found almost everywhere. However, recent years have
witnessed immediate interest in string-searching problems,
especially for rapidly growing sequence information in
biology. Because of the drastic increase in incoming seque-
nce, the demand for an efficient string-searching algorithm
is well realized.

The string-searching problem is to find one or more
occurrences of the interested search string within the text
string. Here, we denote the search string as SStr consisting
of m characters, xy, X, ..., x,, and the text string as TStr
consisting of n characters, v, v, ..., v,. All these charac-
ters are built over a finite alphabet set denoted by X,
which has size equal to G. Literature survey revealed that
several algorithms exist to perform this task efficiently
and each of them adopts its own technique and methodology.
Most of the algorithms that do not use the theory of auto-
mata use the concept of window to find the occurrence of
SStr within TStr. A window is defined as a portion of the
text whose length is equal to the length (m) of the SStr,
and it slides over the text after each attempt. The current
position of the window in the text is denoted by Wpos
and is first initialized to zero (left ends of TStr and the
window are aligned). An attempt is made to match the
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characters in the window with the search string characters
in some predefined order. After a match, Wpos is incremented
based on the skip value generated by the algorithm, in order
to slide the window on the text. This procedure is repeated
until the window goes to the right end of the text. However,
each algorithm uses its own method to calculate the skip
value.

String-searching algorithms have evolved drastically.
However, the most naive algorithm to solve this problem
is to take the skip value as one. This simple approach is
known as the brute force method. After this basic approach,
various algorithms were developed, which improved the
efficiency and each had its own advantages and limitations.

The string-searching algorithms can be addressed in
different ways. In particular, they are amenable to approaches
that range from the extremely theoretical to practical. On
the other hand, practical implementations of the algorithm,
though hard to assimilate, have proved to be more benefi-
cial and useful. Hence, it is extremely difficult to identity
a suitable and preferably fast algorithm for a given data-
base (because of the variation in the alphabet size; for
proteins the alphabet size is 20, whereas it is 4 for nucleotide
sequences). In addition, only a real-time practitioner can
locate and use the most appropriate algorithm to perform
a particular task. Given a situation with a string-searching
problem, amateur software engineers, computational biolo-
gists, researchers or students tend to dig out information
through search engines (for example, Google). This ap-
proach will solve the problem, but does not guarantee that
the chosen algorithm is an efficient one. Hence, we undertook
this work to study the behaviour or time complexities of
various algorithms on the frequently used biological sequence
databases.

Many of the string-searching algorithms are implemented
in two phases, viz. pre-processing phase and search phase.
During the pre-processing phase, the algorithm preproc-
esses the search string and generates the skip value that
can be used in the search phase. The pre-processed skip
value helps reduce the total number of character compari-
sons during the search phase, thereby reducing the overall
execution time. Hence, the pre-processing phase aims at
simplifying the operations in the search phase. However,
the efficiency of an algorithm is mainly dependent on the
methodology adopted in the search phase. The search
phase can be improved by altering the order in which the
characters are compared at each attempt using the most
appropriate skip value that maximizes the shift of the
window on the text.

The need for an efficient string-searching algorithm
has been realized for the databases of amino acids and
nucleotides, in the post-genomics era. These databases
need to be clearly mined to obtain useful information. The
amount of biological sequence information generated in
the recent years has seen a dramatic increase. It has been
roughly estimated that the amount of biological informa-
tion doubles every 20 months, and hence it is mandatory
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to identify an efficient and appropriate string-searching
algorithm. Next, we briefly describe various existing algo-
rithms.

There exists a myriad of algorithms for string searching.
The basic approach is brute force (BF), as pointed out
earlier. The first linear-time string-searching algorithm is
from Morris and Pratt (MP)I, later improved by Knuth,
Morris and Pratt (KMP)’. Subsequent improvements over
MP were done by Colussi (COLUSSI)®, Galil Giancarlo
(GG)* and Apostolico Crochemore (AXAMAC)’. The
Boyer Moore (BM)°® algorithm is considered as one of the
most efficient string-searching algorithms. This has been
widely recognized and used in various string-searching
applications. Subsequently, several variants of the BM
algorithm had appeared in the literature by introducing
minor modifications. Turbo Boyer Moore (TBM)' algorithm
is based on BM and helps increase the shift after each
attempt. Tuned Boyer Moore (TUNEDBM)® algorithm at-
tempts to reduce the character—character comparisons by
imposing character inspections for a specified number of
times (usually three). Instead of taking a shift value based
on the character in the window where the mismatch occurred
as in BM, Horspool (HORSPOOL)® algorithm always
takes the last character to find the shift value. Hence,
there is less number of instructions to execute at each attempt
and this algorithm is more practical in approach. On the
other hand, Quick Search (QS)10 algorithm takes (always)
the character placed immediately after the window to
compute the shift value after each attempt. Smith (SMITH)"!
algorithm tries to maximize the shift of the window after
each attempt, by taking the maximum of the shift value
gained by both HORSPOOL and QS algorithm. Berry
Ravindran (BR)'? algorithm uses a two-dimensional array
of the search string and works in a similar fashion like
BM. The other variants of BM algorithm include Apostolico
Giancarlo (AG)13, Reverse Colussi (RC)14 and Zhu Takaoka
Zm®.

There are algorithms that work on automaton with the
MP or BM concept used inherently in them. The very basic
algorithm uses deterministic finite automaton (DFA).
Simon (SIMON)16 algorithm also uses DFA, but also com-
bines the traits of MP. The Forward DAWG (Directed
Acyclic Word Graph) matching (FDM)'” algorithm uses the
suffix automaton of the search string. Other algorithms that
use the suffix automaton are Reverse Factor (RF)18 and
Turbo Reverse Factor (TRF), which are the most efficient
in practice. A variant of RF that uses the suffix oracle in-
stead of the suffix automaton is Backward Oracle Matching
(BOM)". Skip Search (SKIP)*® and KMP Skip Search
(KMPSKIP)20 algorithms use buckets to determine start-
ing positions of the search string in the text. The other
variant of RF 1is Backward Nondeterministic DAWG
matching (BNDM)*' algorithm, which uses bit parallel-
ism simulation of the suffix automaton.

The Karp Rabin (KR)* algorithm uses hashing methodo-
logy for string searching. The algorithm Shift Or (SO)* is
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an efficient one that uses bit-wise operations for its working.
Not So Naive (NSN)** is a string searching algorithm,
which is simple in implementation. Raita (RAITA)” algo-
rithm gives importance to the order of comparison at each
attempt and hence is efficient in practice. The first two
linear optimal space string-searching algorithms are Galil
Seiferas (GS)26 and Two Way (TW)27. String Matching
on Ordered Alphabets is attained through SMOA algorithm.
Optimal Mismatch (OM)'® and Maximal Shift (MS)'® algo-
rithms sort the search-string positions according to their
character frequency and their leading shift.

After a careful analysis of the existing algorithms, recently
Sheik—Sumit—Anindya-Balakrishnan—Sekar (SSABS)28
proposed a new algorithm. The algorithm, SSABS, blends
the advantages of QS and RAITA. In this algorithm, the order
of character comparisons performed between the window
and the search-string during each attempt is fixed. First,
the rightmost characters of the window and the search
string are compared. Secondly, the leftmost characters of
the window and the search-string are compared, and then
rest of the characters are compared in right to left order.
In case of a mismatch in any one of the above-stated
comparisons, the algorithm does not compare the remaining
characters of the window. After either a match or a mis-
match, the algorithm computes the shift of the window by
finding the position of the bad character (character placed
immediately after the window) in the search string. This
shift value for all the characters in the alphabet are com-
puted in the preprocessing phase and is used in the search
phase. Hence, the algorithm SSABS is most efficient and
works well in most practical situations. We now deal with
about the various biological sequence databases used in
the present study to identify an efficient algorithm.

Protein databases contain protein sequences and informa-
tion about protein motifs and features of protein structures.
The protein sequences are present in SWISS-PROT?,
PIR®, and Protein Data Bank (PDB)’'. SWISS-PROT
provides high level of annotation, which consists of pro-
tein function, domain, protein translational modification,
etc. SWISS-PROT merges all these data to minimize the
redundancy of the database. It provides integration between
nucleic acid sequences, protein sequences and protein ter-
tiary structures. This database was developed and primarily
maintained by Swiss Institute of Bioinformatics.

PIR is the most comprehensive and expertly annotated
protein sequence database. The objective of PIR is to achieve
comprehensiveness, timeliness, non-redundancy, quality
annotation and complete classification. PIR data-processing
involves four major steps: import, merging, classification
and annotation. Once a unique protein sequence report is
imported, it is assigned an accession number and is en-
tered into PIR. Further merging, annotation and classifi-
cation take place. Retrieval of the submitted or reported
sequence can be performed in PIR archive. PIR is an anno-
tated database covering the entire taxonomic range. Re-
cently, PIR and its international partners, EBI and SIB
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Table 1. Amino acids and their occurrences in various databases used in the present study

Amino acid

Single-letter code Three-letter code Full name SWISS-PROT PIR FAA

A ALA Alanine 3856544 7644886 13100890
C CYS Cysteine 781348 1354341 1839722

D ASP Aspartic acid 2630032 5065775 8295604

E GLU Glutamic acid 3259738 6138803 9841468

F PHE Phenylalanine 2011040 4034446 6335049

G GLY Glycine 3432262 6584906 10713539
H HIS Histidine 1129444 2079537 3349835

I ILE Isoleucine 2930055 5807964 9562897

K LYS Lysine 2953764 5544237 8668206

L LEU Leucine 4766306 9397947 15356872
M MET Methionine 1185715 2287852 3715491

N ASN Asparagine 2115899 4154656 6697619

P PRO Proline 2418963 4526668 6900621

Q GLN Glutamine 1949526 3676823 5838973

R ARG Arginine 2609373 5111181 8414478

S SER Serine 3446430 6787410 10200603
T THR Threonine 2730060 5301799 8319861

v VAL Valine 3313610 6471185 10559951
w TRP Tryptophan 586516 1179815 1837371

Y TYR Tyrosine 1546596 3020166 4820702

Table 2. Average time (107?s) taken by various algorithms for protein sequence database SWISS-PROT. Value within parenthesis represents cor-
responding standard deviation

Algorithm 2 4 6 8 10 12 14 16 18 20
BF 255(2)  254(1) 255 (1) 255 (1) 254 (1)  255(1) 255(1)  255(1) 255(0)  255(1)
MP 75 (3) 75 (2) 77 (3) 75 (2) 75 (2) 75 (2) 76 (3) 76 (3) 76 (3) 76 (2)
KMP 74 (3) 74 (2) 75 (4) 74 (2) 75 (3) 74 (3) 74 (3) 75(3) 742 74 (2)
COLUSSI 87 (6) 88 (1) 89 (7) 89 (7) 90 (10) 89 (7) 88 (7) 89 (10) 87 (6) 88 (9)
GG 95(18)  95(1) 96 (10) 98 (11) 95 (3) 94 (3) 97 (12)  98(16) 98(16) 94 (4)
AXAMAC 97 (3) 94 (1) 93 (2) 93 (2) 93 (2) 93 (2) 92 (1) 92(2)  91(1) 91 (1)
BM 72.(7) 55 (4) 51 (4) 47 (1) 46 (2) 45 (2) 44 (2) 44 (2) 43 (1) 42 (1)
TBM 122(23) 81 (10 67 (2) 63 (7) 58 (4) 56 (5) 54 (4) 52(2)  50(3) 50 (4)
AG 288 (11) 167 (3) 129 (3) 110 (4) 99 (5) 91 (4) 86 (4) 83(5) 80 (3) 77 (3)
RC 123 (2) 82 (1) 69 (1) 62 (1) 57 (1) 55 (1) 52 (1) 51 (1) 49 (1) 48 (1)
HORSPOOL 62 (4) 50 (2) 47 (2) 45 (2) 44 (1) 43 (1) 42 (1) 42(1)  41(D) 41 (2)
TUNEDBM 70 (3) 56 (2) 52(2) 49 (2) 48 (1) 47 (2) 46 (1) 46 (2)  45(2) 44 (2)
QS 118 (3) 88 (2) 76 (2) 69 (2) 64 (2) 63 (3) 59 (2) 57(2) 56(2) 55(2)
SMITH 126 (3) 93 (2) 79 (1) 71 (2) 66 (1) 62 (1) 61 (2) 58(2)  56(2) 55(2)
ZT 82 (4) 59 (1) 52 (1) 48 (1) 46 (1) 44 (1) 43 (1) 43 (1) 42(D) 42 (1)
BR 104 (1) 82 (1) 71 (1) 64 (1) 60 (1) 56 (1) 54 (1) 52(0) 510 50 (1)
AUT 317 (18) 314 (2) 318 (23) 321 (29) 317 (18) 314 (6) 316 (18)  314(5) 317(19)  315(13)
SIMON 96 (2) 96 (2) 96 (1) 96 (2) 97 (2) 96 (2) 96 (2) 96 (2) 96 (2) 95 (2)
FDM 351 (12) 395 (43) 440 (49) 473 (46) 508 (47)  518(35) 553 (45) 569 (42) 583(29) 605 (30)
RF 155(11) 109 (9) 94 (8) 84 (6) 78 (4) 73 (4) 69 (4) 66 (2) 64(3) 62 (3)
TRF 175(15) 120 (11) 102 (7) 91 (5) 86 (7) 80 (6) 76 (4) 74(3) 70 (4) 68 (2)
BOM 92(15) 74 (11 64 (2) 62 (3) 62 (3) 62 (7) 60 (5) 58(5)  56(2) 55(3)
SKIP 60 (4) 55(3) 55(2) 55 (4) 54 (2) 52 (3) 52(2) 52(2) 522 52(2)
KMPSKIP 53 (3) 50 (3) 48 (2) 47 (1) 47 (1) 46 (1) 46 (1) 46 (2) 46 (2) 45 (1)
BNDM 73 (3) 58 (2) 53(2) 50 (2) 48 (2) 47 (1) 45 (1) 44 (1) 44(2) 43 (1)
KR 72 (3) 69 (3) 68 (3) 67 (2) 67 (2) 67 (2) 67 (3) 67 (2) 68 (4) 66 (1)
SO 60 (5) 59 (3) 61 (6) 60 (4) 59 (3) 60 (5) 60 (5) 50(3) 59(3) 63 (4)
NSN 64 (6) 65 (5) 63 (7) 65 (5) 65 (5) 66 (6) 65 (5) 63 (4)  64(5) 63 (5)
RAITA 60 (4) 50 (2) 47 (2) 44 (1) 43 (1) 43 (1) 42 (1) 42(1) 412 41 (2)
Gs 163 (4) 163 (2) 164 (2) 163 (2) 164 (3) 164 (3) 164 (2) 164 (2) 164 (3) 164 (3)
TW 73 (6) 71 (6) 70 (4) 69 (3) 69 (3) 69 (3) 69 (3) 68 (4) 69 (4) 69 (2)
SMOA 83 (7) 85 (7) 84 (7) 83 (8) 84 (7) 82 (7) 82 (7) 83(8)  84(7) 83 (8)
OM 60 (2) 52(2) 49 (1) 46 (1) 45 (1) 44 (1) 44 (1) 43 (1) 43 (1) 42 (1)
MS 60 (5) 52 (4) 49 (3) 46 (1) 45 (1) 44 (1) 43 (1) 43(2) 421 42 (1)
SSABS 49 (3) 45(2) 43 (1) 42 (1) 41 (1) 41 (2) 41(2) 41(2) 40QD) 40 (1)

370 CURRENT SCIENCE, VOL. 89, NO. 2, 25 JULY 2005



RESEARCH COMMUNICATIONS

Table 3. Average time (107*s) taken by various algorithms for protein sequence database PIR. Value within parenthesis represents corresponding
standard deviation

Algorithm 2 4 6 8 12 14 16 18 20
BF 507 (1) 506 (1) 506 (1) 506 (1) 506 (1) 506 (1) 506 (1) 506 (1) 506 (1) 503 (1)
MP 157 (3) 159 (5) 158 (5) 158 (4) 159 (5) 158 (4) 158 (4) 158 (3) 158 (4) 155 (5)
KMP 157 (3) 157 (5) 158 (6) 156 (5) 157 (4) 157 (5) 157 (5) 157 (4) 156 (5) 154 (5)
COLUSSI 186 (18) 187 (14)  185(13) 183 (1) 183 (1) 184 (14)  185(19) 188 (26) 182 (13) 176 (2)
GG 192 (22) 196 (2) 195 (5) 197 (15) 196 (15) 197 (19) 196 (19) 198 (26) 193 (14) 192 (19)
AXAMAC 204 (6) 195 (3) 195 (5) 195 (5) 194 (5) 193 (4) 192 (3) 190 (2) 190 (2) 188 (5)
BM 150 (9) 122 (9) 112 (6) 105 (3) 102(3)  101(5) 100 (5) 98 (4) 98 (5) 93 (3)
TBM 240 (19) 168 (13) 144 (12) 130 (3) 124 (6)  121(10)  118(8) 114 (6) 112 (7) 107 (8)
AG 568(5) 337 (6) 263 (10)  225(5) 205(9) 189 (5) 180 (6) 175 (8) 168 (7) 161 (6)
RC 253 (5) 172 (3) 145 (2) 132 (1) 124 (1)  118(D) 115 (1) 112 (1) 109 (1) 104 (2)
HORSPOOL 131 (6) 110 (4) 103 (4) 99 (2) 98 (4) 95 (2) 94 (3) 94 (4) 94 (4) 89 (2)
TUNEDBM 152 (9) 121 (4) 113 (4) 107 (3) 105(2) 104 (4) 101 (2) 101 (3) 101 (3) 96 (5)
QS 242 (4) 184 (4) 159 (3) 146 (4) 137.(3) 130 (3) 126 (2) 125 (5) 122 (5) 116 (4)
SMITH 258 (4) 192 (3) 165 (3) 150 (3) 140 (2) 133 (3) 128 (2) 125 (3) 122 (3) 116 (4)
ZT 170 (2) 127 (1) 114 (3) 106 (1) 102 (2) 99 (1) 97 (1) 95 (1) 94 (1) 91 (2)
BR 215 (3) 171 (2) 150 (1) 137 (1) 120 (1) 122(1) 117 (1) 114 (1) 111 (1) 106 (1)
AUT 622 (3)  632(47) 624 (14)  623(14)  625(33) 627 (34) 642 (63) 634 (47) 631 (46) 621 (18)
SIMON 200 (6) 200 (4) 200 (3) 199 (3) 200 (5)  200(5) 200 (4) 199 (3) 200 (4) 195 (4)
FDM 708 (53)  781(69)  853(74)  921(72) 990 (83) 1012(70) 1089 (103) 1114 (30) 1158 (92) 1198 (77)
RF 317 (24) 222 (14) 192(11)  175(11)  164(9) 153 (8) 146 (5) 141 (5) 136 (3) 128 (3)
TRF 361 (62) 243 (16)  212(16)  191(12)  180(12) 167 (9) 160 (8) 154 (7) 149 (6) 140 (5)
BOM 188 (16) 155 (18) 142 (23)  135(6) 134 (11)  131(5) 127 (2) 126 (11) 124 (10) 117 (8)
SKIP 130 (8) 121 (8) 122 (6) 116 (4) 117 (4)  115(6) 115 (5) 113 (4) 113 (4) 109 (4)
KMPSKIP 116 (6) 111 (7) 107 (3) 105 (2) 104 (2) 103 (3) 104 (4) 102 (3) 102 (3) 98 (2)
BNDM 156 (6) 126 (5) 115 (3) 110 (3) 105(2) 103 (3) 101 (3) 99 (4) 98 (2) 93 (4)
KR 151 (3) 145 (3) 142 (3) 143 (4) 141(1) 1412 141 (3) 141 (3) 141 2) 137 (3)
SO 128 (2) 127 (1) 127 (1) 127 (1) 127(1)  126(1) 126 (1) 127 (6) 126 (1) 125 (7)
NSN 137(12) 138 (10) 135(14) 140 (10) 139 (10) 140 (12) 138 (10) 134 (8) 136 (10) 132 (10)
RAITA 131 (4) 109 (3) 102 (3) 99 (3) 97 (3) 95 (1) 94 (2) 95 (4) 94 (4) 89 (4)
Gs 331(4) 330 @) 332 (5) 330 (5) 332(6)  331(5)  332(5) 333 (5) 334 (6) 329 (5)
TW 157 (12) 150 (12) 148 (8) 146 (6) 146 (7) 146 (5) 146 (6) 145 (7) 147 (8) 143 (4)
SMOA 174 (13) 177 (14) 177 (14) 17315  175(14) 171 (14) 171 (15) 173 (15) 174 (14) 170 (15)
OM 131 (3) 113 (3) 107 (2) 102 (1) 101 (2) 99 (1) 97 (1) 97 (1) 96 (1) 92 (2)
MS 129 (3) 113 (6) 106 (1) 102 (3) 100 (3) 98 (3) 96 (1) 96 (1) 95 (1) 91 (2)
SSABS 109 (5) 100 (4) 96 (4) 94 (4) 94 (4) 93 (5) 93 (5) 92 (3) 91 (2) 87 (2)

were awarded the NIH grant to produce a single worldwide
database of protein sequence and function.

Information available in FAA (FASTA Amino Acid)
and FNA (FASTA Nucleic Acid) corresponds to the amino
acid and nucleotide sequences of various genomes (A.
thaliana, C. elegans, mitochondria, P. falciparum, S. cer-
evisiae, bacteria, S. pombe and Anopheles gambiae)
available in the genome database. These databases (FAA
and FNA) have been downloaded from the National Centre of
Biotechnology Information (NCBI) anonymous ftp site
(ftp://ftp.ncbi.nih.gov/genbank/genomes/*).

The databases used in the present study are SWISS-PROT,
PIR, FAA and FNA.

The first three databases contain amino acid sequences
(alphabet size ¢ = 20) and the last database has only nucleo-
tide sequences (alphabet size G = 4). These databases differ
substantially in size. For example, the number of protein
sequences is 135,493, 283,347 and 453,861 for SWISS-
PROT, PIR and FAA respectively. The number occurrences
of each amino acid available in various databases is given
in Table 1. It is interesting to note that none of the above
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databases is static and they are subject to increase as and
when new sequences are available.

A total number of 837 gene sequences (comprising nucleo-
tides; 826.31 MB size) have been deployed in the present
study. This dataset contains four alphabets (nucleotides),
viz. A (adenine, 239490165), C (cytosine, 183940124), G
(guanine, 183818044) and T (thymine, 239419854) and
hence the alphabet size is equal to four (¢ = 4). Numbers
within parenthesis denote the corresponding occurrences
in the entire database.

All the algorithms have been executed and tested using
a 3.06 GHz processor, 1 GB of RD-RAM with 512 KB of
cache memory in RedHat Linux (version 8.0). Source
codes were compiled using the ‘cc’ compiler without any
optimization. The source code for the algorithms used for
comparison is taken from the literature®’. All the programs
have been executed on a single user mode to make sure
that the results are more reliable.

In order to study the efficiency of the algorithms over a
particular database, we have chosen databases containing
amino acid and nucleotide sequences. These databases range
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Table 4. Average time (107 s) taken by various algorithms for genome database (amino acids) FAA. Value within parenthesis represents corre-
sponding standard deviation

Algorithm 2 4 6 8 10 12 14 16 18 20

BF 814 (8) 825 (83) 825(84) 816(11)  826(84)  815(12) 826 (84) 815 (8) 837 (117) 812 (1)
MP 267 (71) 265 (51) 266 (51)  265(52)  263(47) 256 (4)  256(5) 263 (48) 256 (4) 254 (5)
KMP 255 (11) 254 (5) 256 (11) 254 (4) 257 (9) 254 (4) 257 (14) 254 (4) 255 (4) 253 (5)
COLUSSI 291 (19) 296 (3) 299 (25)  303(38)  301(29)  295(10) 299 (30) 297 (29)  298(36) 290 (10)
GG 306 (33) 316 (3) 314 (3) 331 (75)  329(73) 327 (71) 311(2) 317 (51)  317(51) 307 (3)
AXAMAC  318(14) 332 (97) 344 (140) 343 (126) 324 (73)  352(134) 320 (49) 329 (113) 307 (17) 304 (20)
BM 237 (4) 189 (4) 176 (12) 167 (8) 161 (7) 159 (6) 155 (2) 153 (2) 151 (1) 152 (4)
TBM 380 (13) 302 (19) 262 (18) 236 (8) 221 (9) 208 (4) 204 (15) 198 (9) 191 (5) 178 (6)
AG 908 (8) 543 (12) 424 (12) 364 (11)  330(11) 306 (11) 289(9) 280 (11) 269 (9) 262 (10)
RC 403 (8) 276 (4) 233 (4) 213 (3) 199 (3) 190 (3) 184 (3) 180 (3) 175 (2) 170 (2)
HORSPOOL 211 (19) 177 (16) 166 (9) 158 (7) 155 (5) 151(2) 150 (3) 150 (4) 148 (3) 147 2)
TUNEDBM 236 (11) 191 (6) 178 (4) 169 (4) 166 (4) 164 (5) 160 (3) 160 (5) 159 (5) 159 (7)
QS 384 (5) 293 (5) 256 (4) 234 (4) 221 (5) 210 4)  204(5) 200 (5) 195 (4) 190 (5)
SMITH 412 (6) 310 (12) 269 (12) 242 (7) 227 (8) 214 (5) 206 (5) 200 (4) 195 (4) 190 (4)
ZT 279 (40) 205 (5) 182 (4) 174 (13) 166 (11) 159 (1) 158 (10) 154 (5) 152 (5) 150 (3)
BR 347 (5) 279 (4) 245 (2) 223 (2) 210 (3) 200(2)  192(2) 187 (3) 182 (3) 177 (3)
AUT 1002 (24) 1003 (28) 998 (21) 1003 (50) 992 (4) 993 (2) 997 (17) 994 (3) 1019 (85) 1028 (85)
SIMON 377 (126) 339 (65) 335(46) 340 (75)  343(73)  342(32) 335(58)  358(106) 327 (6) 342 (74)
FDM 1119 (60) 1251 (100) 1373 (94) 1478 (112) 1576 (130) 1638 (119) 1724 (125) 1787 (126) 1844 (116) 1920 (137)
RF 508 (42) 363 (38) 312 (20)  282(17)  261(11)  248(11) 236 (8) 227 (8) 220 (8) 211 (3)
TRF 555 (39) 390 (27) 338 (21) 306 (16) 284 (14) 267 (12) 257 (11) 248 (10) 239 (7) 232 (7)
BOM 309 (49) 247 (30) 22521)  216(16)  217(17)  208(8) 204 (6) 198 (8) 194 (6) 189 (6)
SKIP 208 (14) 193 (11) 192 (8) 187 (6) 187 (6) 184 (6) 182 (5) 181 (4) 182 (4) 179 (5)
KMPSKIP 189 (10) 178 (7) 175 (6) 172 (4) 171 (5) 169 (4) 167 (3) 167 (3) 166 (3) 163 (4)
BNDM 250 (18) 200 (6) 187 (9) 178 (6) 171 (4) 167 (3) 164 (3) 161 (2) 158 (2) 156 (3)
KR 252 (38) 237 (29) 235(28)  233(28)  237(40)  232(27) 227(1)  228(1) 228 (1) 233 (34)
SO 208 (31) 209 (31) 201 (2) 206 (24)  206(23) 207 (25) 201 (1)  207(25)  205(23)  202(7)
NSN 227 (27) 226 (21) 227 (47) 234 (44)  228(21)  243(59) 226 (18) 224 (45)  232(59) 220 (22)
RAITA 207 (4) 174 (3) 165 (3) 159 (3) 156 (2) 154 (3) 152 (2) 151 (3) 150 (2) 148 (2)
Gs 512 (9) 510 (8) 514 (9) 518 (9) 519 (11) 521 (9)  521(9)  525(8) 524 (8) 524 (9)
TW 256 (19) 269 (101) 263 (68) 246 (27)  259(66)  241(9) 241 (10) 243 (27) 249 (36) 261 (63)
SMOA 284 (32) 285 (23) 202 (42) 283 (37)  282(24)  278(32) 276(26) 283 (35 281 (24) 281 (33)
OM 206 (6) 179 (4) 171 (14) 164 (13) 160 (11) 156 (3) 154 (2) 154 (7) 151 (2) 152 (5)
MS 208 (5) 183 (8) 175 (6) 167 (3) 164 (5) 160 (4) 157 (2) 157 (3) 156 (3) 152 (2)
SSABS 171 (8) 159 (5) 155 (5) 151 (4) 149 (4) 147(3) 1473 146 (2) 145 (2) 144 (3)

from alphabet sizes that are small (in the case of nucleo-
tides) to those that are large (in the case of amino acids).
SWISS-PROT, PIR and genome database of FAA contain
amino acid sequences (hence . =(A, C,D,E, F, G, H, I,
K.L,LM,N,P,Q.R,S, T, V, W, Y) and 6 = 20) and FNA
genome database contains nucleotide sequences (hence
Y =(A,C,G,T) and 6 =4). No prior pre-processing has
been done on the databases used in the present analysis.
We have tested each of the algorithms against several
search-string lengths (2, 4, 6, 8, 10, 12, 14, 16, 18 and 20). In
addition, for each search-string length, 50 randomly se-
lected search strings were used. The above-mentioned
procedure is repeated for all the databases deployed in the
present study. Tables 2—5 show the average time taken by
various algorithms on the databases SWISS-PROT, PIR,
FAA genome database and FNA genome database. The
reported average time is 107 s. The following points have
been derived after careful examination of the time taken
by various algorithms reported in Tables 2-5.
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First, in the case of SWISS-PROT, the algorithm SSABS,
performs better for search strings of varying lengths.
HORSPOOL and RAITA show better timings as also ZT,
KMPSKIP and MS in a few instances. Secondly, in the
case of the PIR database, SSABS shows better timings over
other algorithms followed by HORSPOOL and RAITA.
Thirdly, in the case of huge protein sequence database de-
rived from all available genomes, SSABS works consis-
tently better for varying lengths of search string, followed
by HORSPOOL and RAITA. At the outset, SSABS,
HORSPOOL and RAITA work well in the case of the
protein sequence databases (G = 20). However, in the case
of a nucleotide sequence database (G =4), SSABS works
well for search-string length up to six. It is interesting to
note that for longer search strings (m 2 6), the ZT performs
better, followed by BNDM.

To conclude, the algorithm SSABS performs well on
protein sequences (G = 20), irrespective of the size of the
database and the length of the search string. The algorithm ZT
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Table 5. Average time (107*s) taken by various algorithms for genome database (nucleotides) FNA. Value within parenthesis represents corre-
sponding standard deviation

Algorithm 2 4 6 8 10 12 14 16 18 20

BF 4554 (53) 4484 (23) 4494 (49) 4494 (36) 4488 (29) 4497 (39) 4492 (39) 4494 (31) 4487 (34) 4487 (38)
MP 1620 (49) 1627 (150) 1608 (98) 1616 (100) 1621 (150) 1602(96) 1631 (97) 1598 (50) 1588 (49) 1603 (86)
KMP 1751 (508) 1677 (325) 1585(185) 1644 (212) 1652 (313) 1614 (181) 1695 (343) 1586 (69) 1573 (133) 1602 (119)
COLUSSI  1712(154) 1650 (70) 1631 (153) 1681(89) 1659 (142) 1677 (136) 1652 (144) 1632(91) 1638 (136) 1655 (104)
GG 1704 (302) 1746 (74) 1709 (141) 1775(87)  1728(109) 1769 (132) 1724 (114) 1735(109) 1727 (138) 1746 (90)
AXAMAC  1972(73) 1808 (266) 1729 (221) 1752(76) 1726 (136) 1825(324)  1733(119) 1723 (111) 1737 (240) 1760 (213)
BM 1643 (282) 1305(215) 1180 (170) 1104 (109) 1093 (106) 1080 (86) 1029 (70) 1060 (70) 1042 (63) 1010 (79)
TBM 2530 (416) 2155 (314) 1817 (157) 1800 (469) 1737 (452) 1697 (286) 1573 (207) 1694 (315) 1602 (211) 1438 (183)
AG 5771 (354) 3919 (358) 3139 (341) 2890 (361) 2825(398) 2837 (484) 2601 (436) 2789 (388) 2684 (391) 2512 (313)
RC 2210 (51) 1608 (46)  1372(45) 1249(45  1182(35)  1129(28) 1096 (33) 1053 (34) 1033 (38) 1007 (32)
HORSPOOL 1809 (136) 1372 (172) 1226 (102) 1194 (123) 1213 (196) 1229 (187) 1194 (174) 1224 (149) 1213 (177) 1174 (110)
TUNEDBM 1967 (280) 1458 (103) 1328 (137) 1283 (125) 1275(155) 1305(165) 1245(158) 1291 (135) 1281 (164) 1252 (129)
QS 2477 (100) 2064 (177) 1893 (223) 1803 (204) 1838 (248) 1845(259) 1716 (251) 1858(279) 1859 (225) 1724 (235)
SMITH 2720 (107) 2113 (147) 1872(203) 1756 (194) 1766 (272) 1798(292) 1699 (255) 1804 (278) 1760 (236) 1565 (451)
ZT 1728 (42) 1233 (40) 1061 (26)  985(26) 951 (47) 916 (25) 896 (25) 873 (26) 868 (24)  855(27)
BR 2072(81) 1764 (105) 1568 (102) 1429(88) 1352(87) 1297 (61)  1236(66) 1206 (76) 1203 (62) 1169 (69)
AUT 5553(53) 5436 (22)  5430(52) 5444(85) 5439 (71)  5437(57)  5447(89) 5429 (27) 5423 (26) 5418 (17)
SIMON 2195(502) 2094 (316) 2081 (316) 2076 (266) 2079 (290) 2030 (63) 2090 (274) 2107 (314) 2075 (233) 2077 (184)
FDM 8620 (861) 10449 (923) 11432 (996) 12191 (972) 12955 (638) 13233 (722) 13465 (466) 13595 (702) 13711 (151) 13865 (115)
RF 5418 (532) 3624 (244) 2886 (193) 2488 (165) 2255(93) 2064 (94)  1913(73)  1811(70) 1714 (47) 1640 (42)
TRF 5905 (803) 4347 (380) 3499 (295) 3013 (231) 2718(120) 2461 (131) 2278(107) 2147 (99) 2024 (70) 1953 (59)
BOM 2363 (399) 1715(123) 1459 (63) 1326 (65 1239 (43)  1197(54) 1136 (47)  1124(94) 1081 (66) 1054 (52)
SKIP 2168 (221) 1866 (93) 1814 (66) 1771 (84) 1765(71)  1735(61)  1740(66)  1728(73) 1736 (74) 1719 (50)
KMPSKIP 1677 (192) 1518 (82) 1430 (51) 1408(84) 1380 (93) 1357 (68)  1348(40) 1346 (56)  1325(40) 1325 (70)
BNDM 1890 (268) 1401 (94) 1201 (73) 1076 (51) 1008 (36) 970 (35) 932 (42) 908 (38) 880 31) 862 (34)
KR 1532 (109) 1233(29) 1210 (20) 1195(23) 1188(23)  1194(23) 1199 (24)  1195(25) 1190 (25) 1195 (22)
SO 1182 (121) 1078(102) 1075 (104) 1065 (28) 1064 (25) 1092 (133) 1071 (107) 1075(102) 1094 (130) 1078 (111)
NSN 1800 (183) 1782(138) 1741 (189) 1768 (148) 1743 (148) 1783(155) 1750 (133) 1770 (180) 1743 (189) 1788 (138)
RAITA 1612 (177) 1200 (106) 1097 (102) 1058 (96) 1033 (77) 1051 (101) 1043 (109) 1056 (99) 1046 (118) 1021 (81)
GS 3448 (101) 3369 (102) 3370 (95) 3384 (98) 3359 (94) 3374 (95)  3413(85) 3396 (107) 3364 (94) 3381 (100)
TW 1664 (204) 1479 (154) 1414 (174) 1364 (106) 1382 (149) 1387 (87) 1404 (134) 1416 (102) 1396 (129) 1403 (154)
SMOA 2383 (320) 2497 (301) 2402 (294) 2488 (368) 2445 (298) 2419 (263) 2498 (473) 2540 (426) 2497 (331) 2545 (403)
oM 1464 (101) 1256 (79) 1143 (71) 1088 (76) 1074 (68)  1068(68) 1016 (59) 1026 (62)  1022(67) 999 (51)
MS 1457 (172) 1240 (137) 1104 (76) 1061 (92) 1020 (42) 1008 (64) 957 (41) 985 (84) 957 (47) 940 (66)
SSABS 1135 (43) 1063 (60) 1020 (93) 994 (95)  1005(96) 1026 (137) 984 (98) 996 (72) 1026 (140) 987 (103)

performs well in the case of nucleotide sequences (G = 4),
when the search-string length is more than six. However,
SSABS provides reasonable competition over other algo-
rithms for search-string lengths less than or equal to six.
To gain further understanding, our future interest is to ana-
lyse the performance of various algorithms in the English
language, where the alphabet size is more than 26.
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Compositional symmetry of DNA
duplex in bacterial genomes
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Computational analysis of seven bacterial genomes re-
vealed that both the DNA strands in a genome exhibit
compositional symmetry in terms of the abundance of
a non-palindromic oligonucleotide (di, tri, tetra, penta,
hexa, hepta and octa). This symmetry in DNA duplex
suggests that both strands in the duplex possess similar
compositional characteristics, though the nucleotide
sequences in the DNA strands are different (comple-
mentary). This compositional symmetry between DNA
strands in genomes may be due to the abundance of
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coding sequences in both the strands and to ensure the
synchronous completion of replication of the two
strands.

Keywords: Genome, DNA duplex, non-palindromic
sequence, oligonucleotide composition, coding sequen-
ces, DNA replication.

A chromosome is made up of a DNA duplex in which the two
DNA strands are antiparallel and complementary to each
other: adenine (A) of one strand pairs with thymine (T) of
the other strand, and guanine (G) of one strand pairs with
cytosine (C) of the other strand'. Thus sequences of both
the strands are different, except at the palindromic regions
(symmetrical DNA sequence). In the case of a palindromic
oligonucleotide, its abundance in both the DNA strands in
a genome is identical. However, in the case of a non-palindro-
mic oligonucleotide (non-symmetrical DNA sequence), its
abundance in both the DNA strands in a genome might be
different. In this study we have analysed seven bacterial
genomes (Bacillus subtilis’, Escherichia coli’, Haemophilus
inﬂuenzae4, Pseudomonas aeruginosas, Pseudomonas syrin-
gae®, Ralstonia solanacearum’ (mega plasmid and chro-
mosome) and Xanthomonas campestris pv. campestris8
(Xcc)) for abundance of non-palindromic oligonucleotides
in both the DNA strands. We present evidence that abundance
of a non-palindromic oligonucleotide in both the DNA
strands in a genome is similar. This compositional symmetry
of the DNA duplex in genomes is interesting and suggests
that there is a tendency in the genome to maintain
similarity between both the DNA strands, though
functionally the two strands have different attributes.
Complete genome sequences of B. subtilis, E. coli, H.
influenzae, P. aeruginosa, P. syringae, R. solanacearum
and Xcc were downloaded from the ‘genome information
broker site’ (www.gib.genes.nig.ac.jp). These sequences were
analysed for the occurrence of non-palindromic oligonucleo-
tide sequences (di, tri, tetra, penta, hexa, hepta and octa
nucleotides; Table 1) in both DNA strands using a com-
puter program ‘seqsearch’ (developed by the authors). Since
DNA strands are complementary to each other, by studying
nucleotide composition of one of the strands, composition of
the other strand can be determined, e.g. the number of As
present in one of the strands is equal to the number of Ts
present in the other strand, and the number of Gs present
in one strand is equal to the number of Cs present in the
other strand. Similar logic can also be applied for studying
oligonucleotide composition as well, e.g. total number of TG
dinucleotides present in one of the strands of a genome is
same as the total number of CA dinucleotides present in the
other strand of the genome. Thus if we count the total number
of TG and CA in one of the strands of the genome, then
we would be able to compare between the number of TGs
present in both the DNA strands. In this study, we have
analysed one of the DNA strands in the genomes for
comparing the abundance of nucleotides/oligonucleotides
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